9.1 Numeric Terms

9.1.1 Introduction. The symbolic data structures are usually defined in the functional programming languages with the help of union types which can be readily arithmetized. We have seen an example of union type defining binary trees in Sect. 8.1. We will use in the following paragraphs another union type to arithmetize a certain class of expressions.

Suppose that we wish to operate symbolically on numeric terms which are formed from variables x_{i}, constants n by the numeric operators + (addition) and \times (multiplication). Functional programming languages use the following union type to specify the domain of numeric terms:

$$
\operatorname{Term}=\operatorname{Var}(\mathrm{N})|\operatorname{Const}(\mathrm{N})| \operatorname{Add}(\text { Term }, \text { Term }) \mid \operatorname{Mult}(\text { Term }, \text { Term }) .
$$

A value of type Term is therefore either a variable $\operatorname{Var}(i)$, or a constant $\operatorname{Const}(n)$, or an addition $\operatorname{Add}\left(t_{1}, t_{2}\right)$, or a multiplication $\operatorname{Mult}\left(t_{1}, t_{2}\right)$, where i and n are of type N and t_{1} and t_{2} are values of type Term. The functions $\operatorname{Var}(i), \operatorname{Const}(n), \operatorname{Add}\left(t_{1}, t_{2}\right)$ and $\operatorname{Mult}\left(t_{1}, t_{2}\right)$ are called constructors.
9.1.2 Constructors of numeric terms. Arithmetization of numeric expressions is done with the help of the following four pair constructors with pairwise different tags:

$$
\begin{array}{rlr}
\mathrm{x}_{i}^{\bullet} & =\langle 0, i\rangle & \text { (variables) } \\
n^{\bullet} & =\langle 1, n\rangle & \text { (constants) } \\
t_{1}+\bullet t_{2} & =\left\langle 2, t_{1}, t_{2}\right\rangle & \text { (addition) } \\
t_{1} \times{ }^{\bullet} t_{2} & =\left\langle 3, t_{1}, t_{2}\right\rangle . & \text { (multiplication) }
\end{array}
$$

From the properties of the pairing function we obtain the constructors are pairwise disjoint and that the constructors are injective mappings, e.g.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{PA}} \mathrm{x}_{i}^{\bullet} \neq t_{1}+\bullet t_{2} \\
& \mathrm{P}_{\mathrm{PA}} \\
& t_{1} \times \bullet t_{2}=t_{1}^{\prime} \times \bullet t_{2}^{\prime} \rightarrow t_{1}=t_{1}^{\prime} \wedge t_{2}=t_{2}^{\prime}
\end{aligned}
$$

Similar properties hold also for the other constructors.
The pattern matching style of definitions of functions operating over the codes of numeric terms is obtained with the conditionals of the form

$$
\begin{aligned}
& \text { case } \\
& \begin{aligned}
& t=\mathrm{x}_{i}^{\bullet} \Rightarrow_{i} \beta_{1}[i] \\
& t=n^{\bullet} \Rightarrow_{n} \beta_{2}[n] \\
& t=t_{1}+\bullet t_{2} \Rightarrow{ }_{t_{1}, t_{2}} \beta_{3}\left[t_{1}, t_{2}\right] \\
& t=t_{1} \times t_{2} \Rightarrow{ }_{t_{1}, t_{2}} \beta_{4}\left[t_{1}, t_{2}\right] \\
& \text { otherwise } \Rightarrow \beta_{5}
\end{aligned} \\
& \text { end }
\end{aligned}
$$

This is called discrimination on the constructors of numeric terms．
The above conditional is evaluated as follows．Consider，for instance，its third variant $t=t_{1}+{ }^{\bullet} t_{2}$ ．The expression

$$
\text { Tuple }_{*}(3, t) \wedge_{*}[t]_{1}^{3}={ }_{*} 2
$$

is its characteristic term as we have

$$
\mathrm{r}_{\mathrm{PA}} \exists t_{1} \exists t_{2} t=t_{1}+\bullet t_{2} \leftrightarrow \operatorname{Tuple}(3, t) \wedge[t]_{1}^{3}=2 .
$$

