
7.1 Lists

7.1.1 Introduction. In this section we will show how to arithmetize lists
of natural numbers. In most functional programming languages the type Ln
of such lists can be defined by a union type:

Ln = Nil ∣ Cons(N,Ln).

A value of type Ln is therefore either the empty list Nil or a non-empty list
of the form Cons(v,w), where v is its first element of of type N and w is a
value of type Ln called the tail of that non-empty list. The constant Nil and
the function Cons are called constructors.

7.1.2 Constructors of lists. Arithmetization of lists is done with the help
of the following two constructors: the first one is the number 0 and the second
is the pairing function ⟨v,w⟩. From the properties of the pairing function we
obtain

⊢PA 0 ≠ ⟨v,w⟩
⊢PA ⟨v1,w1⟩ = ⟨v2,w2⟩→ v1 = v2 ∧w1 = w2.

The first property says that the constructors are pairwise disjoint and the
second that the functional constructor ⟨v,w⟩ is an injective mapping.

We obtain the pattern matching style of definitions of functions operating
over lists with conditionals of the form

case
x = 0⇒ β1

x = ⟨v,w⟩⇒v,w β2[x, v,w].
end

This is called discrimination on the constructors of lists.
The above conditional is evaluated as follows. First note that the expres-

sion x =∗ 0 is the characteristic term of its first variant, and the expression
x ≠∗ 0 is the characteristic term of its second variant as we have

⊢PA ∃v∃wx = ⟨v,w⟩↔ x ≠ 0.

Note also that we have

⊢PA x = ⟨v,w⟩→ v = π1(x) ∧w = π2(x)

and therefore, the terms π1(x) and π2(x) are the witnessing terms for the
output variables v,w of the second variant of the conditional.

7.1.3 List representation of N. The pairing function ⟨x, y⟩ permits an
extremely simple uniform coding of finite sequences over natural numbers. We



assign the code 0 to the empty sequence ∅. A non-empty sequence x1, . . . , xn

is coded by the number ⟨x1, x2, . . . , xn,0⟩ as shown in Fig. 7.1
The reader will note that the assignment of codes is one to one, every finite

sequence of natural numbers is coded by exactly one natural number, and
vice versa, every natural number is the code of exactly one finite sequence
of natural numbers. This is called list representation of numbers. Codes of
finite sequences are called lists in computer science and this is how we will
be calling them from now on.

⟨x, 0⟩ ⟨x, y, 0⟩ ⟨x, y, z, 0⟩ ⟨x1, x2, . . . , xn, 0⟩

r
�� @@

x 0

r
�� @@r

�� @@x

y 0

r
�� @@r

�� @@r
�� @@

x

y

z 0

r
�� @@r

�� @@ p p p r
�� @@

x1

x2

xn 0

Fig. 7.1 List representation of natural numbers

7.1.4 Case analysis on lists. From properties of the pairing function we
can see that every list x is either the empty list 0 or can be uniquely be
written in the form ⟨v,w⟩, where the number v is called the head of the list
x and the number w is called the tail of the list x. In particular

⊢PA x = 0 ∨ ∃v∃wx = ⟨v,w⟩.

This is called the principle of structural case analysis on the constructors of
the list x.

7.1.5 Structural induction on lists. The principle of structural induction
over lists can be informally stated as follows. To prove by list induction that
a property holds for every list it suffices to prove:

Base case: the property holds for the empty list 0.
Induction step: if the property holds for the list w then it holds also for the

list ⟨v,w⟩.
This is expressed formally in PA as follows. Let φ[x] be a formula of PA with
the indicated variable x free. The principle of list induction on x for φ[x] is
the following one:

⊢PA φ[0] ∧ ∀v∀w(φ[w]→ φ[⟨v,w⟩])→ φ[x].

Note that the formula φ[x] may contain additional variables as parameters.



