
Paul J. Voda

Meta-Mathematics of Computer
Programming

(Preliminary Draft)

www.fmph.uniba.sk/∼voda

Institute of Informatics, Comenius University,

Bratislava

May 2001



2



Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1. Why the Theory of Programming in Peano Arithmetic? . . 1
1.1 Effectively Computable Functions . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Imperative vs. Declarative Programming . . . . . . . . . . . . . . . . . . 4
1.3 Arguments in Favor of Natural Numbers . . . . . . . . . . . . . . . . . . 9
1.4 Bootstrapping of PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Clausal Extensions of PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.6 Limits of Provably Recursive Definitions in PA . . . . . . . . . . . . . 46
1.7 Computation of Clausal Definitions . . . . . . . . . . . . . . . . . . . . . . . 51
1.8 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.9 Intensional Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.10 Issues Open to Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 88

Part I. First-Order Logic and Peano Arithmetic

2. First-Order Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.1 Language of First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3. Propositional Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1 Tautologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2 Propositional Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.3 Admissible Expansion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.4 Tautological Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.5 Tableaux with Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4. Identity Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.1 Some Syntactic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2 Quasitautological Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3 Identity Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



5. Quantification Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.1 Some Syntactic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.2 Logical Consequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.3 Quantification Tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6. First-order Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1 Theorems of Predicate Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Extensions of Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.3 Extensions by Explicitly Defined Predicates . . . . . . . . . . . . . . . . 174
6.4 Skolem Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5 Extensions by Contextually Defined Functions . . . . . . . . . . . . . 188
6.6 Extensions by Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7. Peano Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.1 Basic Theorems in PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2 Extensions of PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.3 Introduction of Basic Predicates into PA . . . . . . . . . . . . . . . . . . 202
7.4 Introduction of Basic Functions into PA . . . . . . . . . . . . . . . . . . . 206
7.5 The Lattice of Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8. Recursive Bootstrapping of PA . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.1 Exponentiation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.2 Primitive Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.3 Suitable Pairing Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.4 Course of Values Recursion with Measure . . . . . . . . . . . . . . . . . . 260

9. Proof Theory of PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Part II. Computer Programming

10. Clausal Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
10.1 Clausal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
10.2 Regular Clausal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
10.3 The Strength of Clausal Definitions . . . . . . . . . . . . . . . . . . . . . . . 293

11. Computation of Clausal Programs . . . . . . . . . . . . . . . . . . . . . . . . 295
11.1 Computation over Monadic Numerals . . . . . . . . . . . . . . . . . . . . . 295
11.2 Computation over Binary Numerals . . . . . . . . . . . . . . . . . . . . . . . 296
11.3 Computation over Pair Numerals . . . . . . . . . . . . . . . . . . . . . . . . . 297
11.4 Computation over Mixed Numerals . . . . . . . . . . . . . . . . . . . . . . . 298

12. Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.1 Pascal-Style Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.2 ML-Style Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

4



13. Functional Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

14. Modular Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
14.1 Extraction of Programs from Proofs . . . . . . . . . . . . . . . . . . . . . . 307

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

V



VI



Preface

A Historical Parallel.

We have seriously considered to name this book Principia Programma-
tionis in allusion to the celebrated Principia Mathematica by Russell and
Whitehead, which was published in 1910 in a gallant attempt to reduce math-
ematics to logic. Mathematics had stormily developed and matured during
the nineteenth century and there was a real need to lay it on firm foundations.
Especially after the Russell’s paradox has shattered the monumental efforts
in this direction by G. Frege and seriously dented the credibility of the naive
set theory of G. Cantor.

Logicians have agreed only much later that the attempt was futile because
with its principle of infinity mathematics relies on extra-logical facts, i.e.
facts which do not hold in all possible worlds. The Zermelo-Fraenkel set
theory is nowadays accepted by most mathematicians as the foundations of
mathematics.

With the benefit of this hindsight we do not attempt in this book to re-
duce computer programming to logic. We reduce it to the most basic of formal
theories: to the formalization of arithmetic known as Peano Arithmetic (PA
for short). We think that after a half-century of tumultuous development of
computer programming languages, and after many presentations of formal
theories of programming (some of which go even beyond the powers of ZF)
we have succeeded in the explication of mosts aspects of modern computer
programming languages in such a simple formal theory (at least as its se-
mantics is concerned). We view our choice of PA as a kind of Occam’s razor.
No programming language can be without arithmetic and we believe that
nothing more is needed.

We have been encouraged in this belief by the successful use of our imple-
mentation of our computer programming language CL (C lausal Language)
in teaching of mathematical logic and theory of programming for the last
four years at the Comenius University of Bratislava. We have approximately
three hundred students per year taking four courses based on CL. CL is not
only a programming language but also a formal system for the specification
and proofs of properties of its programs.



Outline of the Text.

