
8.1 Binary Trees

8.1.1 Introduction. In this section we will show how to arithmetize binary
trees labelled by natural numbers (see Fig. 8.1). In most functional program-
ming languages the type Bt of binary trees can be defined by a union type:

Bt = E ∣ Nd(N,Bt ,Bt).

A value of type Bt is therefore either the empty tree E or a non-empty tree
of the form Nd(x, l, r), where x is the label of its root node and l, r are values
of type Bt called the left and right subtrees of that non-empty tree. The
constant E and the function Nd are called constructors.

2

1 3

1

2

3

4

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Fig. 8.1 Examples of binary trees

8.1.2 Constructors of binary trees. Arithmetization of binary trees is
done with the help of the following two pair constructors with pairwise dif-
ferent tags:

⟨⟩ = ⟨0,0⟩ (empty tree)

⟨l ∣ x ∣ r⟩ = ⟨1, x, l, r⟩. (node)

From the properties of the pairing function we obtain

⊢PA ⟨⟩ ≠ ⟨l ∣ x ∣ r⟩
⊢PA ⟨l1 ∣ x1 ∣ r1⟩ = ⟨l2 ∣ x2 ∣ r2⟩→ x1 = x2 ∧ l1 = l2 ∧ r1 = r2

The first property says that the constructors are pairwise disjoint and the
second that the functional constructor ⟨l ∣ x ∣ r⟩ is an injective mapping.

We obtain the pattern matching style of definitions of functions operating
over the codes of binary trees with the conditionals of the form



case

t = ⟨⟩⇒ β1

t = ⟨l ∣ x ∣ r⟩⇒x,l,r β2[x, l, r]
otherwise⇒ β3.

end

This is called discrimination on the constructors of binary trees.
The above conditional is evaluated as follows. Note that the expression

Tuple∗(2, t) ∧∗ [t]
2
1 =∗ 0

is the characteristic term of its first variant since

⊢PA t = ⟨⟩↔ Tuple(2, t) ∧ [t]21 = 0.

Similarly, the expression

Tuple∗(4, t) ∧∗ [t]
4
1 =∗ 1

is the characteristic term of its second variant as we have

⊢PA ∃x∃l∃rt = ⟨l ∣ x ∣ r⟩↔ Tuple(4, t) ∧ [t]41 = 1.

Finally note that we have

⊢PA t = ⟨l ∣ x ∣ r⟩→ x = [t]42 ∧ l = [t]43 ∧ r = [t]44

and therefore, the terms [t]42, [t]
4
3 and [t]44 are the witnessing terms for the

output variables x, l, r of the second variant of the conditional.

8.1.3 Arithmetization of binary trees. We wish to assign to every bi-
nary tree T a unique number ⌜T ⌝, called the code of T . The mapping is defined
inductively on the structure of binary trees:

• If T is the empty tree then ⌜T ⌝ is the number ⟨⟩.
• If T is a non-empty tree with the root label x, the left son T1, and the

right son T2, then ⌜T ⌝ is the number ⟨⌜T1⌝ ∣ x ∣ ⌜T2⌝⟩.

For instance, the code of the first binary tree from Fig. 8.1 is the number

⟨⟨⟨⟩ ∣ 1 ∣ ⟨⟩⟩ ∣ 2 ∣ ⟨⟨⟩ ∣ 3 ∣ ⟨⟩⟩⟩ = 26 646 277 093 331 868 372 637.

Clearly, the mapping ⌜T ⌝ is injective.
We will use the discrimination on the constructors of binary trees in the

definition of the predicate Bt(t) holding of the codes of binary trees. The
predicate is defined by course of values recursion as primitive recursive by

Bt ⟨⟩
Bt ⟨l ∣ x ∣ r⟩← Bt(l) ∧Bt(r).



Note that the following are the omitted default clauses of the definition:

¬Bt ⟨l ∣ x ∣ r⟩← ¬Bt(l)∨ ¬Bt(r)
¬Bt(t) ← t ≠ ⟨⟩ ∧ ¬∃x∃l∃r t = ⟨l ∣ x ∣ r⟩.

