
7.2 Operations on Lists

7.2.1 Introduction. In this section we are concerned with the problem of
specification and verification of various useful simple operations over lists.
We will show how the algorithms can be implemented by using structural
recursion and how their specification properties can be proved by the corre-
sponding induction principles.

7.2.2 Map. The operation Mapf(x) applies an unary function f to each
element of the list x:

⊢PA LMapf(x) = L(x) (1)

⊢PA i < L(x)→Mapf(x)[i] = f(x[i]) (2)

The mapping is defined by structural list recursion as a p.r. function in f by

Mapf(0) = 0
Mapf ⟨v,w⟩ = ⟨f(v),Mapf(w)⟩.

Verification. (1): By a straightforward structural list induction.
(2): By structural induction on the list x as ∀i(2). In the base case there

is nothing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, take
any i s.t. i < L ⟨v,w⟩ = L(w) + 1 and consider two cases. If i = 0 then

Mapf ⟨v,w⟩[0] = ⟨f(v),Mapf(w)⟩[0] = f(v) = f(⟨v,w⟩[0]).

If i = j + 1 for some j then j < L(w) and we thus obtain

Mapf ⟨v,w⟩[j + 1] = ⟨f(v),Mapf(w)⟩[j + 1] =Mapf(w)[j]
IH=

= f(w[j]) = f(⟨v,w⟩[j + 1]).

Note that the induction hypothesis is applied with j in place of i. ⊓⊔

7.2.3 Take and drop. The function Take(n,x) yields the initial segment
of a list x of the length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x)→ LTake(n,x) = n (1)

⊢PA n ≤ L(x)→ ∃y x = Take(n,x)⊕ y (2)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Take(0, x) = 0
Take(n + 1, ⟨v,w⟩) = ⟨v,Take(n,w)⟩.

Note the default Take(n + 1,0) = 0.



The function Drop(n,x) removes the initial segment of a list x of the
length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x)→ LDrop(n,x) = L(x) � n (3)

⊢PA n ≤ L(x)→ ∃y x = y ⊕Drop(n,x) (4)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Drop(0, x) = x
Drop(n + 1, ⟨v,w⟩) = Drop(n,w).

Note the default Drop(n + 1,0) = 0.
Usually we intend to apply both operations Take(n,x) andDrop(n,x) only

in cases when n ≤ L(x). We can take the following properties as alternative
programs for computing the functions in such cases:

⊢PA n ≤ L(x)→ Take(n,x) = case
n = 0⇒ 0

n =m + 1⇒ let x = ⟨v,w⟩ in ⟨v,Take(n,w)⟩
end.

⊢PA n ≤ L(x)→ Drop(n,x) = case
n = 0⇒ x
n =m + 1⇒ let x = ⟨v,w⟩ in Drop(n,w)

end.

Note that both programs share the same condition of regularity

⊢PA n ≤ L(x) ∧ n =m + 1 ∧ x = ⟨v,w⟩→ w < x ∧m ≤ L(w)

which is trivially satisfied.

Verification. (1): This is proved by induction on n as ∀x(1). The base case
is obvious. In the induction step take any x such that n + 1 ≤ L(x). Then
x = ⟨v,w⟩ for some v,w, where n ≤ L(w). We obtain

LTake(n + 1, ⟨v,w⟩) = L ⟨v,Take(n,w)⟩ = LTake(n,w) + 1
IH= n + 1.

Note that the induction hypothesis is applied with w in place of x.
(2): By induction on n as ∀x(2). In the base case it suffices to take y ∶= x

since Take(0, x)⊕ x = 0⊕ x = x. In the induction step assume n + 1 ≤ L(x).
Then x = ⟨v,w⟩ for some v,w. Since n ≤ L(w) we get from IH applied with
w in place of x that w = Take(n,w)⊕ y for some y. We then have

⟨v,w⟩ = ⟨v,Take(n,w)⊕ y⟩ = ⟨v,Take(n,w)⟩⊕ y = Take(n + 1, ⟨v,w⟩)⊕ y.

The remaining properties (3) and (4) are proved similarly. ⊓⊔



7.2.4 Interval. The binary function [m..n) returns the list of numbers
from m to n − 1 if m < n; the list is empty if m ≥ n. The function satisfies

⊢PA L [m..n) = n �m (1)

⊢PA i +m < n→ [m..n)[i] =m + i (2)

and it is defined by recursion with measure n �m as a p.r. function by

[m..n) = 0←m ≥ n
[m..n) = ⟨m, [m + 1 .. n)⟩←m < n.

Note that this is an example of function definition by backward recursion.
We usually intend to apply the operation [m..n) only in cases whenm ≤ n.

For that we can take the following property as an alternative (conditional)
program for computing the function:

⊢PA m ≤ n→ [m..n) = case
m = n⇒ 0

m ≠ n⇒ ⟨m, [m + 1 .. n)⟩
end

Its condition of regularity

⊢PA m ≤ n ∧m ≠ n→ n � (m + 1) < n �m ∧m + 1 ≤ n

is trivially satisfied. Note that the program does not terminate for m > n.