There is one more parallel between Principia Mathematica and the pre-
sent text. Both, in their detailed development of their respective subjects
(which cannot be avoided for the first time), can be perceived as tedious.
For instance, the development of Peano Arithmetic in Chapters 7 and 8 is
given in detail but the development is necessary for the formal justification
of general recursive definitions which are considered de rigueur in modern
computer programming.

We have included as extended introduction a long Chapter 1 entitled
‘Why the Theory of Programming in Peano Arithmetic?’ in order to shield
the reader interested mainly in the general ideas of our philosophy from the
rather technical development of the subject . We argue in the chapter in favor
of the explication of computer programming in arithmetic. This means that
an implemented computer programming language based on these concepts
should use a formal system of arithmetic. Peano arithmetic is then the most
natural choice. The introductory chapter covers the entire text in sufficient
detail for the reader to understand our ideas and it avoids the formal ap-
paratus of theorems and proofs although we mostly present the necessary
definitions with some technical details. If the reader is well-versed in mathe-
matical logic and/or the theory of computer programming he might be even
satisfied with the argument contained in the chapter. He will perhaps go to
the following chapters only for a detail or two.

The explication of computer programming in the arithmetic is formally
done in the Part II of this text. We have included the Part I, entitled First-
order Logic and Peano Arithmetic, mainly as a prerequisite for the under-
standing of Part II. In this part we discuss first-order theories in general and
Peano arithmetic in detail. The part is included not only to make this text
self-contained, but also to investigate the proof system of CL which are the
signed tableaux of Smullyan. Since we extensively use the proof system for
concrete proofs (as opposed to merely investigating it meta-theoretically),
we present the tableaux in the positive sense as proving logical consequence
rather than in the usual negative sense of deriving contradictions. In the
chapters dealing with Peano arithmetic we then investigate strong schemas
of extensions of PA by definitions which support the kinds of flexible recursive
definitions needed in the practice of computer programming.

The Part II is entitled Computer Programming and it deals within the
framework of PA with

– the definition of the clausal language,
– discusses in the meta-theory the computation of clausal programs,
– introduces data types in order to optimize the execution of clausal programs

on computers,
– shows how to obtain the flexibility of high-order programming with func-

tionals in the first-order Peano arithmetic,

VIII



– discusses the questions of modularization and abstract specification of pro-
grams in the language of second-order Peano arithmetic but within a frame-
work which is conservative over PA and thus does not add any extra power
(except expressivity) to it.

Targeted Audience.

We address this book to all readers interested in the theory of computer
programming. We expect the reader to know at least the basics of mathemat-
ical logic and of the theory of programming languages. Of special interest to
us are the experts in either mathematical logic or in the theory of computer
programming who are interested in the issues of the other area.

Logicians. We address this text to the logicians interested in Computer
Science, specifically in the theory of programming. Logicians, obviously, will
not have any problems with the material covered in Part I, but they might
appreciate that the meta-theory is completely finitary (we even give a new
finitary proof of the conservativity of Skolem axioms; something not normally
done in the introductory texts). Logicians are also familiar with at least two
mathematically impeccably explicated programming languages, namely the
language of Primitive recursive functions and of Primitive recursive func-
tionals of finite types (Gödel’s T). They also know how to compute such
functions effectively. They might, however, be not aware of the complex
set of requirements which the designers of computer programming languages
have to meet.

Of course, all logicians know that a computer programming language must
be able to execute the programs efficiently. There are additional, no less im-
portant, pragmatical requirements of readability, simplicity, easy programma-
bility, extensibility, and modularity. These are necessary because computer
programs are large and they constantly undergo change. A good computer
programming language should have versatile data structures within a typed
environment. It must have provisions for modular design where whole blocks
of code can be replaced with a new one without affecting the rest of the pro-
gram. Our logician readers might be interested in how do we propose to meet
this formidable set of practical criteria within the constraints of the relatively
terse language of PA and of the relative weakness of its axioms.

Computer Scientists. The second, and probably the most critical, type of
audience are Computer Scientists, especially those interested in the theory of
programming and mathematical logic. During the last fifty years an enormous
number of computer programming languages emerged (and most of them
quickly submerged) so our computer scientist reader is probably extremely
sceptical of a yet another programming language. Moreover, a choice of a
programming language is like a choice of a dress to wear. Everyone has a

IX



strong set of preferences and adheres to a certain style. Just like fashion,
programming languages are judged by value judgments with an apparent
absence of objective criteria. Not all programming languages are based on
a formal theory. This is not too unexpected as such languages are direct
descendants of programs for Turing machines and the latter are basically
kitchen recipes (do first this, then that, and repeat until done).

A Theory of Computer Programming.

Current programming languages based on formal theories widely differ in
the strength of the theory. The theory may be as strong or even stronger
as ZF. Examples are the languages based on the HOL (High-order logic)
framework, or languages of the OBJ variety which are based in the category
theory. A wide group of languages is based on the Scott-Ershov theory of do-
mains of partial continuous functionals. Example is the well-known functional
programming language Haskell.