Consequently, the clausal definition is equivalent to

⊢PA Bt(t)↔ t = ⟨⟩ ∨ ∃x∃l∃r(t = ⟨l ∣ x ∣ r⟩ ∧Bt(l)∧Bt(r)).

The embedding of binary trees into natural numbers is so straightforward
that we will henceforth identify binary trees with their codes, i.e. with the
subset Bt of natural numbers. In our case we will say the binary tree t instead
of the code t of a binary tree.

8.1.4 Case analysis on binary trees. Directly from the definition of the
predicate Bt we obtain the following property

⊢PA Bt(t)→ t = ⟨⟩ ∨ ∃x∃l∃r t = ⟨l ∣ x ∣ r⟩.

This is called the principle of structural case analysis on the constructors of

the binary tree t.
We can use the above principle of structural case analysis in order to

establish the admissibility of a certain kind of conditional discriminations on
the constructors of binary trees. These are of the form

Bt(t) → case

t = ⟨⟩⇒ β1

t = ⟨l ∣ x ∣ r⟩⇒x,l,r β2[x, l, r]
end

Because of the precondition Bt(t) we have to evaluate only two alternatives
instead of three. Moreover, as we have

⊢PA Bt(t)→ t = ⟨⟩↔ [t]21 = 0

⊢PA Bt(t)→ ∃x∃l∃rt = ⟨l ∣ x ∣ r⟩↔ [t]41 = 1,

we can use [t]21 =∗ 0 and [t]
4
1 =∗ 1 as the characteristic terms of its two variants

which are much simpler expressions than those from Par. 8.1.2.

8.1.5 Structural induction for binary trees. The principle of structural
induction for binary trees can be informally stated as follows. To prove by
tree induction that a property holds for every binary tree it suffices to prove:

Base case: the property holds for the empty tree ⟨⟩.
Induction step: if the property holds for the subtrees l, r then it holds also

for the whole tree ⟨l ∣ x ∣ r⟩.

This is expressed formally in PA by



⊢PA ϕ[⟨⟩] ∧ ∀x∀l∀r(ϕ[l] ∧ϕ[r] → ϕ[⟨l ∣ x ∣ r⟩]) → Bt(t)→ ϕ[t],

where ϕ[t] is a formula of PA. The property is called the principle of structural
induction on the binary tree t for ϕ[t].

Proof. The principle of structural induction for binary trees is derived in PA
as follows. Assume ϕ[⟨⟩] and ∀x∀l∀r(ϕ[l] ∧ ϕ[r] → ϕ[⟨l ∣ x ∣ r⟩]) take any
binary tree t and prove that ϕ[t] holds by complete induction on t. We
consider two cases. If t is the empty tree then the claim follows directly from
the first assumption. Otherwise, t is a non-empty tree of a form ⟨l ∣ x ∣ r⟩ for
some x, l, r. By the properties of the pairing function we have l < ⟨l ∣ x ∣ r⟩ and
r < ⟨l ∣ x ∣ r⟩. By applying two IH’s we get ϕ[l] and ϕ[r], and thus ϕ[⟨l ∣ x ∣ r⟩]
by the second assumption.

8.1.6 Structural recursion on binary trees. Structural induction over
binary trees is used to prove properties of functions defined by the scheme
of structural recursion on binary trees. In its simplest form, the operator
of structural recursion introduces a function f from two functions g and h

satisfying

f(t, y) = case
t = ⟨⟩⇒ g(y)
t = ⟨l ∣ x ∣ r⟩⇒ h(x, l, r, f(l, y), f(r, y), y)
otherwise⇒ 0

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of binary tree (output variables of the
second variant are omitted).

The following identities form the clausal form of the above definition

f(⟨⟩, y) = g(y)
f(⟨l ∣ x ∣ r⟩, y) = h(x, l, r, f(l, y), f(r, y), y).

Note here that this is a typical example where we wish to use the default
clauses – in this case

f(t, y) = 0← t ≠ ⟨⟩ ∧ ¬∃x∃l∃r t = ⟨l ∣ x ∣ r⟩,

in order not to clutter the definition. We do not care what value is yielded
by the application f(t, y) if t is not the code of a binary tree.