Note also that

$$
\mathrm{r}_{\mathrm{PA}} t=t_{1}+\bullet t_{2} \rightarrow t_{1}=[t]_{2}^{3} \wedge t_{2}=[t]_{3}^{3}
$$

and therefore，the terms $[t]_{2}^{3}$ and $[t]_{3}^{3}$ are the witnessing terms for the output variables t_{1}, t_{2} of this variant．Similarly for the other variants．

9．1．3 Arithmetization of numeric terms．We wish to assign to every numeric τ a unique number ${ }^{\ulcorner } \tau$＇，called the code of τ ．The mapping is defined inductively on the structure of numeric terms：

$$
\begin{aligned}
& { }^{「} x_{i}{ }^{`}=\mathrm{x}_{i}^{\bullet} \\
& { }^{「} n{ }^{\prime}=n^{\bullet} \\
& { }^{「} \tau_{1}+\tau_{2}{ }^{\top}={ }^{「} \tau_{1}{ }^{\top}+{ }^{\bullet}{ }^{「} \tau_{1}{ }^{\top} \\
& { }^{「} \tau_{1} \times \tau_{2}{ }^{\top}={ }^{「} \tau_{1}{ }^{`} \times{ }^{\bullet}{ }^{\bullet} \tau_{1}{ }^{\top} .
\end{aligned}
$$

We can now encode，for instance，the term $4 \times x_{5}+x_{7}$ by the number

$$
4^{\bullet} \times^{\bullet} \mathrm{x}_{5}^{\bullet}+\bullet \mathrm{x}_{7}^{\bullet}=103635707473048605704
$$

Discrimination on the constructors of numeric terms is used in the defi－ nition of the p．r．predicate $\operatorname{Term}(t)$ holding of the codes of numeric terms． The predicate is defined by course of values recursion as follows：

```
\(\operatorname{Term}\left(\mathrm{x}_{\boldsymbol{\bullet}}\right)\)
\(\operatorname{Term}\left(n^{\bullet}\right)\)
\(\operatorname{Term}\left(t_{1}+{ }^{\bullet} t_{2}\right) \leftarrow \operatorname{Term}\left(t_{1}\right) \wedge \operatorname{Term}\left(t_{2}\right)\)
\(\operatorname{Term}\left(t_{1} \times{ }^{\bullet} t_{2}\right) \leftarrow \operatorname{Term}\left(t_{1}\right) \wedge \operatorname{Term}\left(t_{2}\right)\).
```

In the sequel we identify numeric terms with their codes and from now on we will say the numeric term t instead of the code t of a numeric term．

9．1．4 Case analysis on numeric terms．From the definition of the pred－ icate Term we get directly the following property

$$
\stackrel{\mathrm{PA}}{ }^{\operatorname{Term}}(t) \rightarrow \exists i t=\mathrm{x}_{i}^{\bullet} \vee \exists n t=n^{\bullet} \vee \exists t_{1} \exists t_{2} t=t_{1}+\bullet t_{2} \vee \exists t_{1} \exists t_{2} t=t_{1} \times \bullet t_{2}
$$

This is called the principle of structural case analysis on the constructors of the numeric term t.

We can use the above principle of structural case analysis in order to establish the admissibility of a certain kind of conditional discriminations on the constructors of numeric terms. These are of the form

$$
\begin{aligned}
\operatorname{Term}(t) \rightarrow & \text { case } \\
& t \\
t & =\mathrm{x}_{i}^{\bullet} \Rightarrow_{i} \beta_{1}[i] \\
t & =t_{n}+{ }_{n} \beta_{2}[n] \\
& t \\
& =t_{1} \times{ }_{2}{ }^{\bullet} t_{2} \Rightarrow_{t_{1}, t_{2}} \beta_{3}\left[t_{1}, t_{2} \beta_{4}\left[t_{1}, t_{2}\right] .\right. \\
& \text { end }
\end{aligned}
$$