Proof. The principle of list induction is proved as follows. Under the assump-
tions φ[0] and ∀v∀w(φ[w]→ φ[⟨v,w⟩]) we prove that φ[x] holds for every
x by complete induction on x. So take any x and consider two cases. If x = 0
then the claim follows directly from the first assumption. Otherwise, x is of
the form ⟨v,w⟩ for some v,w. By ??(??), we have w < ⟨v,w⟩ and thus φ[w]
by IH. We obtain φ[⟨v,w⟩] from the second assumption.

7.1.6 Structural recursion on lists. List induction is used to prove prop-
erties of functions defined by the scheme of list recursion. In its simplest form,
the operator of list recursion introduces a function f from two functions g
and h satisfying

f(x, y) = case
x = 0⇒ g(y)
x = ⟨v,w⟩⇒ h(v,w, f(w,y), y)

end.

Note that this is a recursive definition regular in the first argument with
discrimination on the constructors of lists (output variables of the second
variant are omitted). The following identities form the clausal form of the
above definition

f(0, y) = g(y)
f(⟨v,w⟩, y) = h(v,w, f(w,y), y).

Note that this is a recursive definition regular in the first argument. Similar
schemes, when we allow terms with arbitrary number of parameters on the
right-hand side of the above identities, substitution in parameters, or even
nested recursive applications, will be also called definitions by list recursion.

7.1.7 List length. The function L(x) yields the length of the list x:

L ⟨x1, x2, . . . , xn,0⟩ = n.

It is defined by parameterless structural list recursion as a p.r. function:

L(0) = 0
L ⟨v,w⟩ = L(w) + 1.

7.1.8 List indexing. The binary function x[i] yields the (i+ 1)-st element
of the list x (counting from 0):

⟨x0, . . . , xi, . . . , xn−1,0⟩[i] =
⎧⎪⎪⎨⎪⎪⎩

xi if i < n,
0 otherwise.

The function is defined by primitive recursion on i with substitution in pa-
rameter as p.r. function:



⟨v,w⟩[0] = v
⟨v,w⟩[i + 1] = w[i].

Note that 0[i] = 0 by default.
Usually we intend to apply the operations x[i] only in cases when i < L(x).

We can take the following property as alternative programs for computing
the function in such cases:

⊢PA i < L(x)→ x[i] = case
i = 0⇒ let x = ⟨v,w⟩ in v
i = j + 1⇒ let x = ⟨v,w⟩ in w[j]

end.

Its condition of regularity

⊢PA i < L(x) ∧ i = j + 1 ∧ x = ⟨v,w⟩→ w < x ∧ j < L(w)

is trivially satisfied.

7.1.9 Remark. The following property can be used as an alternative defi-
nition of list indexing:

⊢PA x[i] = π1 πi
2(x). (1)

This is proved by (mathematical) induction on i as ∀x(1) In the base case
take any x and consider two cases. If x = 0 then 0[0] = 0 = π1(0) = π1 π0

2(0);
if x = ⟨v,w⟩ for some v,w then ⟨v,w⟩[0] = v = π1⟨v,w⟩ = π1 π0

2⟨v,w⟩. In the
induction step take any x and consider the same two cases. If x = 0 then

0[i + 1] = 0 = π1(0)
??(??)= π1 πi+1

2 (0).

Otherwise x = ⟨v,w⟩ for some v,w and we obtain

⟨v,w⟩[i + 1] = w[i] IH= π1 πi
2(w) = π1 πi

2 π2⟨v,w⟩ = π1 πi+1
2 ⟨v,w⟩.

Note that the induction hypothesis is applied with w in place of x.

7.1.10 List concatenation. The binary function x ⊕ y concatenates two
lists together to form a new one:

⟨x1, . . . , xn,0⟩⊕ ⟨y1, . . . , ym,0⟩ = ⟨x1, . . . , xn, y1, . . . , ym,0⟩.

The function is defined by structural list recursion on x as a p.r. function by

0⊕ y = y
⟨v,w⟩⊕ y = ⟨v,w ⊕ y⟩.

