5.2 Primitive Recursion

5.2.1 Exponentiation. The binary exponentiation function x^{y} is a p.r. function by the following primitive recursive definition:

$$
\begin{aligned}
x^{0} & =1 \\
x^{y+1} & =x x^{y} .
\end{aligned}
$$

We list here some properties of the exponentiation function:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{PA}} x^{y}=0 \leftrightarrow x=0 \wedge y \neq 0 \tag{1}\\
& \mathrm{I}_{\mathrm{PA}} x^{y}=1 \leftrightarrow x=1 \vee y=0 \tag{2}\\
& \mathrm{l}_{\mathrm{PA}} x^{y}>1 \leftrightarrow x>1 \wedge y \neq 0 \tag{3}\\
& \mathrm{I}_{\mathrm{PA}} x^{y+z}=x^{y} x^{z} \tag{4}\\
& \mathrm{I}_{\mathrm{PA}} x \neq 0 \wedge y \geq z \rightarrow x^{y-z}=x^{y} \div x^{z} \tag{5}\\
& \mathrm{I}_{\text {PA }} x>1 \rightarrow x^{y}=x^{z} \leftrightarrow y=z \tag{6}\\
& \mathrm{I}_{\mathrm{PA}} x>1 \rightarrow x^{y} \leq x^{z} \leftrightarrow y \leq z \tag{7}\\
& \mathrm{I}_{\mathrm{PA}} x>1 \rightarrow x^{y}<x^{z} \leftrightarrow y<z . \tag{8}
\end{align*}
$$

Proof. (1): By induction on y. The base case follows directly from definition because $x^{0}=1 \neq 0$. In the inductive case we have

$$
\begin{aligned}
x^{y+1}=0 & \Leftrightarrow x x^{y}=0 \Leftrightarrow x=0 \vee x^{y}=0 \stackrel{\mathrm{IH}}{\Leftrightarrow} x=0 \vee(x=0 \wedge y \neq 0) \stackrel{\left(\star_{1}\right)}{\Leftrightarrow} \\
& \Leftrightarrow x=0 \Leftrightarrow x=0 \wedge y+1 \neq 0 .
\end{aligned}
$$

The step marked by $\left(*_{1}\right)$ is by case analysis on whether or not $x=0$.
(2): By induction on y. The base case follows directly from definition. In the inductive case we have

$$
\begin{aligned}
x^{y+1}=1 & \Leftrightarrow x x^{y}=1 \Leftrightarrow x=1 \wedge x^{y}=1 \stackrel{\mathrm{HH}}{\Leftrightarrow} x=1 \wedge(x=1 \vee y=0) \stackrel{\left(\star_{2}\right)}{\Leftrightarrow} \\
& \Leftrightarrow x=1 \Leftrightarrow x=1 \vee y+1=0 .
\end{aligned}
$$

The step marked by $\left(\star_{2}\right)$ is by case analysis on whether or not $x=1$.
(3): Directly from (1) and (3).
(4): By induction on y. The base case follows from

$$
x^{0+z}=x^{z}=1 \times x^{z}=x^{0} x^{z} .
$$

In the inductive case we have

$$
x^{y+1+z}=x^{y+z+1}=x x^{y+z} \stackrel{\mathrm{IH}}{=} x x^{y} x^{z}=x^{y+1} x^{z} .
$$

(5): Assume $x \neq 0$ and prove by induction on y that

$$
\forall z\left(y \geq z \rightarrow x^{y-z}=x^{y} \div x^{z}\right)
$$

In the base case take any z such that $0 \geq z$. Then $z=0$ and we have

$$
x^{0 \div 0}=x^{0}=1=1 \div 1=x^{0} \div x^{0} .
$$

In the inductive case take any z such that $y+1 \geq z$ and consider two cases. If $z=0$ then we have

$$
x^{y+1 \div 0}=x^{y+1}=x^{y+1} \div 1=x^{y+1} \div x^{0} .
$$

If $z=z_{1}+1$ for some z_{1} then $y \geq z_{1}$ and we obtain

$$
x^{y+1-\left(z_{1}+1\right)}=x^{y \dot{z_{1}}} \stackrel{\mathrm{IH}}{=} x^{y} \div x^{z_{1}} \stackrel{\left(\star_{3}\right)}{=} x x^{y} \div\left(x x^{z_{1}}\right)=x^{y+1} \div x^{z_{1}+1} .
$$

Note that the induction hypothesis is applied with z_{1} in place of z. The step marked by $\left(*_{3}\right)$ follows from the assumption $x \neq 0$.
(6): Assume $x>1$ and prove by induction on y that

$$
\forall z\left(x^{y}=x^{z} \leftrightarrow y=z\right) .
$$

In the base case take any z and we obtain

$$
x^{0}=x^{z} \Leftrightarrow 1=x^{z} \stackrel{(2)}{\Leftrightarrow} x=1 \vee z=0 \Leftrightarrow 0=z .
$$

In the inductive case take any z and consider two cases. If $z=0$ then we have

$$
x^{y+1}=x^{0} \Leftrightarrow x x^{y}=1 \Leftrightarrow x=1 \wedge x^{y}=1 \Leftrightarrow \perp \Leftrightarrow y+1=0 .
$$

If $z=z_{1}+1$ for some z_{1} then we have

$$
x^{y+1}=x^{z_{1}+1} \Leftrightarrow x x^{y}=x x^{z_{1}} \Leftrightarrow x^{y}=x^{z_{1}} \stackrel{\mathrm{IH}}{\Leftrightarrow} y=z_{1} \Leftrightarrow y+1=z_{1}+1 .
$$

Note that the induction hypothesis is applied with z_{1} in place of z.
The remaining properties are proved similarly.

