
8.2 Binary Search Trees

8.2.1 Introduction. In this section we will study binary search trees which
are useful for representing finite sets of natural numbers. The time required
to search for an element of a binary search tree t takes the number of steps
proportional to the depth of the tree t. If the tree is reasonably balanced then
the time is order lg ∣t∣. The same holds for the basic operations over binary
search trees such as insertion and deletion.

4

2

1 3

6

5 7

2

1 6

4

2 5

7

1

3

2 7

6

4

5

Fig. 8.3 Examples of three different binary search trees representing the same finite set
of natural numbers {1, 2, 3, 4, 5, 6, 7}

A binary search tree t is a binary tree satisfying the following search

condition:

for every non-empty subtree of t, its root label is strictly greater than the labels of
its left son and strictly less than the labels of its right son.

Figure 8.3 shows three binary search trees representing the following three
finite sets of natural numbers: {1,2,3}, {1,2,3,4} and {1,2, . . . ,15}.

8.2.2 Auxiliary specification predicates. The predicate x ≺ t holds if x
is a strict lower bound of the labels of the binary tree t, i.e.

x ≺ t↔ ∀y(y ∈ t → x < y).

The predicate x ≻ t holds if x is a strict upper bound of the labels of the
binary tree t, i.e.

x ≻ t↔ ∀y(y ∈ t → x > y).

Later, in Par. 8.2.8, we will find useful the binary predicate t1 ≺b t2 holding
if the labels of the binary tree t1 are strictly less than the labels of the binary



tree t2. The predicate has the following explicit definition:

t1 ≺b t2↔ ∀x1∀x2(x1 ∈ t1 ∧ x2 ∈ t2 → x1 < x2).

8.2.3 Binary search trees. The predicate Bst(t) holding of binary search
trees is defined explicitly as a primitive recursive predicate by

Bst(t) ↔ Bt(t) ∧ ∀x∀l∀r(⟨l ∣ x ∣ r⟩ ⊴ t→ x ≻ l ∧ x ≺ r).

From the results of Par. 8.1.10 we obtain that the predicate satisfies

⊢PA Bst ⟨⟩

⊢PA Bst ⟨l ∣ x ∣ r⟩ ↔ x ≻ l ∧ x ≺ r ∧Bst(l) ∧Bst(r).

8

4

2

1 3

6

5 7

12

10

9 ?

14

13 15

Fig. 8.4 Testing for membership of numbers 3 (dotted arrows) and 11 (dashed arrows) in
the binary search tree representing the finite set {1, . . . ,10} ∪ {12, . . . ,15}

8.2.4 Membership in binary search trees. Testing for membership in
binary search trees is simple (see Fig. 8.4). To determine whether a binary
search tree t contains a node labelled with x it suffices to compare x with the
root label of t. If x is smaller than the root label then it can only appear in
the left subtree; if x is greater then it appears in the right subtree. Otherwise
they are equal and we are done. Note that the time to evaluate x ∈ t in binary
search trees is order d(t).

The above reasoning can be expressed by the following property of its
characteristic function:



Bst(t) → x ∈∗ t↔ case

t = ⟨⟩⇒ 0
t = ⟨l ∣ y ∣ r⟩⇒
case

x < y⇒ x ∈∗ l

x = y⇒ 1
x > y⇒ x ∈∗ r.

end

end

We can take the property as an alternative (conditional) program for com-
puting the tree membership predicate. Its conditions of regularity

⊢PA Bst(t) ∧ t = ⟨l ∣ x ∣ r⟩ ∧ x < y → l < t ∧Bst(l)

⊢PA Bst(t) ∧ t = ⟨l ∣ x ∣ r⟩ ∧ x > y → r < t ∧Bst(r)

are trivially satisfied.

8.2.5 Extreme values of binary search tree. Now we consider the prob-
lem of computing extreme values of binary search trees. Because the labels
of a binary search tree t are sorted in increasing order the leftmost node
contains the smallest label of the tree and the rightmost node contains the
largest (see Fig. 8.5).

Minimum Maximum

Fig. 8.5 Extreme values of binary search trees

The problem is illustrated for the function Max(t) computing the largest
elements in binary search trees. The function satisfies

⊢PA Bst(t) ∧ t ≠ ⟨⟩ →Max (t) ∈ t (1)

⊢PA Bst(t) ∧ t ≠ ⟨⟩ ∧ x ∈ t → x ≤Max(t) (2)

and it is defined by structural recursion on binary trees as a p.r. function:



Max ⟨l ∣ x ∣ ⟨⟩⟩ = x
Max ⟨l ∣ x ∣ r⟩ =Max(r) ← r ≠ ⟨⟩.