We try to explicate computer programming in the style and strength in
many respects similar to the Computational Logic of Boyer and Moore. The
main difference is that we use as the basis a formalization of arithmetic, per-
mit unrestricted quantification, and include the data types and functionals.
Everyone is familiar with arithmetic (if not with PA) from high school. Not
only is the semantic basis of the clausal language simple, but the programs
in the language are just formulas of the language of Peano arithmetic. The
definitions have no reserved words whatsoever.

We know that many computer programmers, discouraged by the com-
plexities of formal theories, wholly concentrate on the writing of programs
without pausing to ask what they do and what kind of objects they manipu-
late with. Situation is even worse because more often than not a programming
language is designed only for its elegant syntax and neat features. Only af-
ter the syntactical issues of its computation (so called operational semantics)
have been fixed, the language designer starts to worry about the semantical
issues of what the programs are (so called denotational semantics).

This practice of syntax before semantics runs totally opposite to the typ-
ical situation in mathematics where, as J. Shoenfield in the introduction to
his Mathematical logic so convincingly argues:

We may now describe what a mathematician does as follows. He
presents us with certain basic concepts and certain axioms about
these concepts. He then explains these concepts to us until we under-
stand them sufficiently well to see that the axioms are true. He then
proceeds to define derived concepts and to prove theorems about the
basic and derived concepts. The entire edifice which he constructs,
consisting of basic concepts, derived concepts, axioms, and theorems,
is called an axiom system.

X



This is exactly how we propose to build a framework for computer program-
ming languages except that the edifice which we construct is a framework
for programming languages. Our basic concept is that programs are com-
putable functions. By the Thesis of Church-Turing the computable functions
are Turing computable functions over natural numbers and so we decide that
our programs are to be definitions of functions and predicates over natural
numbers. We do not have to build the theory of natural numbers from the
scratch because we can use its well-known formalization: Peano arithmetic.
We still have to introduce the derived concepts as used in computer program-
ming (data structures, types, etc.). And we also have to bootstrap PA to the
extent that it admits a very flexible kind of extensions by clausal definitions
of functions and predicates. Clausal definitions serve a dual purpose. They
describe extensionally the properties of the defined functions and predicates
and at the same time they serve intensionally as rules for the computation
of these objects.

Our experience with CL, which is an implementation of these ideas, shows
that our students have no problems with understanding that they are writing
programs operating over natural numbers. They also know that our coding of
data structures into numbers in the style of LISP is perfectly natural. Finally,
they can see that we can execute CL programs with the efficiency of Pascal
and C operating over symbolic data structures.

Our Contribution. The main contribution of this book is an integrated
attempt to explicate many of the issues of modern computer programming
within a single framework of Peano Arithmetic. Within this overall goal there
are some new perspectives which are our own:

1. the design of the clausal language with extensible syntax yet totally
within the language of Peano arithmetic (no reserved words),

2. a new view of abstraction types (abstract data types) which goes around
the sorts and congruences needed in the usual algebraic approach,

3. the development of a fragment of second-order Peano arithmetic which is
conservative over first-order PA and offers a flexible calculus of extensions
(modularization),

4. calculus for the extraction of efficient programs from proofs as as a kind
of programming by proving.

5. the characterization of a fragment of bland intensional functionals (as
opposed to curried functionals) which can be introduced into PA with the
typing comfort not available for the codes of primitive recursive (curried)
functionals. For the latter one needs a non-conservative extension of PA
with the function V (see below).

In the Part I dealing with logic we have contributed the following:

1. a presentation of the Henkin reduction of quantification logic to tautolo-
gies in three natural steps via quasi-tautological consequence,

XI



2. a positive calculus of Smullyan’s signed tableaux which gives them the
flavor of natural deduction,

3. a simple finitary proof of conservativity of Skolem axioms,
4. a simple new ∆0-definition of the graph 2x = y of the exponentiation

function,
5. a simple ∆1-definable function V which is not provably recursive in PA.

The function V is closely connected to the Wainer-Schwichtenberg fast
growing hierarchies of functions.

Acknowledgments. The author would like to express his gratitude to the
enormous contribution to this text by his colleague Ján Komara. The clausal
language was designed as our joint project and we have also implemented it
in the form of CL. Ján has actually implemented the theorem prover which
comprises about 85% of approximately 100K lines of the CL’s source code
which is in the author’s declarative language Trilogy II. Ján has also prepared
excellent lecture notes for the second year undergraduate course Program
specification and verification [16] which we teach in CL. In the course we deal
with approximately 200 hundred CL programs and the students are expected
to formally prove in CL over 500 hundred theorems describing properties of
programs. The author strongly recommends that readers interested in more
details of programming and proving with the clausal language download Ján’s
lecture notes.

We have worked jointly with Ján on the presentation of first-order logic
and the development of positive semantic tableaux (see also [12, 13]), on the
finitary proof that Skolem axioms are conservative, we have investigated the
use of Parson’s rule in proving properties of programs [14], and the extraction
of efficient clausal programs from proofs [15].