The above definition for the function f can be easily rewritten to a condi-
tional program for the same function as we have

⊢PA Bt(t) → f(t, y) = case
t = ⟨⟩⇒ g(y)
t = ⟨l ∣ x ∣ r⟩⇒ h(x, l, r, f(l, y), f(r, y), y)

end



Its conditions of regularity

⊢PA Bt(t) ∧ t = ⟨l ∣ x ∣ r⟩ → l < t ∧Bt(l)
⊢PA Bt(t) ∧ t = ⟨l ∣ x ∣ r⟩ → r < t ∧Bt(r)

are trivially satisfied.
Similar schemes, when we allow terms with arbitrary number of parameters

on the right-hand side of the above identities, substitution in parameters, or
even nested recursive applications, will be also called definitions/programs
by structural recursion on binary trees.

8.1.7 Depth and size of binary trees. The depth function d(t) yields
the length of the longest path from the root to a leaf in the binary tree t.
The function is defined by parameterless structural recursion on the binary
tree t as a primitive recursive function:

d ⟨⟩ = 0
d ⟨l ∣ x ∣ r⟩ =max(d(l), d(r)) + 1.

The size function ∣t∣ counts the number of labels in the binary tree t. The
function is defined by parameterless structural recursion on the binary tree t
as a primitive recursive function:

∣⟨⟩∣ = 0
∣⟨l ∣ x ∣ r⟩∣ = ∣l∣ + ∣r∣ + 1.

The next property relates the number of labels in a binary tree to its depth:

⊢PA Bt(t)→ d(t) ≤ ∣t∣ < 2d(t). (1)

There are trees for which the second inequality is tight, i.e. ∣t∣ + 1 = 2d(t). Such
trees are called full binary trees.

Proof. The property is proved by structural induction on the binary tree t.
The base case is obvious. The induction step when t = ⟨l ∣ x ∣ r⟩ follows from

d ⟨l ∣ x ∣ r⟩ =max(d(l), d(r)) + 1
IH
≤ max(∣l∣ , ∣r∣) + 1 ≤

≤ ∣l∣ + ∣r∣ + 1 = ∣⟨l ∣ x ∣ r⟩∣

and

∣⟨l ∣ x ∣ r⟩∣ = ∣l∣ + ∣r∣ + 1
IH
< 2d(l) + 2d(r) ≤ 2 × 2max(d(l),d(r)) =

= 2max(d(l),d(r))+1 = 2d ⟨l∣
x∣r⟩. ⊓⊔

8.1.8 Membership in binary trees. The predicate x ∈ t holds if x is a
label of the binary tree t. The predicate is defined by structural recursion on
the binary tree t as a primitive recursive predicate:



x ∈ ⟨l ∣ y ∣ r⟩ ← x = y

x ∈ ⟨l ∣ y ∣ r⟩ ← x ≠ y ∧ x ∈ l

x ∈ ⟨l ∣ y ∣ r⟩ ← x ≠ y ∧ x ∉ l ∧ x ∈ r.

The following are the basic properties of the tree membership predicate:

⊢PA x ∉ ⟨⟩
⊢PA x ∈ ⟨l ∣ y ∣ r⟩↔ x = y ∨ x ∈ l ∨ x ∈ r.

From the properties of the pairing function we get ⊢PA x ∈ t → x < t. Conse-
quently, the universal quantifier ∀x in a context like ∀x(x ∈ . . . → ⋯ ) can be
bounded. Similarly for existential quantifiers.

8.1.9 Subtree relation. Given the binary trees t1 and t2, the predicate
t1 ⊴ t2 holds if the tree t1 is a subtree of the tree t2. The predicate is defined
by structural recursion on the binary tree t2 as primitive recursive by

t1 ⊴ t2 ← t1 = t2
t1 ⊴ t2 ← t1 ≠ t2 ∧ t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ t1 ⊴ l2
t1 ⊴ t2 ← t1 ≠ t2 ∧ t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ t1 ⋬ l2 ∧ t1 ⊴ r2.