Because of the precondition $\operatorname{Term}(t)$, we have to evaluate only four alternatives instead of five. Moreover, characteristic terms of each alternative can be selected much simpler than those in Par. 9.1.2. For instance, we have

$$
\operatorname{Term}(t) \rightarrow \exists t_{1} \exists t_{2} t=t_{1}+\bullet t_{2} \leftrightarrow[t]_{1}^{3}=2
$$

and thus we can use the expression $[t]_{1}^{3}={ }_{*} 2$ as the characteristic term of the third variant of the above conditional. Compare with the characteristic term Tuple $_{*}(3, t) \wedge_{*}[t]_{1}^{3}={ }_{*} 2$ of the same variant from Par. 9.1.2.
9.1.5 Structural induction on numeric terms. The principle of structural induction over numeric terms can be informally stated as follows. To prove by structural induction that a property $\varphi[t]$ holds for every numeric term t it suffices to prove:

Base cases: the property holds for every variable x_{i}^{\bullet} and constant n^{\bullet}.
Induction steps: if the property holds for the terms t_{1}, t_{2} then it holds also for the terms $t_{1}+{ }^{\bullet} t_{2}$ and $t_{1} \times{ }^{\bullet} t_{2}$.

This is expressed formally in PA by

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{PA}} \forall i \varphi\left[\mathrm{x}_{i}^{\bullet}\right] \wedge \forall n \varphi\left[n^{\bullet}\right] \wedge \forall t_{1} \forall t_{2}\left(\varphi\left[t_{1}\right] \wedge \varphi\left[t_{2}\right] \rightarrow \varphi\left[t_{1}+\bullet t_{2}\right]\right) \wedge \\
& \forall t_{1} \forall t_{2}\left(\varphi [t _ { 1 }] \wedge \varphi [t _ { 2 }] \rightarrow \varphi \left[t_{1} \times \bullet\right.\right. \\
&\left.\left.t_{2}\right]\right) \rightarrow \operatorname{Term}(t) \rightarrow \varphi[t]
\end{aligned}
$$

The theorem is called the principle of structural induction on the numeric term t for $\varphi[t]$.

Proof. The principle of structural induction for numeric terms is derived in PA as follows. Under the assumptions corresponding to the base cases and induction steps of the structural induction take any numeric term t and prove that $\varphi[t]$ holds by complete induction on t. We consider the following four cases according to Par. 9.1.4. The cases when $t=\mathrm{x}_{i}^{\boldsymbol{\bullet}}$ or $t=n^{\bullet}$ are trivial. In the case when $t=t_{1}+{ }^{\bullet} t_{2}$ for some t_{1}, t_{2} we have $\varphi\left[t_{1}\right]$ and $\varphi\left[t_{2}\right]$ by IH since $t_{1}<t_{1}+{ }^{\bullet} t_{2}$ and $t_{2}<t_{1}+\bullet t_{2}$. From the assumption we get $\varphi\left[t_{1}+{ }^{\bullet} t_{2}\right]$. The case when $t=t_{1} \times{ }^{\bullet} t_{2}$ for some t_{1}, t_{2} is similar.
9.1.6 Structural recursion on numeric terms. Structural induction over numeric terms is used to prove properties of functions defined by the scheme of structural recursion on numeric terms. In its simplest form, the operator of structural recursion over numeric terms introduces a function f from functions g_{1}, g_{2}, g_{3} and g_{4} satisfying

$$
\begin{aligned}
& f(t, y)=\text { case } \\
& \quad t=x_{i}^{\bullet} \Rightarrow g_{1}(i, y) \\
& \quad t=n^{\bullet} \Rightarrow g_{2}(n, y) \\
& t \\
& t=t_{1}+\bullet t_{2} \Rightarrow g_{3}\left(t_{1}, t_{2}, f\left(t_{1}, y\right), f\left(t_{2}, y\right), y\right) \\
& \\
& \quad \\
& \quad \text { otherwise } \Rightarrow 0 \\
& \\
& \quad \text { end. }
\end{aligned}
$$

Note that this is a recursive definition regular in the first argument with discrimination on the constructors of numeric terms (output variables of each variant are omitted).

