5.4 Recursion with Measure

5.4.1 The principle of measure induction. For every formula $\varphi[\vec{x}]$ and term $\mu[\vec{x}]$, the formula of *induction on* \vec{x} with measure $\mu[\vec{x}]$ for φ is the following one:

$$\forall \vec{x} \Big(\forall \vec{y} \big(\mu[\vec{y}] < \mu[\vec{x}] \to \varphi[\vec{y}] \big) \to \varphi[\vec{x}] \Big) \to \forall \vec{x} \varphi[\vec{x}].$$
(1)

We assume here that the variables \vec{y} are different from \vec{x} and that they do not occur freely in φ . The formula φ and the term μ may contain additional variables as parameters.

Note that for $\vec{x} \equiv x$ and $\mu[x] \equiv x$, the scheme of measure induction coincides with the scheme of complete induction.

5.4.2 Theorem The principle of measure induction holds for each formula.

Proof. The principle of measure induction 5.4.1(1) is reduced to mathematical induction as follows. Under the assumption that φ is μ -progressive:

$$\forall \vec{x} \Big(\forall \vec{y} \big(\mu[\vec{y}] < \mu[\vec{x}] \to \varphi[\vec{y}] \big) \to \varphi[\vec{x}] \Big), \tag{\dagger}_1$$

we first prove, by induction on n, the auxiliary property:

$$\forall \vec{z} \big(\mu[\vec{z}] < n \to \varphi[\vec{z}] \big). \tag{\dagger}_2$$

In the base case there is nothing to prove. In the induction step take any \vec{z} such that $\mu[\vec{z}] < n+1$ and consider two cases. If $\mu[\vec{z}] < n$ then we obtain $\varphi[\vec{z}]$ by IH. If $\mu[\vec{z}] = n$ then by instantiating of (\dagger_1) with $\vec{x} \coloneqq \vec{z}$ we obtain

$$\forall \vec{y} \big(\mu[\vec{y}] < n \to \varphi[\vec{y}] \big) \to \varphi[\vec{z}].$$

Now we apply IH to get $\varphi[\vec{z}]$.

With the auxiliary property proved we obtain that $\varphi[\vec{x}]$ holds for every \vec{x} by instantiating of $\forall n(\dagger_2)$ with $n \coloneqq \mu[\vec{x}] + 1$ and $\vec{z} \coloneqq \vec{x}$.

5.4.3 Greatest common divisor. Consider the recursive definition of the greatest divisor function of the form

$$gcd(x,y) = if \ x \neq 0 \land y \neq 0 then$$
case
$$x < y \Rightarrow gcd(x,y \doteq x)$$

$$x = y \Rightarrow x$$

$$x > y \Rightarrow gcd(x \doteq y, y)$$
end
else
$$max(x,y).$$

The definition is an example of regular recursion where recursion goes down in the measure $\max(x, y)$. Its conditions of regularity

follow from

$$\vdash_{\mathsf{PA}} a > b > 0 \rightarrow a \doteq b < a.$$

The idea of the algorithm is based on the observation that

$$\vdash_{\mathsf{PA}} x < y \land z \mid x \to z \mid y \leftrightarrow z \mid y \dot{-} x. \tag{2}$$

We claim that

$$\underset{\text{PA}}{\overset{\text{}}} x \neq 0 \lor y \neq 0 \rightarrow \gcd(x, y) \, | \, x \land \gcd(x, y) \, | \, y$$

$$(3)$$

$$_{\mathbf{P}\mathbf{A}} (x \neq 0 \lor y \neq 0) \land z \mid x \land z \mid y \to z \leq \gcd(x, y).$$

$$(4)$$

Verification. (3): By measure induction on x, y with the measure $\max(x, y)$. Assume $x \neq 0 \lor y \neq 0$ and consider two cases. If $x = 0 \lor y = 0$ then clearly

$$x \neq 0 \land y = 0 \lor x = 0 \land y = 0.$$

If $x \neq 0 \land y = 0$ then the claim follows from 5.3.4(5)(1) because

$$gcd(x,y) = max(x,y) = x \land x \mid x \land x \mid 0.$$

The subcase $x = 0 \land y \neq 0$ is proved similarly. If $x \neq 0 \land y \neq 0$ then we consider three subcases. If x < y then by (1) we have $\max(x, y \doteq x) < \max(x, y)$ and thus by IH applied to the pair $(x, y \doteq x)$ we obtain

$$gcd(x, y \div x) \mid x \land gcd(x, y \div x) \mid y \div x.$$

From definition

$$gcd(x,y) | x \wedge gcd(x,y) | y - x.$$

From this and (2) we finally obtain

$$gcd(x,y) \mid x \land gcd(x,y) \mid y.$$

The subcase x > y is proved similarly; the subcase x = y follows from 5.3.4(1) and definition.

(4): By measure induction on x, y with the measure $\max(x, y)$. So assume that $x \neq 0 \lor y \neq 0$ holds and take any number z such that

$$z \mid x \wedge z \mid y.$$

We consider two cases. If $x=0 \lor y=0$ then

$$x \neq 0 \land y = 0 \lor x = 0 \land y = 0.$$

The desired bound $z \leq \operatorname{gcd}(x, y)$ follows from

$$x \neq 0 \land y = 0 \land z \mid x \xrightarrow{5.3.4(13)} z \le x = \max(x, y) = \gcd(x, y)$$
$$x = 0 \land y \neq 0 \land z \mid y \xrightarrow{5.3.4(13)} z \le y = \max(x, y) = \gcd(x, y).$$

If $x \neq 0 \land y \neq 0$ then we consider three subcases. If x < y then by (2) we have

$$z \mid x \land z \mid y \div x$$

By (1) we have $\max(x, y - x) < \max(x, y)$ and thus by IH applied to the pair (x, y - x) we obtain

$$z \leq \gcd(x, y \div x) = \gcd(x, y).$$

The subcase x > y is proved similarly; the subcase x = y follows from 5.3.4(13) and definition.