The author would also like to thank his colleague Ján Šefránek for the
unswerving support during the last eight years we have worked together in
the same institute. Ján is a fine logician and computer scientist (AI) who has
always believed in our goals of explicating computer programming in PA and
was always willing to listen to our then semi-coherent ideas. He had been
tremendously supportive especially in bad times when we were designing the
courses based on our research at the same time as doing the research. We had
to redesign the courses quite a few times and a few of our Computer Science
faculty have explicitly disapproved of our insistence that the students should
be exposed to the technology on the cutting edge of research.

XII



1. Why the Theory of Programming in Peano
Arithmetic?

This chapter is intended as extended introduction. We informally present in
it the entire material of this text. We argue here in favor of declarative pro-
gramming over the domain of natural numbers within the most fundamental
of formal theories: Peano arithmetic. Our argument is not in favor of a sin-
gle language. We argue for the use of PA as a framework for the theory of
computer programming. Although we occasionally discuss our language CL
it should be understood only as an example of a possible implementation of
the ideas.

The style of presentation in this chapter is aimed at logicians and com-
puter scientists. We expect the reader to be acquainted with the language
and basic methods of the first-order logic as well as with the basic issues
of the theory of computer programming languages. Undergraduate students
will probably not be able to follow the exposition unless they have had a first
reading exposure to the predicate calculus and the theory of programming
languages.

An important note: The extended introduction temporarily serves also
as a detailed description of the yet not written chapters and sections. This
should explain a more detailed overview of these parts here. Eventually, when
the missing chapters and sections of this text will be supplied, some of the
explanatory material will be removed. The level of presentation of parts not
yet written is usually higher and more technical than the level of finished
parts because the description is meant for expert logicians and computer
scientists who might be refereeing this text.

1.1 Effectively Computable Functions

1.1.1 Formal systems. Both mathematical logic and theory of computer
programming study formal systems. Formal systems deal with concretely
presented syntactic objects. Syntactic objects are terms, formulas, and proofs
in logic and programs in computer programming.

Syntactic objects are usually assigned denotations (meaning) in some
mathematical domain. However, the main reason for the study of formal
systems in the logical discipline called meta-mathematics is to study the con-
structive processes connected with axioms and rules of inference. Semantic



questions of denotation are usually non-constructive whereas the manipula-
tion of syntactic objects can be done by effectively computable processes.

1.1.2 Effectively computable functions. Mathematical logic was devel-
oped in order to give firm foundations to mathematics. As it turned out, the
identification and characterization of effectively computable functions was an
important subgoal of the foundational goal. Such functions can be evaluated
by a mechanical procedure. Alan Turing gave in 1936 a completely satis-
factory explication of computable functions by means of what is now called
Turing machines. He used the term computer to designate the agent per-
forming the mechanical procedure. Turing meant a human computer, but as
it turned out some ten years later chiefly by efforts of John von Neumann and
Turing himself, computers could be constructed as mechanical or electronic
devices.

The theory of computer programming studies the effectively computable
functions but due to the practical limitations of computer hardware it has to
deal mostly with its rather small subclass of efficiently (feasibly) computable
functions.

1.1.3 The domain of effectively computable functions. Although one
can develop the theory of computable functions over integers (both negative
and positive numbers), over a subset of real numbers, over word domains,
or over many suitably structured domains; logicians know that it suffices to
study the domain N of natural numbers: 0, 1, 2,. . . . This is primarily because
the greatest success of the nineteen century mathematics was the discovery
that all numeric domains can be defined from the domain of natural numbers.
The second reason is that K. Gödel in the proof of his Incompleteness theorem
convincingly demonstrated that symbolic (syntactic) objects can be coded
into numbers. The process of coding is called arithmetization and the codes
are called Gödel numbers.

Whether we can do the same reduction of domains of computer program-
ming languages to N is by no means obvious. We will argue in Sect. 1.3
in favor of the reduction, but many computer scientists think that special
domains are necessary in order to attain efficiency.

1.1.4 Notational basis for computable functions. We know from ele-
mentary school that addition and multiplication can be effectively computed
when their operands are concretely presented, say, as decimal numerals. The
choice of notation basis is not important when we are interested only in
the effectivity and so logicians prefer the monadic notation where a natural
number n is presented as the syntactic object, called the monadic numeral:

(0

n
︷︸︸︷

′ . . .′) .

2



When we want also efficiency then the base should be larger than one and
the most natural one for electronic computers is binary. Binary numerals are
terms constructed from the constant 0 by applications of two unary functions,
called binary successors, which write in the postfix notation: x0 = 2·x + 0
and x1 = 2·x+ 1. The reader will note that, for instance, we have

5 = 2·(2·(2·0 + 1) + 0) + 1 = 0101 .