The following identities form the clausal form of the above definition

$$
\begin{aligned}
& f\left(\mathrm{x}^{\bullet}, y\right)=g_{1}(i, y) \\
& f\left(n^{\bullet}, y\right)=g_{2}(n, y) \\
& f\left(t_{1}+\bullet t_{2}, y\right)=g_{3}\left(t_{1}, t_{2}, f\left(t_{1}, y\right), f\left(t_{2}, y\right), y\right) \\
& f\left(t_{1} \times{ }^{\bullet} t_{2}, y\right)=g_{4}\left(t_{1}, t_{2}, f\left(t_{1}, y\right), f\left(t_{2}, y\right), y\right)
\end{aligned}
$$

Note here that this is a typical example where we wish to use the default clauses - in this case

$$
f(t, y)=0 \leftarrow \neg \exists i t=x_{i}^{\bullet} \wedge \neg \exists n t=n^{\bullet} \wedge \neg \exists t_{1} \exists t_{2} t=t_{1}+\bullet t_{2} \wedge \neg \exists t_{1} \exists t_{2} t=t_{1} \times \bullet t_{2}
$$

in order not to clutter the definition. We do not care what value is yielded by the application $f(t, y)$ if t is not the code of a numeric term.

The above definition for the function f can be easily rewritten to a conditional program for the same function as we have

$$
\begin{aligned}
& \text { PA } \operatorname{Term}(t) \rightarrow f(t, y)=\text { case } \\
& \qquad \begin{aligned}
& t=x_{i}^{\bullet} \Rightarrow g_{1}(i, y) \\
& t=n^{\bullet} \Rightarrow g_{2}(n, y) \\
& t=t_{1}+\bullet t_{2} \Rightarrow g_{3}\left(t_{1}, t_{2}, f\left(t_{1}, y\right), f\left(t_{2}, y\right), y\right) \\
& t=t_{1} \times \bullet t_{2} \Rightarrow g_{4}\left(t_{1}, t_{2}, f\left(t_{1}, y\right), f\left(t_{2}, y\right), y\right) \\
& \text { end }
\end{aligned}
\end{aligned}
$$

Its conditions of regularity, e.g. for the variant $t=t_{1}+{ }^{\bullet} t_{2}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{PA}} \operatorname{Term}(t) \wedge t=t_{1}+\bullet t_{2} \rightarrow t_{1}<t \wedge \operatorname{Term}\left(t_{1}\right) \\
& \mathrm{P}_{\mathrm{PA}} \operatorname{Term}(t) \wedge t=t_{1}+\bullet t_{2} \rightarrow t_{2}<t \wedge \operatorname{Term}\left(t_{2}\right),
\end{aligned}
$$

are trivially satisfied.
Similar schemes, when we allow terms with arbitrary number of parameters on the right-hand side of the above identities, substitution in parameters, or
even nested recursive applications, will be also called definitions by structural recursion on numeric terms.
9.1.7 Size of numeric terms. The function $|t|$ yields the size of the numeric term t, i.e. the number of operations including variables needed to construct the term t. The function is defined by parameterless structural recursion on the numeric term t as a p.r. function:

$$
\begin{aligned}
& \left|x_{i}^{\bullet}\right|=1 \\
& \left|n^{\bullet}\right|=1 \\
& \left|t_{1}+\bullet t_{2}\right|=\left|t_{1}\right|+\left|t_{2}\right|+1 \\
& \left|t_{1} \times \bullet t_{2}\right|=\left|t_{1}\right|+\left|t_{2}\right|+1 .
\end{aligned}
$$

