
9.1 Numeric Terms

9.1.1 Introduction. The symbolic data structures are usually defined in
the functional programming languages with the help of union types which
can be readily arithmetized. We have seen an example of union type defining
binary trees in Sect. 8.1. We will use in the following paragraphs another
union type to arithmetize a certain class of expressions.

Suppose that we wish to operate symbolically on numeric terms which are
formed from variables xi, constants n by the numeric operators + (addition)
and × (multiplication). Functional programming languages use the following
union type to specify the domain of numeric terms:

Term = Var(N) ∣ Const(N) ∣ Add(Term,Term) ∣Mult(Term,Term).

A value of type Term is therefore either a variable Var(i), or a constant
Const(n), or an addition Add(t1, t2), or a multiplication Mult(t1, t2), where
i and n are of type N and t1 and t2 are values of type Term. The functions
Var(i), Const(n), Add(t1, t2) and Mult(t1, t2) are called constructors.

9.1.2 Constructors of numeric terms. Arithmetization of numeric ex-
pressions is done with the help of the following four pair constructors with
pairwise different tags:

x●i = ⟨0, i⟩ (variables)

n● = ⟨1, n⟩ (constants)

t1 +● t2 = ⟨2, t1, t2⟩ (addition)

t1 ×● t2 = ⟨3, t1, t2⟩. (multiplication)

From the properties of the pairing function we obtain the constructors are
pairwise disjoint and that the constructors are injective mappings, e.g.

⊢PA x●i ≠ t1 +● t2
⊢PA t1 ×● t2 = t′1 ×● t′2 → t1 = t′1 ∧ t2 = t′2.

Similar properties hold also for the other constructors.
The pattern matching style of definitions of functions operating over the

codes of numeric terms is obtained with the conditionals of the form

case
t = x●i ⇒i β1[i]
t = n● ⇒n β2[n]
t = t1 +● t2 ⇒t1,t2 β3[t1, t2]
t = t1 ×● t2 ⇒t1,t2 β4[t1, t2]
otherwise⇒ β5.

end



This is called discrimination on the constructors of numeric terms.
The above conditional is evaluated as follows. Consider, for instance, its

third variant t = t1 +● t2. The expression

Tuple∗(3, t) ∧∗ [t]
3
1 =∗ 2

is its characteristic term as we have

⊢PA ∃t1∃t2 t = t1 +● t2 ↔ Tuple(3, t) ∧ [t]31 = 2.

Note also that

⊢PA t = t1 +● t2 → t1 = [t]32 ∧ t2 = [t]33

and therefore, the terms [t]32 and [t]33 are the witnessing terms for the output
variables t1, t2 of this variant. Similarly for the other variants.

9.1.3 Arithmetization of numeric terms. We wish to assign to every
numeric τ a unique number ⌜τ⌝, called the code of τ . The mapping is defined
inductively on the structure of numeric terms:

⌜xi⌝ = x●i
⌜n⌝ = n●

⌜τ1 + τ2⌝ = ⌜τ1⌝+●⌜τ1⌝
⌜τ1 × τ2⌝ = ⌜τ1⌝×●⌜τ1⌝.

We can now encode, for instance, the term 4 × x5 + x7 by the number

4● ×● x●5 +● x●7 = 103635707473048605704.

Discrimination on the constructors of numeric terms is used in the defi-
nition of the p.r. predicate Term(t) holding of the codes of numeric terms.
The predicate is defined by course of values recursion as follows:

Term(x●i )
Term(n●)
Term(t1 +● t2)← Term(t1) ∧Term(t2)
Term(t1 ×● t2)← Term(t1) ∧Term(t2).

In the sequel we identify numeric terms with their codes and from now on
we will say the numeric term t instead of the code t of a numeric term.

9.1.4 Case analysis on numeric terms. From the definition of the pred-
icate Term we get directly the following property

⊢PA Term(t)→ ∃i t = x●i ∨ ∃n t = n● ∨ ∃t1∃t2 t = t1 +● t2 ∨ ∃t1∃t2 t = t1 ×● t2.



This is called the principle of structural case analysis on the constructors of
the numeric term t.