We can use the recurrences directly for computation. For example:



⟨1,2,3,0⟩⊕ ⟨4,5,0⟩ = ⟨1, ⟨2,3,0⟩⊕ ⟨4,5,0⟩⟩ = ⟨1,2, ⟨3,0⟩⊕ ⟨4,5,0⟩⟩ =
= ⟨1,2,3,0⊕ ⟨4,5,0⟩⟩ = ⟨1,2,3,4,5,0⟩

Note that during the computation there is no need to convert the values into
monadic (or binary) notation.

7.1.11 Basic properties of list concatenation. We have

⊢PA x⊕ y = 0↔ x = 0 ∧ y = 0 (1)

⊢PA x⊕ 0 = x (2)

⊢PA x⊕ (y ⊕ z) = (x⊕ y)⊕ z (3)

⊢PA x⊕ y = x⊕ z → y = z (4)

⊢PA x⊕ ⟨a,0⟩ = y ⊕ ⟨b,0⟩→ x = y ∧ a = b (5)

⊢PA x⊕ z = y ⊕ z → x = y (6)

⊢PA L(x⊕ y) = L(x) +L(y) (7)

⊢PA i < L(x)→ (x⊕ y) [i] = x[i] (8)

⊢PA i < L(y)→ (x⊕ y) [L(x) + i] = y[i]. (9)

In the sequel we will use these properties without explicitly referring to them.
Note that (3) says that list concatenation is an associative operation. For this
reason we will not be using any parentheses in expressions like τ1 ⊕ τ2 ⊕ τ3.

Proof. (1): By case analysis on whether or not the list x is empty.
(2): By a straightforward structural list induction.
(3): This is proved by structural induction on the list x. The base case

follows from 0⊕ (y ⊕ z) = y ⊕ z = (0⊕ y)⊕ z. In the induction step we have

⟨v,w⟩⊕ (y ⊕ z) = ⟨v,w ⊕ (y ⊕ z)⟩ IH= ⟨v, (w ⊕ y)⊕ z⟩ =
= ⟨v,w ⊕ y⟩⊕ z = (⟨v,w⟩⊕ y)⊕ z.

(4): By structural induction on the list x. The base case is obvious. The
induction step follows from

⟨v,w⟩⊕ y = ⟨v,w⟩⊕ z ⇒ ⟨v,w ⊕ y⟩ = ⟨v,w ⊕ z⟩⇒ w ⊕ y = w ⊕ z
IH⇒ y = z.

(5): By structural induction on the list x as ∀y(5). In the base case take
any y and consider two cases. If y = 0 then

0⊕ ⟨a,0⟩ = 0⊕ ⟨b,0⟩⇒ ⟨a,0⟩ = ⟨b,0⟩⇒ a = b⇒ 0 = 0 ∧ a = b.

The case when y = ⟨v2,w2⟩ for some v2,w2 leads to contradiction:



0⊕ ⟨a,0⟩ = ⟨v2,w2⟩⊕ ⟨b,0⟩⇒ ⟨a,0⟩ = ⟨v2,w2 ⊕ ⟨b,0⟩⟩⇒

⇒ 0 = w2 ⊕ ⟨b,0⟩
(1)
⇒ 0 = ⟨b,0⟩.

In the induction step, when x = ⟨v1,w1⟩ for some v1,w1, take any y and
consider two cases. The case y = 0 leads to contradiction by similar arguments
as above. So it must be y = ⟨v2,w2⟩ for some v2,w2. We then have

⟨v1,w1⟩⊕ ⟨a,0⟩ = ⟨v2,w2⟩⊕ ⟨b,0⟩⇒ ⟨v1,w1 ⊕ ⟨a,0⟩⟩ = ⟨v2,w2 ⊕ ⟨b,0⟩⟩⇒

⇒ v1 = v2 ∧w1 ⊕ ⟨a,0⟩ = w2 ⊕ ⟨b,0⟩
IH⇒ v1 = v2 ∧w1 = w2 ∧ a = b⇒

⇒ ⟨v1,w1⟩ = ⟨v2,w2⟩ ∧ a = b.

