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Examples of Discriminators built into CL

Discriminators without patterns:
• negation: A | ¬A
• test on zero: s = 0 | s > 0
• trichotomy: s < t | s = t | s > t

Discriminators with patterns:
• let: s = z
• binary: s = z0 ∧ z = 0 | s = z0 ∧ z > 0 | s = z1
• division by four: s = 4·z + v ∧ 0 ≤ v ≤ 3

• exactly one alternative holds
• pattern variables uniquely exist
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Examples of Provable discriminators

• discr. on the head of lists: Adj(s) = 0 | s = z ; t
• discr. on the tail of lists:
Adj(s) = 0 | s = t � (z ; u) ∧ Adj(u) = 0

•

The head discrimination used in a clausal definition:

Rev(t) = t ← Adj(t)
Rev(x ; t) = Rev(t) � (x ; 0)
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Conditional discriminators:

general division: provided t > 0 then s = t·z + v ∧ 0 ≤ v < t
special discrimination for g∗: provided PA proves

g(x , n, a) = v1→ µ(v) < µ(x)

2 | g(x , 0, a)

we have g(s,n, a) = v0 | g(s,n, a) = v1 ∧ n = m + 1
This is used in the clauses for g∗:

g∗(x , n, a)=v ← g(x , n, a) = v0

g∗(x , n+1, a)=g∗(x , n, a� (g∗(v ,C , 0); 0))← g(x , n+1, a)=v1
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General form of provable discriminators
We use bold variables x for possibly empty sequences of
variables x1, . . . , xn,
we let ∃xD to stand for ∃x1 . . .∃xnD (n can be empty), and
write x = y for x1 = y1 ∧ · · · xn = yn.
Suppose that PA proves for k ≥ 1:

∃z1D1[z1] ∨ ∃z2D2[z2] ∨ · · · ∨ ∃zkDk [zk ]
Di [zi ]→ ¬Dj [zj ] for all 1 ≤ i 6= j ≤ k
Di [zi ] ∧Di [w]→ zi = w for all 1 ≤ i ≤ k

This means that exactly one Di [z]i holds with uniquely
determined patterns zi .
We can then use

D1[z1] | D2[z2] | · · · | Dk [zk ]

as provable discriminators (we can even permit conditional
discrimination).
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Clausal formulas

In the following we will write A[x; v ] for a formula with the
output variable v free and with other free variables among the
input variables x
A formula A[x; v ] is a clausal formula if A is either of a form
• s[x] = v or
•
∃z1(D1[x, z1]∧A1[x, z1; v ])∨ · · · ∨ ∃zk(Dk [x, zk ]∧Ak [x, zk , v ])
where D1, . . . , Dk is a provable discriminator and A1, . . . , Ak
are clausal formulas.
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Using clausal formulas in explicit definitions

In all clausal formulas A[x; v ] for every x the output variable is
uniquely determined, i.e. PA proves:

∃vA[x; v ]

A[x; v ] ∧ A[x;w ]→ v = w

We can thus explictly introduce into PA a new function symbol
f by:

f (x) = v ↔ A[x; v ] ,

or in CL by f (x) = µv [A[x; v ]].
The above equivalence is actually equivalent in PA to

f (x) = v ← A[x; v ]

because if in the direction (→) f (x) = v holds then A[x;w ] for
some w by existence and w = f (x) by (←).
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Unfolding the clausal formulas

We now assign to every formula B, every clausal formula
A[x; v ] and a new function symbol f a finite set of clauses by
the unfolding operator U[f ,B,A] such that:
• if A ≡ s[x] = v then U[f ,B,A] = {f (x) = v ← B∧ s[x] = v}
and if

A ≡ ∃z1(D1[x, z1]∧A1[x, z1; v ])∨· · ·∨∃zk(Dk [x, zk ]∧Ak [x, zk , v ])

then

U[f ,B,A] = ∪1≤i≤kU[f , (B ∧Di [x, zi ]),Ai [x, zi , v ]]

If U[f ,>,A[x; v ]] = {C1, , . . .Cm} then we have

` f (x) = b ← A[x; v ] iff ` C1 and . . . and ` Cm
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