We can use the above principle of structural case analysis in order to
establish the admissibility of a certain kind of conditional discriminations on
the constructors of numeric terms. These are of the form

Term(t)→ case
t = x●i ⇒i β1[i]
t = n● ⇒n β2[n]
t = t1 +● t2 ⇒t1,t2 β3[t1, t2]
t = t1 ×● t2 ⇒t1,t2 β4[t1, t2].

end

Because of the precondition Term(t), we have to evaluate only four alterna-
tives instead of five. Moreover, characteristic terms of each alternative can
be selected much simpler than those in Par. 9.1.2. For instance, we have

Term(t)→ ∃t1∃t2 t = t1 +● t2 ↔ [t]31 = 2

and thus we can use the expression [t]31 =∗ 2 as the characteristic term of the
third variant of the above conditional. Compare with the characteristic term
Tuple∗(3, t) ∧∗ [t]

3
1 =∗ 2 of the same variant from Par. 9.1.2.

9.1.5 Structural induction on numeric terms. The principle of struc-
tural induction over numeric terms can be informally stated as follows. To
prove by structural induction that a property φ[t] holds for every numeric
term t it suffices to prove:

Base cases: the property holds for every variable x●i and constant n●.
Induction steps: if the property holds for the terms t1, t2 then it holds also

for the terms t1 +● t2 and t1 ×● t2.

This is expressed formally in PA by

⊢PA ∀iφ[x●i ] ∧ ∀nφ[n●] ∧ ∀t1∀t2(φ[t1] ∧ φ[t2]→ φ[t1 +● t2]) ∧
∀t1∀t2(φ[t1] ∧ φ[t2]→ φ[t1 ×● t2])→ Term(t)→ φ[t]

The theorem is called the principle of structural induction on the numeric
term t for φ[t].

Proof. The principle of structural induction for numeric terms is derived in
PA as follows. Under the assumptions corresponding to the base cases and
induction steps of the structural induction take any numeric term t and prove
that φ[t] holds by complete induction on t. We consider the following four
cases according to Par. 9.1.4. The cases when t = x●i or t = n● are trivial. In
the case when t = t1 +● t2 for some t1, t2 we have φ[t1] and φ[t2] by IH since
t1 < t1 +● t2 and t2 < t1 +● t2. From the assumption we get φ[t1 +● t2]. The case
when t = t1 ×● t2 for some t1, t2 is similar. ⊓⊔



9.1.6 Structural recursion on numeric terms. Structural induction
over numeric terms is used to prove properties of functions defined by the
scheme of structural recursion on numeric terms. In its simplest form, the
operator of structural recursion over numeric terms introduces a function f
from functions g1, g2, g3 and g4 satisfying

f(t, y) = case
t = x●i ⇒ g1(i, y)
t = n● ⇒ g2(n, y)
t = t1 +● t2 ⇒ g3(t1, t2, f(t1, y), f(t2, y), y)
t = t1 ×● t2 ⇒ g4(t1, t2, f(t1, y), f(t2, y), y)
otherwise⇒ 0

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of numeric terms (output variables of each
variant are omitted).

The following identities form the clausal form of the above definition

f(x●i , y) = g1(i, y)
f(n●, y) = g2(n, y)
f(t1 +● t2, y) = g3(t1, t2, f(t1, y), f(t2, y), y)
f(t1 ×● t2, y) = g4(t1, t2, f(t1, y), f(t2, y), y)

Note here that this is a typical example where we wish to use the default
clauses – in this case

f(t, y) = 0← ¬∃i t = x●i ∧ ¬∃n t = n● ∧ ¬∃t1∃t2 t = t1 +● t2 ∧ ¬∃t1∃t2 t = t1 ×● t2
in order not to clutter the definition. We do not care what value is yielded
by the application f(t, y) if t is not the code of a numeric term.