The following is the basic property of the subtree predicate:

⊢PA t1 ⊴ t2 ↔ t1 = t2 ∨ ∃x2∃l2∃r2(t2 = ⟨l2 ∣ x2 ∣ r2⟩ ∧ (t1 ⊴ l2 ∨ t1 ⊴ r2)). (1)

As a straightforward consequence we obtain that

⊢PA ⟨l1 ∣ x1 ∣ r1⟩ ⊴ ⟨l2 ∣ x2 ∣ r2⟩↔ x1 = x2 ∧ l1 = l2 ∧ r2 = r2 ∨

∨ ⟨l1 ∣ x1 ∣ r1⟩ ⊴ l2 ∨ ⟨l1 ∣ x1 ∣ r1⟩ ⊴ r2.
(2)

Finally note that ⊢PA t1 ⊴ t2 → t1 ≤ t2 by the properties of the pairing func-
tion. Therefore universal quantifiers in contexts like ∀t1(t1 ⊴ . . . → ⋯ ) can be
bounded. Similarly for existential quantifiers.

8.1.10 Subsorts of binary trees. In the following sections we will study
various kinds of binary trees where the sorted predicate R(t) for each partic-
ular variety of binary trees has the following explicit definition

P (t)↔ Bt(t) ∧ ∀x∀l∀r(⟨l ∣ x ∣ r⟩ ⊴ t → ϕ[x, l, r]) (1)

for a suitable ϕ[x, l, r]. For instance:

• perfectly size-balanced trees are defined by (1) with ϕ ≡ ∣l∣ = ∣r∣;
• perfectly depth-balanced trees are defined by (1) with ϕ ≡ d(l) = d(r).

The predicate P defined by (1) has the following basic properties:

⊢PA P ⟨⟩ (2)

⊢PA P ⟨l ∣ x ∣ r⟩↔ ϕ[x, l, r] ∧ P (l)∧P (r). (3)



Proof. (2): This is obvious. (3): It follows from

P ⟨l ∣ x ∣ r⟩⇔

Bt ⟨l ∣ x ∣ r⟩ ∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ ⟨l ∣ x ∣ r⟩ → ϕ[x1, l1, r1])
8.1.9(2)
⇔

Bt(l) ∧Bt(r) ∧ϕ[x, l, r] ∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ l → ϕ[x1, l1, r1]) ∧

∧ ∀x1∀l1∀r1(⟨l1 ∣ x1 ∣ r1⟩ ⊴ r → ϕ[x1, l1, r1])⇔

ϕ[x, l, r] ∧P (l)∧ P (r). ⊓⊔

1

2

3 4

5

6 7

4

2

1 3

6

5 7

7

3

1 2

6

4 5

Fig. 8.2 Three basic traversals of binary trees – preorder, inorder and postorder

8.1.11 Depth-first traversal of binary trees. Consider the function
Preorder(t) collecting the labels of a binary tree into a list in the order
which corresponds to depth-first traversal of binary trees (see Fig. 8.2). The
function is defined by structural recursion as primitive recursive by

Preorder ⟨⟩ = 0
Preorder ⟨l ∣ x ∣ r⟩ = ⟨x,0⟩⊕Preorder(l)⊕Preorder(r).

Note that the program runs in time O(∣t∣2) due to repeated concatenation.
We obtain more efficient algorithm by keeping the labels of the visiting tree

in an accumulator. For that we need a binary accumulator function f(t, a)
defined by nested structural recursion on the binary tree t:

f(⟨⟩, a) = a
f(⟨l ∣ x ∣ r⟩, a) = ⟨x, f(l, f(r, a))⟩

Then we can take the following property

⊢PA Bt(t)→ Preorder(t) = f(t,0).

as an alternative (conditional) program of the preorder traversal function
with time complexity O(∣t∣).

The property is a straightforward consequence of a more general property
of the accumulator function:

⊢PA Bt(t)→ ∀af(t, a) = Preorder(t)⊕ a,



which is proved structural induction on the binary tree t. The base case is
trivial. In the induction step when t = ⟨l ∣ x ∣ r⟩ take any a and we get

f(⟨l ∣ x ∣ r⟩, a) = ⟨x, f(l, f(r, a))⟩ IH= ⟨x, f(l,Preorder(r)⊕ a)⟩ IH=

= ⟨x,Preorder(l)⊕Preorder(r)⊕ a⟩ = Preorder ⟨l ∣ x ∣ r⟩⊕ a.

Note that the second application of IH is with Preorder(r)⊕ a in place of a.