9.1.8 Denotation of numeric terms. We now define the binary denotation (valuation) function $\llbracket t \rrbracket_{v}$ which takes the code t of a numeric term τ and the assignment v which is a list assigning the value $v[i]$ to the variable x_{i} and yields the value of the term τ. The function $\llbracket t \rrbracket_{v}$ is defined by structural recursion on the numeric term t as a p.r. function:

$$
\begin{aligned}
& \left.\llbracket \mathrm{x}_{i}^{\bullet}\right]_{v}=v[i] \\
& \left.\llbracket n^{\bullet}\right]_{v}=n \\
& \llbracket t_{1}+\bullet t_{2} \rrbracket_{v}=\llbracket t_{1} \rrbracket_{v}+\llbracket t_{2} \rrbracket_{v} \\
& \llbracket t_{1} \times \bullet t_{2} \rrbracket_{v}=\llbracket t_{1} \rrbracket_{v} \times \llbracket t_{2} \rrbracket_{v} .
\end{aligned}
$$

For instance, if $v=\langle 10,11,12,13,0\rangle$ then

$$
\begin{aligned}
{\left[\left(\mathrm{x}_{1}^{\bullet}+2^{\bullet}\right) \times^{\bullet} \mathrm{x}_{3}^{\bullet}\right]_{v} } & =\left[\mathrm{x}_{1}^{\bullet}+2^{\bullet} \rrbracket_{v} \times\left[\mathrm{x}_{3}^{\bullet} \rrbracket_{v}=\left(\left[\mathrm{x}_{1}^{\bullet} \rrbracket_{v}+\left[2^{\bullet} \rrbracket_{v}\right) \times\left[\mathrm{x}_{3}^{\bullet} \rrbracket_{v}=\right.\right.\right.\right.\right. \\
& =(v[1]+2) \times v[3]=(11+2) \times 13=169 .
\end{aligned}
$$

9.1.9 The compiler and postfix machine. In this example we give the proof of correctness of a simple compiler for numeric terms. A term is compiled into a program of a postfix machine and then the program is executed.

The instructions are defined with the help of four pair constructors:

$$
\begin{aligned}
L O A D(i) & =\langle 0, i\rangle \\
P U S H(n) & =\langle 1, n\rangle \\
A D D & =\langle 2,0\rangle \\
M U L T & =\langle 3,0\rangle .
\end{aligned}
$$

A program of the machine is just a list of instructions.
Numeric terms are compiled into programs with the help of $\operatorname{Cmp}(t)$. The compilation function is defined by structural recursion on numeric terms as a p.r. function:

$$
\begin{aligned}
& \operatorname{Cmp}\left(\mathrm{x}_{i}^{\bullet}\right)=\langle\operatorname{LOAD}(i), 0\rangle \\
& \operatorname{Cmp}\left(n^{\bullet}\right)=\langle P U S H(n), 0\rangle \\
& \operatorname{Cmp}\left(t_{1}+\bullet t_{2}\right)=\operatorname{Cmp}\left(t_{1}\right) \oplus \operatorname{Cmp}\left(t_{2}\right) \oplus\langle A D D, 0\rangle
\end{aligned}
$$

$$
C m p\left(t_{1} \times{ }^{\bullet} t_{2}\right)=C m p\left(t_{1}\right) \oplus C m p\left(t_{2}\right) \oplus\langle M U L T, 0\rangle .
$$

For instance, the following is the compiled program

$$
\langle L O A D(1), P U S H(2), A D D, L O A D(3), M U L T, 0\rangle
$$

for (the code of) the numeric term $\left(x_{1}+2\right) \times x_{3}$.
The operation of the postfix machine itself is described by the ternary function $\operatorname{Run}(p, v, s)$, where p is a program, v is an assignment (environment), and s is a list of values (I/O stack). The function $\operatorname{Run}(p, v, s)$ is defined by recursion on the list p with substitution in the parameter s as a p.r. function:

$$
\begin{aligned}
& \operatorname{Run}(0, v,\langle t, s\rangle)=t \\
& \operatorname{Run}(\langle L O A D(i), p\rangle, v, s)=\operatorname{Run}(p, v,\langle v[i], s\rangle) \\
& \operatorname{Run}(\langle P U S H(n), p\rangle, v, s)=\operatorname{Run}(p, v,\langle n, s\rangle) \\
& \operatorname{Run}\left(\langle A D D, p\rangle, v,\left\langle t_{2}, t_{1}, s\right\rangle\right)=\operatorname{Run}\left(p, v,\left\langle t_{1}+t_{2}, s\right\rangle\right) \\
& \operatorname{Run}\left(\langle M U L T, p\rangle, v,\left\langle t_{2}, t_{1}, s\right\rangle\right)=\operatorname{Run}\left(p, v,\left\langle t_{1} \times t_{2}, s\right\rangle\right) .
\end{aligned}
$$