Verification. (1): By induction with measure n �m. Take any m,n and con-
sider two cases. If m ≥ n then L [m..n) = L(0) = 0 = n �m. If m < n then
m <m + 1 ≤ n and we obtain

L [m..n) = L ⟨m, [m + 1 .. n)⟩ = L [m + 1 .. n) + 1
IH= n � (m + 1) + 1 = n �m.

(2): This is proved by induction with measure n �m as ∀i(2). Take any
m,n, i such that i +m < n and consider two cases. If i = 0 then we have

[m..n)[0] = ⟨m, [m + 1 .. n)⟩[0] =m =m + 0.

If i = j + 1 for some j then j + (m + 1) = j + 1 +m < n and thus

[m..n)[j + 1] = ⟨m, [m + 1 .. n)⟩[j + 1] = [m + 1 .. n)[j] IH=
=m + 1 + j =m + (j + 1).

Note that the induction hypothesis is applied with j in place of i. ⊓⊔

7.2.5 Filter. Let A(x) be arbitrary but fixed unary predicate. The function
FilterA(x) removes all elements from a list which do not satisfy the predicate.
The function satisfies



⊢PA a ε FilterA(x)↔ a ε x ∧A(a) (1)

and it is defined by structural list recursion as a p.r. predicate in A:

FilterA(0) = 0
FilterA ⟨v,w⟩ = ⟨v,FilterA(w)⟩← A(v)
FilterA ⟨v,w⟩ = FilterA(w)← ¬A(v).

Verification. Property (1) is proved by structural induction on the list x. The
base case is obvious. In the induction step, when x = ⟨v,w⟩ for some v,w, we
consider two cases. If A(v) then we have

a ε FilterA ⟨v,w⟩⇔ a ε ⟨v,FilterA(w)⟩⇔ a = v ∨ a ε FilterA(w)
IH⇔

a = v ∨ a ε w ∧A(a)
(∗)
⇔ (a = v ∨ a ε w) ∧A(a)⇔ a ε ⟨v,w⟩ ∧A(a).

The equivalence marked by (∗) is by case analysis on whether or not a = v.
The case when A(v) does not hold is similar. ⊓⊔

7.2.6 Removal of duplicates from lists. The function Nodoubles(x) re-
moves duplicates from a list. The function satisfies

⊢PA a ε Nodoubles(x)↔ a ε x (1)

⊢PA a ε Nodoubles(x)→#aNodoubles(x) = 1 (2)

and it is defined by structural list recursion as a p.r. function:

Nodoubles(0) = 0
Nodoubles ⟨v,w⟩ = Nodoubles(w)← v ε w

Nodoubles ⟨v,w⟩ = ⟨v,Nodoubles(w)⟩← v /ε w.

Verification. (1): By a straightforward structural list induction.
(2): By structural induction on the list x. In the base case there is noth-

ing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, assume
a ε Nodoubles ⟨v,w⟩ and consider two cases. If v ε w then, by definition,
a ε Nodoubles(w). We obtain

#aNodoubles ⟨v,w⟩ =#aNodoubles(w)
IH= 1.

If v /ε w then by definition either a = v or a ε Nodoubles(w), and also

#aNodoubles ⟨v,w⟩ = (a =∗ v) +#aNodoubles(w). (†1)

Now consider two subcases. If a = v then v /ε Nodoubles(w) by (1) and thus

#vNodoubles ⟨v,w⟩
(†1)= (v =∗ v) +#vNodoubles(w)

7.2.8(3)= 1 + 0 = 1.

If a ≠ v then it must be a ε Nodoubles(w) and therefore



#aNodoubles ⟨v,w⟩
(†1)= 0 +#aNodoubles(w)

IH= 0 + 1 = 1. ⊓⊔

7.2.7 List minimum. The function Minl(x) yields the minimal element of
a non-empty list. The function satisfies

⊢PA x ≠ 0→Minl(x) ε x (1)

⊢PA x ≠ 0 ∧ a ε x→Minl(x) ≤ a (2)

and it is defined by list recursion as a p.r. function:

Minl ⟨v,0⟩ = v
Minl ⟨v,w⟩ =min(v,Minl(w))← w ≠ 0.

Note the default Minl(0) = 0.
We usually intend to apply the operation Minl(x) only in cases when

input lists are non-empty. For that we can take the following property as an
alternative (conditional) program for computing list minimum:

⊢PA x ≠ 0→Minl(x) = let x = ⟨v,w⟩ in
case
w = 0⇒ v
w ≠ 0⇒min(v,Minl(w))

end.

Its condition of regularity

⊢PA x ≠ 0 ∧ x = ⟨v,w⟩ ∧w ≠ 0→ w < x ∧w ≠ 0

is trivially satisfied.

