
Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Explicit clausal definitions

Lecture 11

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Examples of Discriminators built into CL

Discriminators without patterns:
• negation: A | ¬A
• test on zero: s = 0 | s > 0
• trichotomy: s < t | s = t | s > t

Discriminators with patterns:
• let: s = z
• binary: s = z0 ∧ z = 0 | s = z0 ∧ z > 0 | s = z1
• division by four: s = 4·z + v ∧ 0 ≤ v ≤ 3

• exactly one alternative holds
• pattern variables uniquely exist

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Examples of Provable discriminators

• discr. on the head of lists: Adj(s) = 0 | s = z ; t
• discr. on the tail of lists:
Adj(s) = 0 | s = t � (z ; u) ∧ Adj(u) = 0

•

The head discrimination used in a clausal definition:

Rev(t) = t ← Adj(t)
Rev(x ; t) = Rev(t) � (x ; 0)

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Conditional discriminators:

general division: provided t > 0 then s = t·z + v ∧ 0 ≤ v < t
special discrimination for g∗: provided PA proves

g(x , n, a) = v1→ µ(v) < µ(x)

2 | g(x , 0, a)

we have g(s,n, a) = v0 | g(s,n, a) = v1 ∧ n = m + 1
This is used in the clauses for g∗:

g∗(x , n, a)=v ← g(x , n, a) = v0

g∗(x , n+1, a)=g∗(x , n, a� (g∗(v ,C , 0); 0))← g(x , n+1, a)=v1

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

General form of provable discriminators
We use bold variables x for possibly empty sequences of
variables x1, . . . , xn,
we let ∃xD to stand for ∃x1 . . .∃xnD (n can be empty), and
write x = y for x1 = y1 ∧ · · · xn = yn.
Suppose that PA proves for k ≥ 1:

∃z1D1[z1] ∨ ∃z2D2[z2] ∨ · · · ∨ ∃zkDk [zk]
Di [zi]→ ¬Dj [zj] for all 1 ≤ i 6= j ≤ k
Di [zi] ∧Di [w]→ zi = w for all 1 ≤ i ≤ k

This means that exactly one Di [z]i holds with uniquely
determined patterns zi .
We can then use

D1[z1] | D2[z2] | · · · | Dk [zk]

as provable discriminators (we can even permit conditional
discrimination).

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Clausal formulas

In the following we will write A[x; v] for a formula with the
output variable v free and with other free variables among the
input variables x
A formula A[x; v] is a clausal formula if A is either of a form
• s[x] = v or
•
∃z1(D1[x, z1]∧A1[x, z1; v])∨ · · · ∨ ∃zk(Dk [x, zk]∧Ak [x, zk , v])
where D1, . . . , Dk is a provable discriminator and A1, . . . , Ak
are clausal formulas.

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Using clausal formulas in explicit definitions

In all clausal formulas A[x; v] for every x the output variable is
uniquely determined, i.e. PA proves:

∃vA[x; v]

A[x; v] ∧ A[x;w]→ v = w

We can thus explictly introduce into PA a new function symbol
f by:

f (x) = v ↔ A[x; v] ,

or in CL by f (x) = µv [A[x; v]].
The above equivalence is actually equivalent in PA to

f (x) = v ← A[x; v]

because if in the direction (→) f (x) = v holds then A[x;w] for
some w by existence and w = f (x) by (←).

Logika pre
informatikov

2

Propositional
Logic

Equational
Logic

Kvantifikačná
logika

Extension of
theories

Peano
Arithmetic

Extensions of
PA

Introduction
of dyadic
concatenation
into PA

Introduction
of dyadic
pairing into
PA

The Schema
of Nested
Iteration in
PA

CL: Explicit
Definitions

Unfolding the clausal formulas

We now assign to every formula B, every clausal formula
A[x; v] and a new function symbol f a finite set of clauses by
the unfolding operator U[f ,B,A] such that:
• if A ≡ s[x] = v then U[f ,B,A] = {f (x) = v ← B∧ s[x] = v}
and if

A ≡ ∃z1(D1[x, z1]∧A1[x, z1; v])∨· · ·∨∃zk(Dk [x, zk]∧Ak [x, zk , v])

then

U[f ,B,A] = ∪1≤i≤kU[f , (B ∧Di [x, zi]),Ai [x, zi , v]]

If U[f ,>,A[x; v]] = {C1, , . . .Cm} then we have

` f (x) = b ← A[x; v] iff ` C1 and . . . and ` Cm

	CL: Explicit Definitions