Note that the other parameter v does not change in recursion.
Correctness of the compiler is expressed by the following formula:

$$
\begin{equation*}
\upharpoonright_{\mathrm{PA}} \operatorname{Term}(t) \rightarrow \operatorname{Run}(\operatorname{Cmp}(t), v, 0)=\llbracket t \rrbracket_{v} . \tag{1}
\end{equation*}
$$

In order to prove it we need the following auxiliary claim:

$$
\begin{equation*}
\mathrm{t}_{\mathrm{PA}} \operatorname{Term}(t) \rightarrow \forall p \forall s\left(\operatorname{Run}(\operatorname{Cmp}(t) \oplus p, v, s)=\operatorname{Run}\left(p, v,\left\langle\llbracket t \rrbracket_{v}, s\right\rangle\right)\right) . \tag{2}
\end{equation*}
$$

This is proved by structural induction on the numeric term t. So take any numbers p, s and continue by case analysis on the numeric term t. If $t=\mathrm{x}_{i}^{\bullet}$ for some i then we have

$$
\begin{aligned}
\operatorname{Run}\left(\operatorname{Cmp}\left(\mathrm{x}_{i}^{\bullet}\right) \oplus p, v, s\right) & =\operatorname{Run}(\langle L O A D(i), p\rangle, v, s)=\operatorname{Run}(p, v,\langle v[i], s\rangle)= \\
& =\operatorname{Run}\left(p, v,\left\langle\left[\mathrm{x}_{i}^{\bullet}\right]_{v}, s\right\rangle\right) .
\end{aligned}
$$

If $t=t_{1}+t_{2}$ for some t_{1}, t_{2} then we obtain

$$
\begin{aligned}
& \operatorname{Run}\left(\operatorname{Cmp}\left(t_{1}+\bullet t_{2}\right) \oplus p, v, s\right)= \\
& \quad= \operatorname{Run}\left(\left\langle\operatorname{Cmp}\left(t_{1}\right) \oplus \operatorname{Cmp}\left(t_{2}\right) \oplus\langle A D D, p\rangle\right\rangle, v, s\right) \stackrel{\mathrm{IH}}{=} \\
& \quad=\operatorname{Run}\left(\left\langle\operatorname{Cmp}\left(t_{2}\right) \oplus\langle A D D, p\rangle\right\rangle, v,\left\langle\llbracket t_{1} \rrbracket_{v}, s\right\rangle\right) \stackrel{\mathrm{IH}}{=} \\
& \quad=\operatorname{Run}\left(\langle A D D, p\rangle, v,\left\langle\llbracket t_{2} \rrbracket_{v}, \llbracket t_{1} \rrbracket_{v}, s\right\rangle\right)= \\
& \quad=\operatorname{Run}\left(p, v,\left\langle\llbracket t_{1} \rrbracket_{v}+\llbracket t_{2} \rrbracket_{v}, s\right\rangle\right)=\operatorname{Run}\left(p, v,\left\langle\llbracket t_{1}+\bullet t_{2} \rrbracket_{v}, s\right\rangle\right) .
\end{aligned}
$$

Note that the first induction hypothesis is applied with $C m p\left(t_{2}\right) \oplus\langle A D D, p\rangle$ in place of p while s is unchanged; and that the second induction hypothesis is applied with $\langle A D D, p\rangle$ and $\left\langle\llbracket t_{1} \rrbracket_{v}, s\right\rangle$ in place of p and s, respectively. The remaining cases are proved similarly.