We intend to apply the operation Max(t) only in cases when t is a non-
empty tree. For that we can take the following property as an alternative
(conditional) program for computing the function:

⊢PA Bt(t) ∧ t ≠ ⟨⟩ →Max(t) = let t = ⟨l ∣ x ∣ r⟩ in
case

r = ⟨⟩⇒ x

r ≠ ⟨⟩⇒Max(r)
end.

Its condition of regularity

⊢PA Bt(t) ∧ t ≠ ⟨⟩ ∧ t = ⟨l ∣ x ∣ r⟩ ∧ r ≠ ⟨⟩ → r < t ∧Bt(r) ∧ r ≠ ⟨⟩

is trivially satisfied.

Verification. (1): This follows from

⊢PA Bt(t) ∧ t ≠ ⟨⟩ →Max (t) ∈ t

which can be proved by a straightforward structural induction on the binary
tree t.

(2): By structural induction on the binary tree t. In the base case there is
nothing to prove. In the induction step, when t = ⟨l ∣ y ∣ r⟩, assume x ∈ ⟨l ∣ y ∣ r⟩
and consider two cases. If r = ⟨⟩ then either x = y or x ∈ l and then x < y by
definition. In either case we have x ≤ y and the claim follows from definition
since Max ⟨l ∣ y ∣ ⟨⟩⟩ = y. If r ≠ ⟨⟩ we continue by considering three subcases:

x = y
(1)
⇒ y <Max(r) =Max ⟨l ∣ y ∣ r⟩

x ∈ l⇒ x < y
(1)
⇒ x < y <Max (r) =Max ⟨l ∣ y ∣ r⟩

x ∈ r
IH
⇒ x ≤Max (r) =Max ⟨l ∣ y ∣ r⟩. ⊓⊔

8.2.6 Insertion in binary search trees. The function t ∪ {x} takes a
binary search tree t and inserts x into it (see Fig. 8.6). The function satisfies

⊢PA Bst(t) → Bst(t ∪ {x}) (1)

⊢PA Bst(t) → y ∈ t ∪ {x} ↔ y ∈ t ∨ y = x (2)

and it is defined by structural recursion as a p.r. function:

⟨⟩ ∪ {x} = ⟨⟨⟩ ∣ x ∣ ⟨⟩⟩
⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∣ y ∣ r ∪ {x}⟩ ← y < x

⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∣ y ∣ r⟩ ← y = x

⟨l ∣ y ∣ r⟩ ∪ {x} = ⟨l ∪ {x} ∣ y ∣ r⟩ ← y > x.



Note that the time to evaluate t ∪ {x} is order d(t).

8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Fig. 8.6 Insertion of the number 11 into the binary search tree representing the finite set
of natural numbers {1, . . . ,10} ∪ {12, . . . ,15}

Verification. (2): This follows from

⊢PA Bt(t) → y ∈ t ∪ {x} ↔ y ∈ t ∨ y = x, (†1)

which is proved by structural induction on the binary tree t. The base case
is straightforward. In the induction step when t = ⟨l ∣ z ∣ r⟩ we consider three
cases. If z < x then we have

y ∈ ⟨l ∣ z ∣ r⟩ ∪ {x} ⇔ y ∈ ⟨l ∣ z ∣ r ∪ {x}⟩ ⇔ y = z ∨ y ∈ l ∨ y ∈ r ∪ {x}
IH
⇔

⇔ y = z ∨ y ∈ l ∨ y ∈ r ∨ y = x⇔ y ∈ ⟨l ∣ z ∣ r⟩ ∨ y = x.

The case when z = x is obvious and the case when z > x is proved similarly.
As a simple consequence of (†1) we get

⊢PA Bt(t) → y ≺ t ∪ {x} ↔ y ≺ t ∧ y < x (†2)

⊢PA Bt(t) → y ≻ t ∪ {x} ↔ y ≻ t ∧ y > x. (†3)

(1): By structural induction on the binary tree t. The base case is straight-
forward. In the induction step when t = ⟨l ∣ y ∣ r⟩ we consider three cases. If
y < x then we have

Bst(⟨l ∣ y ∣ r⟩ ∪ {x}) ⇔ Bst ⟨l ∣ y ∣ r ∪ {x}⟩ ⇔

⇔ y ≻ l ∧ y ≺ r ∪ {x} ∧Bst(l) ∧Bst(r ∪ {x}).

The last follows from IH and (†2). The case when y = x is trivial and the case
when y > x is proved similarly. ⊓⊔

8.2.7 Deletion of extreme values in binary search trees. In this para-
graph we will consider the problem of deletion of extremal values from binary



r1

rn−1

rn

⇒

r1

rn−1rn

l1

ln−1

ln

⇒

l1

ln−1 ln

Fig. 8.7 Deletion of extreme values in binary search trees

search trees (see Fig. 8.7). We show here only the implementation and ver-
ification of the function deleting the gretest label in a binary search tree.
We leave to the reader the implementation and verification of the function
deleting the smallest label.

