5.3 Course of Values Recursion

5.3.1 The principle of complete induction. For every formula $\varphi[x]$, the formula of *complete induction on x for* φ is the following one:

$$\forall x \big(\forall y (y < x \to \varphi[y]) \to \varphi[x] \big) \to \forall x \varphi[x]. \tag{1}$$

It is assumed here that the variable y is different from the induction variable x and it does not occur freely in φ . The induction formula φ may contain additional variables as parameters.

5.3.2 Theorem The principle of complete induction holds for each formula.

Proof. The principle of complete induction 5.3.1(1) is reduced to mathematical induction as follows. Under the assumption that φ is *progressive*:

$$\forall x \big(\forall y (y < x \to \varphi[y]) \to \varphi[x] \big), \tag{\dagger}_1$$

we first prove, by induction on n, the auxiliary property:

$$\forall z (z < n \to \varphi[z]). \tag{\dagger}_2$$

In the base case there is nothing to prove. In the induction step take any z < n + 1 and consider two cases. If z < n then we obtain $\varphi[z]$ by IH. If z = n then by instantiating of (\dagger_1) with $x \coloneqq z$ we obtain

$$\forall y(y < n \to \varphi[y]) \to \varphi[z].$$

Now we apply IH to get $\varphi[z]$.

With the auxiliary property proved we obtain that $\varphi[x]$ holds for every x by instantiating of $\forall n(\dagger_2)$ with $n \coloneqq x + 1$ and $z \coloneqq x$.

5.3.3 Integer division. Consider the following course of values recursive definition on x of the integer division $x \div y$:

$$\begin{split} & x \div 0 = 0 \\ & x \div y = 0 \leftarrow y \neq 0 \land x < y \\ & x \div y = (x \div y) \div y + 1 \leftarrow y \neq 0 \land x \ge y. \end{split}$$

We claim that

$$_{PA} y \neq 0 \rightarrow \exists r (x = x \div y \cdot y + r \land r < y).$$
 (1)

Verification. The property is proved by complete induction on x. Assume $y \neq 0$, take any x and consider two cases. If x < y then we satisfy (1) with substitution $r \coloneqq x$ since we clearly have

$$x = 0 \cdot y + x = x \div y \cdot y + x.$$

If $x \geq y$ then $x \div y < x$ and thus from IH applied to $x \div y$ there is a number r such that

$$x \div y = (x \div y) \div y \cdot y + r \land r < y. \tag{\ddagger}$$

Now we satisfy (1) with substitution $r \coloneqq r$ because

$$\begin{aligned} x &= x \div y + y \stackrel{(\dagger_1)}{=} (x \div y) \div y \cdot y + y + r = \\ &= \left((x \div y) \div y + 1 \right) y + r = x \div y \cdot y + r. \end{aligned}$$

5.3.4 Divisibility predicate. The binary divisibility predicate $x \mid y$ is introduced into PA explicitly by

$$x \mid y \leftrightarrow \exists z \, y = xz.$$

The predicate satisfies

$\vdash_{\mathbf{PA}} x \mid x$	(1)
$\vdash_{\mathbf{PA}} x \mid y \to y \mid x$	(2)
$\vdash_{PA} x \mid y \land y \mid z \to x \mid z$	(3)
$\vdash_{\mathrm{PA}} 0 \mid x \leftrightarrow x = 0$	(4)
$\vdash_{\mathbf{PA}} x \mid 0$	(5)
$\vdash_{\mathbf{PA}} 1 \mid x$	(6)
$\vdash_{\mathrm{PA}} x \mid 1 \leftrightarrow x = 1$	(7)
$\vdash_{\mathbf{PA}} x \mid y \land x \mid y + 1 \rightarrow x = 1$	(8)
$\vdash_{\mathrm{PA}} x \mid y \land x \mid z \to x \mid y + z$	(9)
$\vdash_{\mathrm{PA}} x \mid y \land x \mid z \to x \mid y \doteq z$	(10)
$\vdash_{\mathrm{PA}} x \mid y \to x \mid yz$	(11)
$\vdash_{\mathrm{PA}} x xy$	(12)
$\vdash_{\mathbf{PA}} x \neq 0 \land y \mid x \to y \leq x.$	(13)

5.3.5 Greatest common divisor. Consider the following recursive definition of the greatest common divisor function:

 $\begin{aligned} \gcd(0,y) &= y \\ \gcd(x,y) &= \gcd(y \bmod x, x) \leftarrow x \neq 0. \end{aligned}$

The definition of gcd(x, y) is by course of values recursion on x with substitution in parameter because

$$\vdash_{\mathbf{PA}} x \neq 0 \rightarrow y \mod x < x.$$

The idea of the algorithm is based on the observation that

$$\mathsf{h}_{\mathsf{PA}} \ x \neq 0 \land z \ | \ x \to z \ | \ y \leftrightarrow z \ | \ y \ \mathsf{mod} \ x.$$
 (1)

We claim that

$$_{PA} x \neq 0 \lor y \neq 0 \rightarrow \gcd(x, y) | x \land \gcd(x, y) | y$$

$$(2)$$

$$\vdash_{\mathsf{PA}} (x \neq 0 \lor y \neq 0) \land z \mid x \land z \mid y \to z \leq \gcd(x, y).$$
(3)

Verification. (2): By complete induction on x with induction formula $\forall y$ (2). Assume $x \neq 0 \lor y \neq 0$ and consider two cases. If x = 0 then $y \neq 0$ and the claim

 $y \mid 0 \land y \mid y$

follows from 5.3.4(5)(1). If $x \neq 0$ then by IH applied to $y \mod x < x$ we obtain

 $gcd(y \mod x, x) \mid y \mod x \land gcd(y \mod x, x) \mid x.$

From definition

$$gcd(x,y) \mid y \mod x \land gcd(x,y) \mid x$$

From this and (1) we finally obtain

$$gcd(x,y) \mid x \land gcd(x,y) \mid y.$$

Note that the induction hypothesis is applied with x in place of y.

(3): By complete induction on x with induction formulas $\forall y$ (3). So assume $x \neq 0 \lor y \neq 0$ holds and take any number z such that

$$z \mid x \wedge z \mid y. \tag{\dagger}_1$$

We consider two cases. If x = 0 then $y \neq 0$ and the claim $z \leq y$ follows from 5.3.4(13). If $x \neq 0$ then by (1) we obtain from (\dagger_1) that

$$z \mid y \mod x \land z \mid x.$$

Now by IH applied to $y \mod x < y$ we have

$$z \leq \gcd(y \mod x, x) = \gcd(x, y).$$

Note that the induction hypothesis is applied with x in place of y.