Leading zeroes cause notational ambiguity because 1 = 01 = 001 = 0001 . . .
and so we require that binary numerals of a form τ0 have the term τ 6≡ 0.
We designate by nb the binary numeral denoting the number n. This term
yielding function satisfies:

0b ≡ 0
n0b ≡ nb0 if n > 0
n1b ≡ nb1 .

Here and below we designate by≡ the identity of two syntactic objects treated
as finite sequences of symbols.

The reader will note that for any number x we have

x = 0 ∨ ∃z(x = z0 ∧ z > 0) ∨ ∃z x = z1

with the numbers z uniquely determined, and with the three conditions pair-
wise exclusive.

1.1.5 Closure of operations over natural numbers. Addition and mul-
tiplication are closed over natural numbers. This means that both x+ y and
x·y are natural numbers when x and y are. The remaining two basic arith-

metical operations go outside of natural numbers, for instance 3 − 5 and
3
5
.

We must use instead modified subtraction x .− y satisfying:

x .− y =

{

x− y if x ≥ y,
0 otherwise

and integer division and remainder functions x÷ y and x mod y satisfying:

y > 0→ x = (x÷ y)·y + x mod y ∧ x mod y < y

x÷ 0 = x mod 0 = 0 .

All five basic arithmetic functions over N can be efficiently computed by
elementary school algorithms.

Unless we explicitly say otherwise all functions and predicates will be over
natural numbers. Also the variables and quantifiers will range over natural
numbers.

3



1.2 Imperative vs. Declarative Programming

The style of programming derived from operations of Turing machines where
programs are recipes for the manipulation of computer’s store is called in
computer science imperative programming. The style of programming where
programs are definitions of mathematical objects such as functions or predi-
cates is called declarative programming. The difference between the two styles
is best explained with two presentations of the greatest common divisor func-
tion.

1.2.1 Greatest common divisor. The binary relation x divides y, in sym-
bols x | y, can be defined in the language of arithmetic by

x | y ↔ ∃z x·z = y .

A number z is the greatest common divisor of x and y, in symbols
gcd(x, y) = z, iff either x = y = 0 and z = 0 or if x + y > 0 and z di-
vides both x and y and z is the largest of such numbers:

x+ y > 0→ z | x ∧ z | y ∧ ∀d(d | x ∧ d | y → d ≤ z) . (1)

We have 1 | x and 1 | y and so when x + y > 0 we can effectively find the
greatest common divisor by a brute force search which starts from x and goes
downwards towards 1.

The ancient mathematician Euclides discovered a faster algorithm com-
puting the function gcd which relies on the following property of divisibility:

y > 0→ (z | x ∧ z | y ↔ z | y ∧ z | x mod y). (2)

1.2.2 The algorithm of Euclides imperatively. The algorithm of Eu-
clides can be expressed by an imperative program in the style of Pascal as:

{x = x0 ∧ y = y0}
while y > 0 do (1)
a := x mod y; x := y; y := a;
{gcd(x0, y0) = x} .

The reader will note that the text enclosed within the pair of braces {} is not
a part of the program and should be viewed as a remark.

The algorithm proceeds by operation on three registers x, y, and a located
on the tape of a Turing machine or in the memory of a computer. It is basically
a kitchen recipe which says that the contents of the three registers should
be repeatedly swapped in the given order as long as the register y contains
a positive number. When the algorithm is started with the registers x and y
containing the numbers x0 and y0 respectively and with arbitrary contents
of the contents of register a then when, and if, the swapping terminates the
register x will contain the number gcd(x0, y0).

4



For arguments x0 = 12 and y0 = 21 we need five tests of the register
y which happen in the following sequence of memory snapshots with the
contents of registers given immediately above the single solid lines:

x y a

12 21 −
12 21 12
21 21 12
21 12 12
21 12 9
12 12 9
12 9 9
12 9 3
9 9 3
9 3 3
9 3 0
3 3 0
3 0 0

1.2.3 The algorithm of Euclides declaratively. We will discuss in Part
II of this text how Peano arithmetic, which is a well-known logical theory
formalizing the arithmetic, permits an introduction of the binary function
symbol gcd by a clausal definition:

gcd(x, 0) = x (1)
gcd(x, y) = gcd(y, x mod y)← y > 0 . (2)

The reader will note that the symbol←, which is customarily used in clausal
definitions, is just a converse implication. The two clauses should be un-
derstood as axioms implicitly defining the function gcd. The definition is
legal because a measure of the two arguments x and y goes down in re-
cursion. The measure is the second argument y and since, the PA proves
y > 0 → x mod y < y, the second argument x mod y of the recursive appli-
cation gcd(y, x mod y) in the clause (2) decreases.

Incidentally, this is exactly the reason why the imperative program in
Par. 1.2.2 always terminates. We, namely, go into the while loop only when
y > 0. The register y will contain x mod y just before the next iteration
where x and y are the values at the moment of the entry to the while loop.