Note that the induction hypothesis is applied with w2 in place of y.
(6): By structural induction on the list z as ∀x∀y(6). The base case is

follows from (2). In the induction step take any x, y and we have

x⊕ ⟨v,w⟩ = y ⊕ ⟨v,w⟩⇒ x⊕ ⟨v,0⊕w⟩ = y ⊕ ⟨v,0⊕w⟩⇒

⇒ x⊕ (⟨v,0⟩⊕w) = y ⊕ (⟨v,0⟩⊕w)
(3)
⇒

⇒ (x⊕ ⟨v,0⟩)⊕w = (y ⊕ ⟨v,0⟩)⊕w
IH⇒

⇒ x⊕ ⟨v,0⟩ = y ⊕ ⟨v,0⟩
(5)
⇒ x = y.

Note that the induction hypothesis is applied with x⊕⟨v,0⟩ in place of x and
with y ⊕ ⟨v,0⟩ in place of y.

(7): By a straightforward structural induction on the list x.
(8): By structural induction on the list x as ∀i(8). In the base case there

is nothing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, take
any i s.t. i < L ⟨v,w⟩ = L(w) + 1, and consider two cases. If i = 0 then

(⟨v,w⟩⊕ y) [0] = ⟨v,w ⊕ y⟩[0] = v = ⟨v,w⟩[0].

If i = j + 1 for some j then j < L(w) and thus we obtain

(⟨v,w⟩⊕ y) [j + 1] = ⟨v,w ⊕ y⟩[j + 1] = (w ⊕ y) [j] IH= w[j] = ⟨v,w⟩[j + 1].

Note that the induction hypothesis is applied with j in place of i.
(9): By a straightforward structural induction on the list x. ⊓⊔

7.1.12 List membership. The binary predicate x ε y holds if the number
x is an element of the list y:

x ε ⟨y1, . . . , yn,0⟩ if x = yi for some 1 ≤ i ≤ n.

The list membership predicate is defined explicitly as primitive recursive by



x ε y↔ ∃i(i < L(y) ∧ x = y[i]).

Note that from the property ??(??) of the pairing function we get

⊢PA x ε y → x < y

and therefore

⊢PA ∀x(x ε y → φ[x])↔ ∀x ≤ y(x ε y → φ[x])

for every formula φ[x] of PA. The universal quantifier ∀x in the contexts like
∀x(x ε . . .→ ⋯ ) can be bounded and thus it can be used in explicit definitions
of primitive recursive predicates. Similarly for existential quantifiers.

7.1.13 Basic properties of list membership. We have

⊢PA x /ε 0 (1)

⊢PA x ε ⟨v,w⟩↔ x = v ∨ x ε w (2)

⊢PA x ε y ⊕ z ↔ x ε y ∨ x ε z (3)

⊢PA x ε y↔ ∃z1∃z2 y = z1 ⊕ ⟨x, z2⟩. (4)

In the sequel we will use the properties (1)–(3) without explicitly referring to
them. Note also that the last property (4) can be used as alternative definition
of the list membership predicate.

Proof. (1): Obvious. (2): This follows from

x ε ⟨v,w⟩⇔ ∃i(i < L ⟨v,w⟩ ∧ x = ⟨v,w⟩[i])
(∗1)⇔

0 < L(w) + 1 ∧ x = ⟨v,w⟩[0] ∨ ∃j(j + 1 < L(w) + 1 ∧ x = ⟨v,w⟩[j + 1])⇔
x = v ∨ ∃j(j < L(w) ∧ x = w[j])⇔ x = v ∨ x ε w.

The step marked by (∗1) is by case analysis on whether or not i = 0.
(3): By structural induction on the list y. The base case is trivial and the

induction step follows from

x ε ⟨v,w⟩⊕ z⇔ x ε ⟨v,w ⊕ z⟩
(2)
⇔ x = v ∨ x ε w ⊕ z

IH⇔

⇔ x = v ∨ x ε w ∨ x ε z
(2)
⇔ x ε ⟨v,w⟩ ∨ x ε z.

