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Review: Powers of two

Definition:

Pow2(p)↔ ∀d(d | p → d = 1 ∨ 2 | d)

Provably equivalent properties:

¬Pow2(0)
Pow2(x1)↔ x = 0

Pow2(x0)↔ x > 0 ∧ Pow2(x)

This is equivalent again to recursive clauses:

Pow2(x1)← x = 0

Pow2(x0)← x > 0 ∧ Pow2(x)

CL requires a default clause explicit:

Pow2(x0)← x = 0 ∧ 0 = 1

We can now clausally redefine Pow2 and let CL make use
commands automatically
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Binary case and induction

Clauses for Pow2 are by binary discrimination:

x = y0 ∨ x = y1

proved from the properties of division
This justifies Binary case rule in CL: case Nb; x :

x = y0
y = 0

∣∣∣ x = y0
y > 0

∣∣∣ x = y1

Complete induction proves the schema of Binary induction:

φ[0] ∧ ∀x(x > 0 ∧ φ[x ]→ φ[x0]) ∧ ∀x(φ[x ]→ φ[x1])→ φ[x ]

This justifies Binary induction rule in CL: ind Nb; x

x = 0
φ[x0]∗

∣∣∣ x > 0
φ[x ]

φ[x0]∗

∣∣∣ φ[x ]
φ[x1]∗
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Towards dyadic concatenation in PA

We wish PA to prove the following recurrences as theorems

x ? 0 = x

x ? y1 = (x ? y)1

x ? y2 = (x ? y)2

For that we need to define ? explicitly:

x ? y = x ·2|y | + y

For that we need to introduce into PA the dyadic length
power function: Dlp(x) ≡ 2|x |.
Note that we cannot directly define: |x | or 2x , but we can 2|x |.
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2|x |: Illustration

For x such that 7 ≤ x ≤ 14 we have

2|x | =



0112 if x = 7 = 0111
0112 if x = 8 = 0112
0112 if x = 9 = 0121
0112 if x = 10 = 0122
0112 if x = 11 = 0211
0112 if x = 12 = 0212
0112 if x = 13 = 0221
0112 if x = 14 = 0222

Note: y ? x = y ·8+ x = y ·23 + x = y ·2|x | + x
Also note idempotency: 2|2

|8|| = 2|8|.
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Introduction of 2|x | into PA

By extension by definition:

2|x | = p ↔ Pow2(p) ∧ p ≤ x + 1 < 2·p

because for x > 0 we have

(

|x |︷ ︸︸ ︷
1 · · · 1)2 = 2|x | − 1 ≤ x < 2|x |+1 − 1 = (

|x |+1︷ ︸︸ ︷
1 · · · 1)2

We extend CL by minimization:

2|x | = µp[Pow2(p) ∧ x + 1 < 2·p]

We need to prove the existence condition:

∃p(Pow2(p) ∧ x + 1 < 2·p)

which says that powers of two are unbounded
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Comparison of dyadic length

We cannot define in PA the dyadic length |x | yet, but we can
compare the dyadic length of two numbers:
The numbers x and y have the same dyadic length iff
2|x | = 2|y |

or
The number x has a shorter dyadic length than y iff 2|x | < 2|y |

This is possible because 2x is injective
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Recursive clauses for 2|x |

After defining

2|x | = µp[Pow2(p) ∧ x + 1 < 2·p]

PA proves:

2|0| = 1

2|x1| = 2·2|x |

2|x2| = 2·2|x |

because intuitively 2|x1| = 2|x |+1 = 2·2|x |
The clauses are by dyadic recursion.
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Dyadic case and induction

Clauses for 2|x | are by dyadic discrimination:

x = 0 ∨ x = y1 ∨ x = y2

proved by binary case analysis
This justifies Dyadic case rule in CL: case N2; x :

x = 0 | x = y1 | x = y2

Complete induction proves the schema of Dyadic induction:

φ[0] ∧ ∀x(φ[x ]→ φ[x1]) ∧ ∀x(φ[x ]→ φ[x2])→ φ[x ]

This justifies Dyadic induction rule in CL: ind N2; x

φ[0]∗
∣∣∣ φ[x ]
φ[x1]∗

∣∣∣ φ[x ]
φ[x2]∗
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Clauses for ? as theorems of PA

We explicitly define x ? y = x ·2|y | + y and prove as theorems
the clauses for ? by dyadic recursion:

x ? 0 = x

x ? y1 = (x ? y)1

x ? y2 = (x ? y)2

We can now properties of dyadic concatenation by dyadic
induction with automatical uses of clauses.
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Auxiliary predicate

We explicitly define

D two(m)↔ ∃m1∃m2m = m12 ?m2

Note that

m = m12 ?m2 = (m1 ? 02) ?m2 = m1 ? 2 ?m2

And prove as theorems its clauses by dyadic recursion:

D two(m1)← D two(m)

D two(m2) .
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The relevance of D two

This predicate is D two important because PA proves

∃n(2|x+1| = n ? 2 ∧ ¬D two(n))

i.e. 2|x+1| = (1 · · · 1)2 ? 2.
PA then proves the existence of leading powers:

D two(m)→ ∃x∃m1m = 2|x+1| ?m1

i.e. if m contains 2 then m = (

n︷ ︸︸ ︷
1 · · · 1)2 ? 2 ?m1 for some m1, n.

PA also proves the existence of trailing ones

∃m1∃n(m = m10 ? n ∧ ¬D two(n))

i.e. m = m10 ? (

|n|︷ ︸︸ ︷
1 · · · 1)2 for some m1, n
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