
5.3 Course of Values Recursion

5.3.1 The principle of complete induction. For every formula φ[x], the
formula of complete induction on x for φ is the following one:

∀x(∀y(y < x→ φ[y])→ φ[x])→ ∀xφ[x]. (1)

It is assumed here that the variable y is different from the induction variable
x and it does not occur freely in φ. The induction formula φ may contain
additional variables as parameters.

5.3.2 Theorem The principle of complete induction holds for each formula.

Proof. The principle of complete induction 5.3.1(1) is reduced to mathemat-
ical induction as follows. Under the assumption that φ is progressive:

∀x(∀y(y < x→ φ[y])→ φ[x]), (†1)

we first prove, by induction on n, the auxiliary property:

∀z(z < n→ φ[z]). (†2)

In the base case there is nothing to prove. In the induction step take any
z < n + 1 and consider two cases. If z < n then we obtain φ[z] by IH. If z = n
then by instantiating of (†1) with x ∶= z we obtain

∀y(y < n→ φ[y])→ φ[z].

Now we apply IH to get φ[z].
With the auxiliary property proved we obtain that φ[x] holds for every x

by instantiating of ∀n(†2) with n ∶= x + 1 and z ∶= x. ⊓⊔

5.3.3 Integer division. Consider the following course of values recursive
definition on x of the integer division x ÷ y:

x ÷ 0 = 0
x ÷ y = 0← y ≠ 0 ∧ x < y
x ÷ y = (x � y) ÷ y + 1← y ≠ 0 ∧ x ≥ y.

We claim that

⊢PA y ≠ 0→ ∃r(x = x ÷ y ⋅ y + r ∧ r < y). (1)

Verification. The property is proved by complete induction on x. Assume
y ≠ 0, take any x and consider two cases. If x < y then we satisfy (1) with
substitution r ∶= x since we clearly have

x = 0 ⋅ y + x = x ÷ y ⋅ y + x.



If x ≥ y then x � y < x and thus from IH applied to x � y there is a number r
such that

x � y = (x � y) ÷ y ⋅ y + r ∧ r < y. (†1)

Now we satisfy (1) with substitution r ∶= r because

x = x � y + y (†1)= (x � y) ÷ y ⋅ y + y + r =
= ((x � y) ÷ y + 1)y + r = x ÷ y ⋅ y + r. ⊓⊔

5.3.4 Divisibility predicate. The binary divisibility predicate x ∣ y is in-
troduced into PA explicitly by

x ∣ y↔ ∃z y = xz.

The predicate satisfies

⊢PA x ∣ x (1)

⊢PA x ∣ y → y ∣ x (2)

⊢PA x ∣ y ∧ y ∣ z → x ∣ z (3)

⊢PA 0 ∣ x↔ x = 0 (4)

⊢PA x ∣ 0 (5)

⊢PA 1 ∣ x (6)

⊢PA x ∣ 1↔ x = 1 (7)

⊢PA x ∣ y ∧ x ∣ y + 1→ x = 1 (8)

⊢PA x ∣ y ∧ x ∣ z → x ∣ y + z (9)

⊢PA x ∣ y ∧ x ∣ z → x ∣ y � z (10)

⊢PA x ∣ y → x ∣ yz (11)

⊢PA x ∣ xy (12)

⊢PA x ≠ 0 ∧ y ∣ x→ y ≤ x. (13)

5.3.5 Greatest common divisor. Consider the following recursive defini-
tion of the greatest common divisor function:

gcd(0, y) = y
gcd(x, y) = gcd(y mod x,x)← x ≠ 0.

The definition of gcd(x, y) is by course of values recursion on x with substi-
tution in parameter because

⊢PA x ≠ 0→ y mod x < x.

The idea of the algorithm is based on the observation that



⊢PA x ≠ 0 ∧ z ∣ x→ z ∣ y↔ z ∣ y mod x. (1)

We claim that

⊢PA x ≠ 0 ∨ y ≠ 0→ gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y (2)

⊢PA (x ≠ 0 ∨ y ≠ 0) ∧ z ∣ x ∧ z ∣ y → z ≤ gcd(x, y). (3)

Verification. (2): By complete induction on x with induction formula ∀y (2).
Assume x ≠ 0 ∨ y ≠ 0 and consider two cases. If x = 0 then y ≠ 0 and the claim

y ∣ 0 ∧ y ∣ y

follows from 5.3.4(5)(1). If x ≠ 0 then by IH applied to y mod x < x we obtain

gcd(y mod x,x) ∣ y mod x ∧ gcd(y mod x,x) ∣ x.

From definition

gcd(x, y) ∣ y mod x ∧ gcd(x, y) ∣ x.

From this and (1) we finally obtain

gcd(x, y) ∣ x ∧ gcd(x, y) ∣ y.

Note that the induction hypothesis is applied with x in place of y.
(3): By complete induction on x with induction formulas ∀y (3). So assume

x ≠ 0 ∨ y ≠ 0 holds and take any number z such that

z ∣ x ∧ z ∣ y. (†1)

We consider two cases. If x = 0 then y ≠ 0 and the claim z ≤ y follows from
5.3.4(13). If x ≠ 0 then by (1) we obtain from (†1) that

z ∣ y mod x ∧ z ∣ x.

Now by IH applied to y mod x < y we have

z ≤ gcd(y mod x,x) = gcd(x, y).

Note that the induction hypothesis is applied with x in place of y. ⊓⊔