We are now in position to prove (1). Take any term t and we have

$$
\operatorname{Run}(\operatorname{Cmp}(t), v, 0) \stackrel{(2)}{=} \operatorname{Run}\left(0, v,\left\langle\llbracket t \rrbracket_{v}, 0\right\rangle\right)=\llbracket t \rrbracket_{v} .
$$

9.1.10 Rearranging terms into expressions with left associated addition. In this paragraph we give an example of a program which goes beyond structural recursion. Consider the problem of rearranging numeric terms so that the additions which they contain are associated to left. For instance, the term $\left(x_{1}+x_{2}\right)+\left(x_{3}+\left(x_{4}+x_{5}\right)\right)$ is transformed to an equivalent term $\left(\left(\left(x_{1}+x_{2}\right)+x_{3}\right)+x_{4}\right)+x_{5}$ with left associated addition.

More formally, let $\operatorname{Lassoc}(t)$ be a predicate holding of terms with left associated addition. The predicate is defined by course of values recursion as primitive recursive by

$$
\begin{aligned}
& \operatorname{Lassoc}(t) \leftarrow \neg \exists t_{1}, t_{2} t=t_{1}+\bullet t_{2} \\
& \operatorname{Lassoc}\left(t_{1}+\bullet t_{2}\right) \leftarrow \neg \exists t_{3}, t_{4} t_{2}=t_{3}+\bullet t_{4} \wedge \operatorname{Lassoc}\left(t_{1}\right) .
\end{aligned}
$$

We are looking for a p.r. function $f(t)$ satisfying

$$
\begin{align*}
& { }^{\mathrm{P} A} \operatorname{Term}(t) \rightarrow \operatorname{Term} f(t) \tag{1}\\
& \vdash_{\mathrm{pA}} \operatorname{Term}(t) \rightarrow \operatorname{Lassoc} f(t) \tag{2}\\
& \vdash_{\mathrm{PA}} \operatorname{Term}(t) \rightarrow|f(t)|=|t| \tag{3}\\
& \vdash_{\text {PA }} \operatorname{Term}(t) \rightarrow \llbracket f(t) \rrbracket_{v}=\llbracket t \rrbracket_{v} . \tag{4}
\end{align*}
$$

The desired function is defined by

$$
\begin{aligned}
& f(t)=t \leftarrow \neg \exists t_{1}, t_{2} t=t_{1}+\bullet t_{2} \\
& f\left(t_{1}+\bullet t_{2}\right)=f\left(t_{1}\right)+\bullet t_{2} \leftarrow \neg \exists t_{3}, t_{4} t_{2}=t_{3}+\bullet t_{4} \\
& f\left(t_{1}+\bullet\left(t_{2}+\bullet t_{3}\right)\right)=f\left(t_{1}+\bullet t_{2}+\bullet t_{3}\right) .
\end{aligned}
$$

Is this a correct definition? The first two clauses are structurally recursive, but this does not hold for the third, in which the recursion goes from $t_{1}+{ }^{\bullet}\left(t_{2}+\bullet t_{3}\right)$ to $t_{1}+{ }^{\bullet} t_{2}+{ }^{\bullet} t_{3}$. We claim that the above definition is the definition with measure $m(t)$:

$$
\begin{aligned}
& m(t)=1 \leftarrow \neg \exists t_{1}, t_{2} t=t_{1}+\bullet t_{2} \\
& m\left(t_{1}+\bullet t_{2}\right)=m\left(t_{1}\right)+2 m\left(t_{2}\right)+1 .
\end{aligned}
$$

Indeed, the regularity condition for the third clause follows from:

$$
\left.\begin{array}{rl}
m\left(t_{1}+\bullet t_{2}+\bullet\right. \\
t_{3}
\end{array}\right)=m\left(t_{1}\right)+2 m\left(t_{2}\right)+2 m\left(t_{3}\right)+2<.
$$

Properties (1)-(4) can be proved straightforwardly by the corresponding induction principle.