(4): By structural induction on the list y. The base case follows from (1)
and 7.1.11(1). In the induction step we have



x ε ⟨v,w⟩
(2)
⇔ x = v ∨ x ε w

IH⇔ x = v ∨ ∃z1∃z2w = z1 ⊕ ⟨x, z2⟩⇔

⇔ ⟨v,w⟩ = 0⊕ ⟨x,w⟩ ∨ ∃z1∃z2 ⟨v,w⟩ = ⟨v, z1⟩⊕ ⟨x, z2⟩
(∗2)⇔

⇔ ∃z1∃z2 ⟨v,w⟩ = z1 ⊕ ⟨x, z2⟩.

The step (∗2) is by case analysis on whether or not the list z1 is empty. ⊓⊔

7.1.14 List reversal. We wish to introduce into PA the function Rev(x)
which reverses the elements of the list x:

Rev ⟨x1, x2, . . . , xn,0⟩ = ⟨xn, . . . , x2, x1,0⟩.

The list reversal is defined by structural list recursion as a p.r. function:

Rev(0) = 0
Rev ⟨v,w⟩ = Rev(w)⊕ ⟨v,0⟩.

7.1.15 Basic properties of list reversal. We have

⊢PA Rev(x) = 0↔ x = 0 (1)

⊢PA Rev(x⊕ y) = Rev(y)⊕Rev(x) (2)

⊢PA Rev Rev(x) = x (3)

⊢PA Rev(x) = Rev(y)→ x = y (4)

⊢PA ∃y x = Rev(y) (5)

⊢PA LRev(x) = L(x) (6)

⊢PA y ε Rev(x)↔ y ε x. (7)

In the sequel we will use these properties without explicitly referring to them.

Proof. (1): By case analysis on whether or not the list x is empty.
(2): By structural induction on the list x. The base case is obvious and

the induction step follows from

Rev(⟨v,w⟩⊕ y) = Rev ⟨v,w ⊕ y⟩ = Rev(w ⊕ y)⊕ ⟨v,0⟩ IH=
= Rev(y)⊕Rev(w)⊕ ⟨v,0⟩ = Rev(y)⊕Rev ⟨v,w⟩.

(3): By structural list induction. The base case is obvious and the induction
step follows from

Rev Rev(⟨v,w⟩⊕ y) = Rev Rev ⟨v,w ⊕ y⟩ = Rev(Rev(w ⊕ y)⊕ ⟨v,0⟩) (2)=

= Rev ⟨v,0⟩⊕Rev Rev(w ⊕ y) IH= ⟨v,0⟩⊕w ⊕ y = ⟨v,w⟩⊕ y.

(4): This follows from



Rev(x) = Rev(y)⇒ Rev Rev(x) = Rev Rev(y)
(3)
⇒ x = y.

(5): This follows from (3) by setting y ∶= Rev(x).
(6),(7): By a straightforward structural induction on the list x. ⊓⊔

7.1.16 Fast reversal. The application Rev(x) repeatedly invokes list con-
catenation to append an element to the end of a list. Consequently, it takes
O(L(x)2) operations to compute Rev(x). This is clearly wasteful and we can
ask the question whether Rev(x) cannot be computed in O(L(x)) steps. By
accumulating the reversed list into an accumulator a we can perform the
reversal of x in O(L(x)) operations with the help of the binary accumulator
function f(x, a) defined by

f(0, a) = a
f(⟨v,w⟩, a) = f(w, ⟨v, a⟩).

The reader will note that this is a structural recursion on the list x with
substitution in the parameter a.

The auxiliary function f satisfies the property

⊢PA ∀af(x, a) = Rev(x)⊕ a, (1)

from which, by instantiating a ∶= 0, we get the relation between Rev and its
accumulator version:

⊢PA Rev(x) = f(x,0).

Now we can take the last identity as a program computing Rev(x) with a
number of reduction steps proportional to the length of x.

It remains to show that (1) holds. The proof is by structural induction on
the list x. The base case is trivial. In the induction step take any a and we
obtain

f(⟨v,w⟩, a) = f(w, ⟨v, a⟩) IH= Rev(w)⊕ ⟨v, a⟩ =
= Rev(w)⊕ ⟨v,0⟩⊕ a = Rev ⟨v,w⟩⊕ a.