The declarative computation of gcd(12, 21) can be visualized as a sequence
of syntactic operations, called reductions, which are initially applied to the
term gcd(12, 21) and which apply the two clauses as rewriting rules in an
attempt to simplify the term to a decimal numeral:

gcd(12, 21)
(2)
= gcd(21, 12)

(2)
= gcd(12, 9)

(2)
= gcd(9, 3)

(2)
= gcd(3, 0)

(1)
= 3 .

5



The reader will note that the computation sequence is structurally equivalent
to the underlined memory snapshots for the imperative program where the
two arguments of gcd play the role of the registers x and y.

1.2.4 Proving the correctness of the two gcd programs. We will now
briefly look into the question of how to formally ensure that the imperative
and declarative programs for the greatest common divisor work correctly.
The function gcd is uniquely determined by satisfying its specification from
Par. 1.2.1 in the following form:

gcd(x, y) | x ∧ gcd(x, y) | y (1)
x+ y > 0 ∧ d | x ∧ d | y → d ≤ gcd(x, y) (2)

gcd(0, 0) = 0 . (3)

The simplest way of proving the correctness of the imperative program is
to reason in a system of formal arithmetic, say PA, where we have already
demonstrated the conditions (1) through (3). From the conditions we prove
the recurrences 1.2.3(1)(2). We then annotate the imperative program with
comments as follows:

{x = x0 ∧ y = y0 ∧ gcd(x, y) = gcd(x0, y0)}
while y > 0 do
a := x mod y; x := y;
y := a; {gcd(x, y) = gcd(x0, y0)}
{y = 0 ∧ x 1.2.3(1)

= gcd(x, 0) = gcd(x, y) = gcd(x0, y0)} .

We can then use the calculus of pre and post conditions of A. Hoare and
show that the formulas given at the annotated points can be proved. The
formula gcd(x, y) = gcd(x0, y0) is an invariant of the while loop because it
holds whenever one tests y > 0.

In order to prove that the invariant holds at the end of the body of the
loop one has to prove in Hoare’s calculus:

{x = x1 ∧ y = y1 ∧ gcd(x1, y1) = gcd(x0, y0)}
a := x mod y;
{a = x1 mod y1 ∧ y = y1 ∧ gcd(x1, y1) = gcd(x0, y0)}
x := y;
{a = x1 mod y1 ∧ x = y1 ∧ gcd(x1, y1) = gcd(x0, y0)}
y := a;
{y = x1 mod y1 ∧ x = y1}
{gcd(x, y) = gcd(y1, x1 mod y1)

1.2.3(2)
= gcd(x1, y1) = gcd(x0, y0)}

On the other hand, in order to prove the correctness of the declarative def-
inition of the function gcd by clauses 1.2.3(1)(2) we just have to demonstrate
its specification formulas (1) through (3).

6



We prove ∀x(1) by complete induction on y. We take any x and consider
two cases. If y = 0 then, since gcd(x, 0) = x by 1.2.3(1), we trivially have
gcd(x, 0) | x and gcd(x, 0) | 0. If y > 0 then we have gcd(x, y) = gcd(y, x mod
y) by 1.2.3(2) and, since x mod y < y, we obtain gcd(y, x mod y) | y and
gcd(y, x mod y) | x mod y by IH. We then use 1.2.1(2) to get gcd(y, x mod
y) | x.

We prove ∀x(2) by complete induction on y. We take any x, assume
x + y > 0, d | x, d | y and consider two cases again. If y = 0 then, since we
must have x > 0, we get d ≤ x = gcd(x, 0). If y > 0 then, since d | x mod y
by 1.2.1(2) and y < x mod y, we get

d
IH
≤ gcd(y, x mod y) = gcd(x, y) .

Property (3) trivially follows from 1.2.3(1).

1.2.5 Imperative versus declarative programming I. If we do not care
about the correctness of our programs and are concerned only with their effi-
ciency then we should probably program imperatively because such program-
ming is with few restrictions. If we are willing to live with some restrictions
then the declarative development of highly symbolic programs can be faster
and cheaper even without proofs of correctness (see Par. 1.2.7).

If the correctness of our programs is important then the proofs are much
easier for declarative programs as was shown in the preceding paragraph. In
both cases we had to use a formal theory axiomatizing the domain of our
objects. For the example of the greatest common divisor the domain was N
and so the the formal theory will probably be PA. In both cases we had to
introduce the function gcd into the theory and prove some of its properties.

For the proof of the declarative program we never left PA because the
clausal definition of the new function was in the language of PA and its
clauses were axioms. The proof proceeded by simple induction.

For the proof of the imperative program we used two languages: the im-
perative programming language and the language of PA. We also used two
formal systems: the calculus of Hoare and PA. The correctness proof was
much longer, we had to introduce auxiliary variables, and at the end we have
proven only the partial correctness of the program. We still have to do an
inductive proof that the program always terminates.

The only argument in favor of imperative programming is efficiency. In
the given example both programs have comparable efficiency. In the following
paragraph we show the same with another example.