The function Delmax(t) deleting the largest label in the binary search tree
t satisfies

⊢PA Bst(t) ∧ t ≠ ⟨⟩ → Bst Delmax(t) (1)

⊢PA Bst(t) ∧ t ≠ ⟨⟩ → x ∈ Delmax(t) ↔ x ∈ t ∧ x ≠Max(t) (2)

and it is defined by structural recursion as a p.r. function (see Fig. 8.7):

Delmax ⟨l ∣ x ∣ ⟨⟩⟩ = l
Delmax ⟨l ∣ x ∣ r⟩ = ⟨l ∣ x ∣ Delmax(r)⟩ ← r ≠ ⟨⟩.

We intend to apply the operation Delmax(t) only in cases when t is a
non-empty tree. For that we can take the following property as an alternative
(conditional) program for computing the function:

⊢PA Bt(t) ∧ t ≠ ⟨⟩ → Delmax(t) = let t = ⟨l ∣ x ∣ r⟩ in
case

r = ⟨⟩⇒ l

r ≠ ⟨⟩⇒ ⟨l ∣ x ∣ Delmax(r)⟩
end.

Its condition of regularity



⊢PA Bt(t) ∧ t ≠ ⟨⟩ ∧ t = ⟨l ∣ x ∣ r⟩ ∧ r ≠ ⟨⟩ → r < t ∧Bt(r) ∧ r ≠ ⟨⟩

is trivially satisfied.
Note also that as a simple consequence of 8.2.5(2) and (2) we have

⊢PA Bst(t) ∧ t ≠ ⟨⟩ →Max(t) ≻ Delmax(t). (3)

Verification. (2) By structural induction on the binary tree t. In the base
case there is nothing to prove. In the induction step when t = ⟨l ∣ y ∣ r⟩ we
consider two cases. If r = ⟨⟩ then we get the following by noting that y ∉ l:

x ∈ Delmax ⟨l ∣ y ∣ ⟨⟩⟩ ⇔ x ∈ l⇔ (x = y ∨ x ∈ l) ∧ x ≠ y⇔

⇔ x ∈ ⟨l ∣ y ∣ ⟨⟩⟩ ∧ x ≠Max ⟨l ∣ y ∣ ⟨⟩⟩.

If r ≠ ⟨⟩ then we have

x ∈ Delmax ⟨l ∣ y ∣ r⟩ ⇔ x ∈ ⟨l ∣ y ∣ Delmax(r)⟩ ⇔

x = y ∨ x ∈ l ∨ x ∈ Delmax(r)
IH
⇔ x = y ∨ x ∈ l ∨ x ∈ r ∧ x ≠Max(r)

(∗)
⇔

(x = y ∨ x ∈ l ∨ x ∈ r) ∧ x ≠Max (r) ⇔ x ∈ ⟨l ∣ y ∣ r⟩ ∧ x ≠Max ⟨l ∣ y ∣ r⟩.

The step marked by (∗) follows from Max(r) ≠ y and Max(r) ∉ l by 8.2.5(1).
As a simple consequence of (2) we get

⊢PA Bst(t) ∧ t ≠ ⟨⟩ ∧ x ≺ t→ x ≺ Delmax(t) . (†1)

(1): By structural induction on the binary tree t. In the base case there is
nothing to prove. In the induction step when t = ⟨l ∣ x ∣ r⟩ we consider two
cases. If r = ⟨⟩ then the claim follows directly from the definition. If r ≠ ⟨⟩
then we have

Bst Delmax ⟨l ∣ x ∣ r⟩ ⇔ Bst ⟨l ∣ x ∣ Delmax(r)⟩ ⇔

⇔ x ≻ l ∧ x ≺ Delmax(r) ∧Bst(l)∧Bst Delmax(r).

The last follows from IH and (†1). ⊓⊔

8.2.8 Deletion in binary search trees. Deletion of labels from binary
search trees is much harder than insertion. We wish to define the function
t ∖ {x} deleting a number x from a binary search tree t with the following
specification:

⊢PA Bst(t) → Bst(t ∖ {x}) (1)

⊢PA Bst(t) → y ∈ t ∖ {x} ↔ y ∈ t ∧ y ≠ x. (2)



The key problem in finding the implementation of the deletion function is:
how to define t ∖ {x} when x is the root label of t, i.e. when t = ⟨l ∣ x ∣ r⟩ for
some l and r. Figure 8.8 gives two answers to the problem.

