
5.4 Recursion with Measure

5.4.1 The principle of measure induction. For every formula φ[x⃗] and
term µ[x⃗], the formula of induction on x⃗ with measure µ[x⃗] for φ is the
following one:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ φ[y⃗])→ φ[x⃗])→ ∀x⃗φ[x⃗]. (1)

We assume here that the variables y⃗ are different from x⃗ and that they do
not occur freely in φ. The formula φ and the term µ may contain additional
variables as parameters.

Note that for x⃗ ≡ x and µ[x] ≡ x, the scheme of measure induction coincides
with the scheme of complete induction.

5.4.2 Theorem The principle of measure induction holds for each formula.

Proof. The principle of measure induction 5.4.1(1) is reduced to mathemati-
cal induction as follows. Under the assumption that φ is µ-progressive:

∀x⃗(∀y⃗(µ[y⃗] < µ[x⃗]→ φ[y⃗])→ φ[x⃗]), (†1)

we first prove, by induction on n, the auxiliary property:

∀z⃗(µ[z⃗] < n→ φ[z⃗]). (†2)

In the base case there is nothing to prove. In the induction step take any z⃗
such that µ[z⃗] < n+1 and consider two cases. If µ[z⃗] < n then we obtain φ[z⃗]
by IH. If µ[z⃗] = n then by instantiating of (†1) with x⃗ ∶= z⃗ we obtain

∀y⃗(µ[y⃗] < n→ φ[y⃗])→ φ[z⃗].

Now we apply IH to get φ[z⃗].
With the auxiliary property proved we obtain that φ[x⃗] holds for every x⃗

by instantiating of ∀n(†2) with n ∶= µ[x⃗] + 1 and z⃗ ∶= x⃗. ⊓⊔

5.4.3 Greatest common divisor. Consider the recursive definition of the
greatest divisor function of the form

gcd(x, y) = if x ≠ 0 ∧ y ≠ 0 then
case
x < y⇒ gcd(x, y � x)
x = y⇒ x
x > y⇒ gcd(x � y, y)

end
else
max(x, y).



The definition is an example of regular recursion where recursion goes down
in the measure max(x, y). Its conditions of regularity

⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x < y →max(x, y � x) <max(x, y) (1)

⊢PA x ≠ 0 ∧ y ≠ 0 ∧ x > y →max(x � y, y) <max(x, y)

follow from

⊢PA a > b > 0→ a � b < a.

The idea of the algorithm is based on the observation that

⊢PA x < y ∧ z ∣ x→ z ∣ y↔ z ∣ y � x. (2)

We claim that

⊢PA x ≠ 0 ∨ y ≠ 0→ gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y (3)

⊢PA (x ≠ 0 ∨ y ≠ 0) ∧ z ∣ x ∧ z ∣ y → z ≤ gcd(x, y). (4)

Verification. (3): By measure induction on x, y with the measure max(x, y).
Assume x ≠ 0 ∨ y ≠ 0 and consider two cases. If x = 0 ∨ y = 0 then clearly

x ≠ 0 ∧ y = 0 ∨ x = 0 ∧ y = 0.

If x ≠ 0 ∧ y = 0 then the claim follows from 5.3.4(5)(1) because

gcd(x, y) =max(x, y) = x ∧ x ∣ x ∧ x ∣ 0.

The subcase x = 0 ∧ y ≠ 0 is proved similarly. If x ≠ 0 ∧ y ≠ 0 then we consider
three subcases. If x < y then by (1) we have max(x, y � x) <max(x, y) and
thus by IH applied to the pair (x, y � x) we obtain

gcd(x, y � x) ∣ x ∧ gcd(x, y � x) ∣ y � x.

From definition

gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y � x.

From this and (2) we finally obtain

gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y.

The subcase x > y is proved similarly; the subcase x = y follows from 5.3.4(1)
and definition.

(4): By measure induction on x, y with the measure max(x, y). So assume
that x ≠ 0 ∨ y ≠ 0 holds and take any number z such that



z ∣ x ∧ z ∣ y.

We consider two cases. If x = 0 ∨ y = 0 then

x ≠ 0 ∧ y = 0 ∨ x = 0 ∧ y = 0.

The desired bound z ≤ gcd(x, y) follows from

x ≠ 0 ∧ y = 0 ∧ z ∣ x
5.3.4(13)
⇒ z ≤ x =max(x, y) = gcd(x, y)

x = 0 ∧ y ≠ 0 ∧ z ∣ y
5.3.4(13)
⇒ z ≤ y =max(x, y) = gcd(x, y).

If x ≠ 0 ∧ y ≠ 0 then we consider three subcases. If x < y then by (2) we have

z ∣ x ∧ z ∣ y � x.

By (1) we have max(x, y � x) <max(x, y) and thus by IH applied to the pair
(x, y � x) we obtain

z ≤ gcd(x, y � x) = gcd(x, y).

The subcase x > y is proved similarly; the subcase x = y follows from 5.3.4(13)
and definition. ⊓⊔