1.2.6 Fibonacci function. The function fib(n) yielding the n-th element
of the well-known sequence of Fibonacci satisfies the following recurrences:

fib(0) = 1 (1)
fib(1) = 1 (2)
fib(n+ 2) = fib(n+ 1) + fib(n). (3)

7



The definition is by straightforward recursion decreasing the argument in the
relation <. We can directly use the recurrences for computation. For instance,
we can compute fib(4) = 3 as follows:

fib(4)
(3)
= fib(3) + fib(2)

2×(3)
= fib(2) + fib(1) + fib(1) + fib(0)

(3);2×(2);(1)
=

fib(1) + fib(0) + 1 + 1 + 0
(2);(1)

= 1 + 0 + 2 = 3 .

The only problem is that the computation sequence is too long. In order to
compute the number fib(n + 2) one needs to use the recurrence (3) exactly
fib(n + 2) times. The Fibonacci function grows as fast as the exponential
function and to compute the function in this way is simply too wasteful.

The following Pascal-like program computes fib(n) into the variable b:

a := 1; b := 0;
while n > 0 do

n := n .− 1; c := a; a := a+ b; b := c;

The reader will note that the loop is executed only n times. This example
is usually given as the ‘standard argument’ against declarative programming
where the recursive version is clearly inferior to the imperative one. The
argument is fallacious as one can define an auxiliary ternary function f(n, a, b)
with two accumulators a and b by primitive recursion decreasing the first
argument:

f(0, a, b) = b
f(n+ 1, a, b) = f(n, a+ b, a).

By straightforward induction on n we can prove:

∀k f(n, fib(k + 1),fib(k)) = fib(n+ k)

and so we can explicitly define:

fib(n) = f(n, 1, 1).

The number of reductions of f is exactly the same as the number of iterations
of the loop of the imperative program. Moreover, a good compiler can remove
the so called tail recursion in the definition of f and compile it exactly as the
while-loop in the above Pascal-like program.

1.2.7 Imperative versus declarative programming II. Imperative pro-
grams can be better compiled than declarative ones when large data struc-
tures are modified in them. Imperative programs can do updates directly in
the memory. This is not possible in declarative programs without some re-
strictions. We will discuss this point in more detail in subsection ?? and we
only note here that our implementation of CL is written in the declarative
programming language Trilogy 2 designed and implemented in 1991 by the

8



author. Trilogy 2 has declarative provisions for in situ updates and thus the
CL compiler executes with comparable efficiency as if it were written in an
imperative language.

Trilogy programs, by being declarative, are on a much higher level of
abstraction than the commands for the modification of storage typical for
imperative programming. It is our estimate that the cost of implementation
and maintenance of the Trilogy 2 compiler for CL was about a quarter of
what the cost would have been had we implemented CL in an imperative
language.

1.3 Arguments in Favor of Natural Numbers

We have argued in the preceding section in favor of declarative over im-
perative programming. With the decision that our programs should have
denotations as functions and predicates we must still decide on the domain
of interpretation. We know from Church-Turing thesis that natural numbers
suffice as the domain of computable functions. In this section we extend the
argument to programming languages and we outline a natural development
of data structures needed in computer programming within the domain N.
This kind of development is called arithmetization.

Arithmetization of Word Domains.

1.3.1 Word domains. Turing machines operate over word domains which
consist of finite sequences of symbols from an alphabet. More precisely, an
alphabet Σ is given by a finite set of symbols {a1, a2, · · · , an}. A word over an
alphabet Σ is a finite sequence of symbols of Σ. The empty word is the empty
sequence denoted by ∅. The length of a word is the length of its sequence.
The domain of words over Σ, denoted by Σ∗, is the set of all words over Σ.

Theory of computability codes a natural number n by a word of length
n over a one element alphabet where a1 ≡ |. We denote by |n the sequence
n

︷ ︸︸ ︷

| · · · |. A finite sequence of numbers x1, x2, . . . , xn can be then coded as a
word over the two element alphabet a1 ≡ |, a2 ≡ # as

#|x1#|x2 . . .#|xn# .

1.3.2 Arithmetization of word domains. Word domains are by no
means more general than natural numbers. We can turn functions over the
word domain Σ∗ given by the p-element alphabet Σ = {a1, a2, · · · , ap} into
functions over natural numbers by means of p-adic representation of natu-
ral numbers. For that purpose we define p functions, called p-adic successor
functions, S1, S2, . . . , Sp as follows:

9



Si(x) = p·x+ i .

It is not difficult to see that every natural number has a unique representation
as a p-adic numeral:

Sim Sim−1 . . . Si2 Si1(0)

where m ≥ 0 and for every 1 ≤ j ≤ m we have 1 ≤ ij ≤ p. This p-adic
numeral codes the word ai1ai2 . . . aim . Note that the empty word ∅ is coded
by the p-adic numeral 0. Thus every natural number is a code of exactly one
word over Σ. P -adic numerals should be viewed as concrete objects consisting
of terms in the form of sequences of function symbols Si which are terminated
by 0.