The above definition for the function f can be easily rewritten to a condi-
tional program for the same function as we have

⊢PA Term(t)→ f(t, y) = case
t = x●i ⇒ g1(i, y)
t = n● ⇒ g2(n, y)
t = t1 +● t2 ⇒ g3(t1, t2, f(t1, y), f(t2, y), y)
t = t1 ×● t2 ⇒ g4(t1, t2, f(t1, y), f(t2, y), y)

end

Its conditions of regularity, e.g. for the variant t = t1 +● t2

⊢PA Term(t) ∧ t = t1 +● t2 → t1 < t ∧Term(t1)
⊢PA Term(t) ∧ t = t1 +● t2 → t2 < t ∧Term(t2),

are trivially satisfied.
Similar schemes, when we allow terms with arbitrary number of parameters

on the right-hand side of the above identities, substitution in parameters, or



even nested recursive applications, will be also called definitions by structural
recursion on numeric terms.

9.1.7 Size of numeric terms. The function ∣t∣ yields the size of the nu-
meric term t, i.e. the number of operations including variables needed to
construct the term t. The function is defined by parameterless structural
recursion on the numeric term t as a p.r. function:

∣x●i ∣ = 1
∣n●∣ = 1
∣t1 +● t2∣ = ∣t1∣ + ∣t2∣ + 1
∣t1 ×● t2∣ = ∣t1∣ + ∣t2∣ + 1.

9.1.8 Denotation of numeric terms. We now define the binary denota-
tion (valuation) function ⟦t⟧v which takes the code t of a numeric term τ and
the assignment v which is a list assigning the value v[i] to the variable xi

and yields the value of the term τ . The function ⟦t⟧v is defined by structural
recursion on the numeric term t as a p.r. function:

⟦x●i ⟧v = v[i]
⟦n●⟧v = n
⟦t1 +● t2⟧v = ⟦t1⟧v + ⟦t2⟧v
⟦t1 ×● t2⟧v = ⟦t1⟧v × ⟦t2⟧v.

For instance, if v = ⟨10,11,12,13,0⟩ then

⟦(x●1 +● 2●)×● x●3⟧v = ⟦x
●
1 +● 2●⟧v × ⟦x

●
3⟧v = (⟦x

●
1⟧v + ⟦2

●⟧v) × ⟦x
●
3⟧v =

= (v[1] + 2) × v[3] = (11 + 2) × 13 = 169.

9.1.9 The compiler and postfix machine. In this example we give the
proof of correctness of a simple compiler for numeric terms. A term is com-
piled into a program of a postfix machine and then the program is executed.

The instructions are defined with the help of four pair constructors:

LOAD(i) = ⟨0, i⟩
PUSH (n) = ⟨1, n⟩

ADD = ⟨2,0⟩
MULT = ⟨3,0⟩.

A program of the machine is just a list of instructions.
Numeric terms are compiled into programs with the help of Cmp(t). The

compilation function is defined by structural recursion on numeric terms as
a p.r. function:

Cmp(x●i ) = ⟨LOAD(i),0⟩
Cmp(n●) = ⟨PUSH (n),0⟩
Cmp(t1 +● t2) = Cmp(t1)⊕Cmp(t2)⊕ ⟨ADD ,0⟩



Cmp(t1 ×● t2) = Cmp(t1)⊕Cmp(t2)⊕ ⟨MULT ,0⟩.

For instance, the following is the compiled program

⟨LOAD(1),PUSH (2),ADD ,LOAD(3),MULT ,0⟩

for (the code of) the numeric term (x1 + 2) × x3.
The operation of the postfix machine itself is described by the ternary

function Run(p, v, s), where p is a program, v is an assignment (environment),
and s is a list of values (I/O stack). The function Run(p, v, s) is defined by
recursion on the list p with substitution in the parameter s as a p.r. function:

Run(0, v, ⟨t, s⟩) = t
Run(⟨LOAD(i), p⟩, v, s) = Run(p, v, ⟨v[i], s⟩)
Run(⟨PUSH (n), p⟩, v, s) = Run(p, v, ⟨n, s⟩)
Run(⟨ADD , p⟩, v, ⟨t2, t1, s⟩) = Run(p, v, ⟨t1 + t2, s⟩)
Run(⟨MULT , p⟩, v, ⟨t2, t1, s⟩) = Run(p, v, ⟨t1 × t2, s⟩).