Verification. (1),(2): By a straightforward structural list induction on x. ⊓⊔

7.2.8 Multiplicity. The binary function #a (x) counts the number of oc-
currences of the element a in the list x. This is called the multiplicity of a in
x. The function satisfies

⊢PA #a⟨b,0⟩ = (a =∗ b) (1)

⊢PA #a (x⊕ y) =#a (x) +#a (y) (2)

and it is defined by structural list recursion as a p.r. function:

#a (0) = 0
#a⟨v,w⟩ = (a =∗ v) +#a (w).

We have also

⊢PA a ε x↔#a (x) ≠ 0. (3)

⊢PA x = 0↔ ∀a#a (x) = 0. (4)



Verification. (1): Directly from definition.
(2): By structural induction on the list x. The base case is obvious. The

induction step follows from

#a (⟨v,w⟩⊕ y) =#a⟨v,w ⊕ y⟩ = (a =∗ v) +#a (w ⊕ y) IH=
= (a =∗ v) +#a (w) +#a (y) =#a⟨v,w⟩ +#a (y) .

(3): By a straightforward structural induction on the list x.
(4): By a simple case analysis on whether or not the list x is empty. ⊓⊔

7.2.9 Permutations. We wish to introduce into PA the binary predicate
x ∼ y holding if the list x is a permutation of the list y. For example:

⟨1,2,3,0⟩ ⟨2,1,3,0⟩ ⟨2,3,1,0⟩ ⟨1,3,2,0⟩ ⟨3,1,2,0⟩ ⟨3,2,1,0⟩

are all permutations of the three-element list ⟨1,2,3,0⟩. The standard math-
ematical definition uses a second-order concept (bijections over finite sets)
which is not expressible directly in first-order arithmetic. Our definition of
the predicate in PA is based on the following simple observation:

two lists are permutations precisely when every number has the same multiplicity
in either list.

Thus we can define the predicate explicitly by

x ∼ y↔ ∀a#a (x) =#a (y) .

Note that from 7.2.8(3) we get

⊢PA x ∼ y↔ ∀a(a ε x→#a (x) =#a (y)) ∧ ∀a(a ε y →#a (x) =#a (y)).

Consequently, the predicate x ∼ y is primitive recursive.

7.2.10 Basic properties of permutations. First note the predicate x ∼ y
constitutes an equivalence relation which is reflexive, symmetric and transi-
tive. This is expressed in that order by

⊢PA x ∼ x (1)

⊢PA x ∼ y → y ∼ x (2)

⊢PA x ∼ y ∧ y ∼ z → x ∼ z. (3)

Congruence properties of permutations are expressed by

⊢PA x ∼ y → ⟨a, x⟩ ∼ ⟨a, y⟩ (4)

⊢PA x ∼ y → L(x) = L(y) (5)



⊢PA x1 ∼ y1 ∧ x2 ∼ y2 → x1 ⊕ x2 ∼ y1 ⊕ y2 (6)

⊢PA x ∼ y ∧ a ε x→ a ε y. (7)

There is one cancellation law, namely:

⊢PA x1 ⊕ ⟨a, x2⟩ ∼ y1 ⊕ ⟨a, y2⟩↔ x1 ⊕ x2 ∼ y1 ⊕ y2. (8)

Finally, we have also the following recurrent properties of permutations:

⊢PA x ∼ 0↔ x = 0 (9)

⊢PA x ∼ ⟨v,w⟩↔ ∃z1∃z2(x = z1 ⊕ ⟨v, z2⟩ ∧w ∼ z1 ⊕ z2). (10)

In the sequel we will use these properties without explicitly referring to them.

Proof. Properties (1)–(3) hold trivially. Property (4) follows directly from the
definition. Properties (6)–(9) follow from the properties of the multiplicity
function (see Par. 7.2.8).

(10): In the direction (→) assume x ∼ ⟨v,w⟩. Then v ε x by (7) and thus,
by 7.1.13(4), we have x = z1 ⊕ ⟨v, z2⟩ for some z1, z2. Now it suffices to apply
(8) to get w ∼ z1 ⊕ z2. The reverse direction (←) follows from (8).

(5): This is proved as ∀y(5) by structural induction on the list x. The
base case is straightforward. In the induction step, when x = ⟨v,w⟩ for some
v,w, take any y such that ⟨v,w⟩ ∼ y. By (10), there are lists z1, z2 such that
y = z1 ⊕ ⟨v, z2⟩ and w ∼ z1 ⊕ z2. We then obtain

L ⟨v,w⟩ = L(w) + 1
IH= L(z1 ⊕ z2) + 1 = L(z1) +L(z2) + 1 =

= L(z1) +L ⟨v, z2⟩ = L(z1 ⊕ ⟨v, z2⟩).

Note that the induction hypothesis is applied with z1 ⊕ z2 in place of y. ⊓⊔