In the first solution the right son r is appended as a new subtree at the
bottom right to the left son l. Note that it may happen that the depth of the
resulting tree is greater than the depth of t.

In the second solution we take the largest label of the left son l as a new
root label with the left son obtained from l by deleting its maximal element
and with r as its right son. The result is a tree which depth does not exceed
the depth of the original tree.

l1

ln

r

⇒

l1

ln r

l1

ln−1

ln

r

⇒

l1

ln−1 ln

r

Fig. 8.8 Deletion operation in binary search trees

We therefore take the second method as a basis of our implementation
of the deletion function. We define t ∖ {x} by structural recursion on t as a
primitive recursive function:

t1 ⊔ t2 = t2 ← t1 = ⟨⟩
t1 ⊔ t2 = ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩ ← t1 ≠ ⟨⟩.

⟨⟩ ∖ {x} = ⟨⟩
⟨l ∣ y ∣ r⟩ ∖ {x} = ⟨l ∣ y ∣ r ∖ {x}⟩ ← y < x

⟨l ∣ y ∣ r⟩ ∖ {x} = l ⊔ r ← y = x

⟨l ∣ y ∣ r⟩ ∖ {x} = ⟨l ∖ {x} ∣ y ∣ r⟩ ← y > x,



where the auxiliary primitive recursive function t1 ⊔ t2 joining two trees as
shown in Fig. 8.8 satisfies

⊢PA Bst(t1) ∧Bst(t2) ∧ t1 ≺b t2 → Bst(t1 ⊔ t2) (3)

⊢PA Bst(t1) ∧Bst(t2) → x ∈ t1 ⊔ t2 ↔ x ∈ t1 ∨ x ∈ t2. (4)

Verification. Property (4) is proved by considering two cases. The case when
t1 = ⟨⟩ is trivial and in the case when t1 ≠ ⟨⟩ we have

x ∈ t1 ⊔ t2⇔ x ∈ ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩ ⇔

x =Max(t1) ∨ x ∈ Delmax(t1) ∨ x ∈ t2
8.2.7(2)
⇔

x =Max(t1) ∨ x ∈ t1 ∧ x ≠Max(t1) ∨ x ∈ t2
(∗)
⇔ x ∈ t1 ∨ x ∈ t2.

The step marked by (∗) follows from Max (t1) ∈ t1 which holds by 8.2.5(1).
In the proof of the property (3) we consider two cases. The case when t1 = ⟨⟩
is trivial and in the case when t1 ≠ ⟨⟩ we have

Bst(t1 ⊔ t2) ⇔ Bst ⟨Delmax(t1) ∣ Max(t1) ∣ t2⟩ ⇔

Max(t1) ≻ Delmax(t1) ∧Max(t1) ≺ t2 ∧Bst Delmax(t1) ∧Bst(t2).

The last follows from 8.2.7(3), 8.2.5(1), and 8.2.7(1).
Property (2) is proved by structural induction on t. The base case is

straightforward. In the induction step when t = ⟨l ∣ z ∣ r⟩ we consider three
cases. If z < x then we have

y ∈ ⟨l ∣ z ∣ r⟩ ∖ {x} ⇔ y ∈ ⟨l ∣ z ∣ r ∖ {x}⟩ ⇔ y = z ∨ y ∈ l ∨ y ∈ r ∖ {x}
IH
⇔

y = z ∨ y ∈ l ∨ y ∈ r ∧ y ≠ x
(∗)
⇔ (y = z ∨ y ∈ l ∨ y ∈ r) ∧ y ≠ x⇔

y ∈ ⟨l ∣ z ∣ r⟩ ∧ y ≠ x.

The step marked by (∗) follows by a simple case analysis on y = x and y ≠ x

by noting that we have x ∉ l. The case when z = x follows from (4) by similar
arguments. The case when z > x is left to the reader.

As a simple consequence of (2) we get

⊢PA Bst(t) ∧ y < x→ y ≺ t ∖ {x} ↔ y ≺ t (5)

⊢PA Bst(t) ∧ y > x→ y ≻ t ∖ {x} ↔ y ≻ t. (6)

Property (1) is proved by structural induction on t. The base case is
straightforward. In the induction step when t = ⟨l ∣ y ∣ r⟩ we consider three
cases. If y < x then we have

Bst(⟨l ∣ y ∣ r⟩ ∖ {x}) ⇔ Bst ⟨l ∣ y ∣ r ∖ {x}⟩ ⇔

y ≻ l ∧ y ≺ r ∖ {x} ∧Bst(l)∧Bst(r ∖ {x}).



The last follows from IH and (5). If y = x then the claim follows from (3).
The case when y > x is proved similarly. ⊓⊔