Note that the other parameter v does not change in recursion.
Correctness of the compiler is expressed by the following formula:

⊢PA Term(t)→ Run(Cmp(t), v,0) = ⟦t⟧v . (1)

In order to prove it we need the following auxiliary claim:

⊢PA Term(t)→ ∀p∀s(Run(Cmp(t)⊕ p, v, s) = Run(p, v, ⟨⟦t⟧v , s⟩)). (2)

This is proved by structural induction on the numeric term t. So take any
numbers p, s and continue by case analysis on the numeric term t. If t = x●i
for some i then we have

Run(Cmp(x●i )⊕ p, v, s) = Run(⟨LOAD(i), p⟩, v, s) = Run(p, v, ⟨v[i], s⟩) =
= Run(p, v, ⟨⟦x●i ⟧v , s⟩).

If t = t1 +● t2 for some t1, t2 then we obtain

Run(Cmp(t1 +● t2)⊕ p, v, s) =

= Run(⟨Cmp(t1)⊕Cmp(t2)⊕ ⟨ADD , p⟩⟩, v, s) IH=

= Run(⟨Cmp(t2)⊕ ⟨ADD , p⟩⟩, v, ⟨⟦t1⟧v , s⟩)
IH=

= Run(⟨ADD , p⟩, v, ⟨⟦t2⟧v , ⟦t1⟧v , s⟩) =
= Run(p, v, ⟨⟦t1⟧v + ⟦t2⟧v , s⟩) = Run(p, v, ⟨⟦t1 +

● t2⟧v , s⟩).

Note that the first induction hypothesis is applied with Cmp(t2)⊕ ⟨ADD , p⟩
in place of p while s is unchanged; and that the second induction hypothesis
is applied with ⟨ADD , p⟩ and ⟨⟦t1⟧v , s⟩ in place of p and s, respectively. The
remaining cases are proved similarly.



We are now in position to prove (1). Take any term t and we have

Run(Cmp(t), v,0) (2)= Run(0, v, ⟨⟦t⟧v ,0⟩) = ⟦t⟧v .

9.1.10 Rearranging terms into expressions with left associated ad-
dition. In this paragraph we give an example of a program which goes be-
yond structural recursion. Consider the problem of rearranging numeric terms
so that the additions which they contain are associated to left. For instance,
the term (x1 + x2) + (x3 + (x4 + x5)) is transformed to an equivalent term
(((x1 + x2) + x3) + x4) + x5 with left associated addition.

More formally, let Lassoc(t) be a predicate holding of terms with left
associated addition. The predicate is defined by course of values recursion as
primitive recursive by

Lassoc(t)← ¬∃t1, t2 t = t1 +● t2
Lassoc(t1 +● t2)← ¬∃t3, t4 t2 = t3 +● t4 ∧ Lassoc(t1).

We are looking for a p.r. function f(t) satisfying

⊢PA Term(t)→ Term f(t) (1)

⊢PA Term(t)→ Lassoc f(t) (2)

⊢PA Term(t)→ ∣f(t)∣ = ∣t∣ (3)

⊢PA Term(t)→ ⟦f(t)⟧v = ⟦t⟧v . (4)

The desired function is defined by

f(t) = t← ¬∃t1, t2 t = t1 +● t2
f(t1 +● t2) = f(t1)+● t2 ← ¬∃t3, t4 t2 = t3 +● t4
f(t1 +●(t2 +● t3)) = f(t1 +● t2 +● t3).

Is this a correct definition? The first two clauses are structurally recursive, but
this does not hold for the third, in which the recursion goes from t1 +●(t2 +● t3)
to t1 +● t2 +● t3. We claim that the above definition is the definition with
measure m(t):

m(t) = 1← ¬∃t1, t2 t = t1 +● t2
m(t1 +● t2) =m(t1) + 2m(t2) + 1.

Indeed, the regularity condition for the third clause follows from:

m(t1 +● t2 +● t3) =m(t1) + 2m(t2) + 2m(t3) + 2 <
<m(t1) + 2m(t2) + 4m(t3) + 3 =m(t1 +●(t2 +● t3)).

Properties (1)-(4) can be proved straightforwardly by the corresponding in-
duction principle.