The reader will note that the monadic representation of natural numbers
introduced in Par. 1.1.4 is a special case of p-adic representation with p = 1.
The monadic successor function S1(x) = 1·x+1 = x′ is the successor function.

1.3.3 Dyadic representation of N. A special case of p-adic representa-
tion with p = 2 is the dyadic representation. The advantage of the dyadic
representation over binary (see Par. 1.1.4) is that there is no restriction on
leading digits. The dyadic successor functions S1 and S2 are written in the
postfix notation: x1 = 2·x + 1 and x2 = 2·x + 2. Dyadic numerals are the
least class of terms containing the constant 0 and with every term τ also the
terms τ1 and τ2.

Consider the first eight words from the sequence of words over the two
symbol alphabet 1, 2 which is ordered first on the length and within the same
length lexicographically:

∅, 1, 2, 11, 12, 21, 22, 111, . . .

The corresponding dyadic numerals are:

0 = 0
01 = 2·0 + 1 = 1
02 = 2·0 + 2 = 2

011 = 2·(2·0 + 1) + 1 = 3
012 = 2·(2·0 + 1) + 2 = 4
021 = 2·(2·0 + 2) + 1 = 5
022 = 2·(2·0 + 2) + 2 = 6

0111 = 2·(2·(2·0 + 1) + 1) + 1 = 7 .

The process of going from operations over certain domain to the opera-
tions over the codes of elements of the domain in N is called the arithmeti-
zation of the domain.

10



1.3.4 Dyadic size. The dyadic size function |x|d yields the number of
dyadic successors in the dyadic numeral denoting the number x. The function
is the arithmetization of the word-size function taking a word over {1, 2} and
yielding its length. The dyadic size function has the following clausal defini-
tion:

|0|d = 0
|x1|d = |x|d + 1
|x2|d = |x|d + 1 .

Clearly, the numbers x such that

2n − 1 = 01n ≤ x ≤ 02n = 2n+1 − 2

and no others have the dyadic size n.

1.3.5 Dyadic concatenation. The basic operation over words is concate-
nation. For instance, the words 211 and 122 over the alphabet {1, 2} are
concatenated into the word 211122.

The arithmetization of concatenation over the alphabet {1, 2} is the bi-
nary function x ? y, called dyadic concatenation. It yields a number whose
dyadic representation is obtained from dyadic representations of x and y by
appending the digits of y after the digits of x. The function has the following
clausal definition:

x ? 0 = x (1)
x ? y1 = (x ? y)1 (2)
x ? y2 = (x ? y)2 . (3)

The dyadic word 211 is coded by the number 0211 = 11 and the word
122 by 0122 = 10. We obtain the code of the concatenated word 211122 by
using the clauses of the dyadic concatenation function in the computation as
follows:

0211 ? 0122
(3)
= (0211 ? 012)2

(3)
= (0211 ? 01)22

(2)
= (0211 ? 0)122

(1)
= 0211122 .

The reader will note that although the code of the concatenated words is
0211122 = 88, the computation can proceeds by a simple rewriting without
ever having to convert into the decimal notation.

The arithmetization of word domains is so natural that we will identify
words with their codes.

Arithmetization of Finite Sequences.

1.3.6 Symbolic domains. Computer programming, in addition to the
standard numerical types, involves a large number of data structures such
as n-tuples, multidimensional arrays (vectors and matrices), lists, stacks, ta-
bles, trees, graphs, etc. Standard programming languages (both imperative

11



and functional ones) therefore work with quite complicated domains obtained
by solutions of recursive identities. We think that this is an unnecessary
complication and we look for a solution to the programming language LISP
which offers excellent coding of symbolic data structures into the domain
of S-expressions. This domain is freely generated from the set of countably
many atoms by a binary operation cons. There is no advantage in having
infinitely many atoms, just one, say, nil suffices. There is also no advantage
of having S-expressions as a separate domain. Nothing is lost and much is
gained by the arithmetization of the domain of S-expressions in N.

1.3.7 Pairing function. We obtain the coding convenience of LISP in the
domain of natural numbers by arithmetizing the domain of symbolic expres-
sions with the help of a suitable binary pairing function (x, y) satisfying:.

(x, y) = (v, w)→ x = v ∧ y = w (1)
v < (v, w) ∧ w < (v, w) (2)
x = 0 ∨ ∃v∃w x = (v, w) . (3)

The property (1) is called the pairing property and it ensures that for
every number n in the range of the pairing function, i.e. such that n = (x, y)
for some x and y, the numbers x and y, called the first and second projections
of n respectively, are uniquely determined. The pairing property says that the
pairing function is an injection. From the property (2) we get 0 ≤ x < (x, y).
This means that 0 is not in the range of the pairing function and so it has no
projections, i.e. 0 6= (x, y). Thus the number 0 is an atom and plays the role
of the atom nil of LISP. The property (3) asserts that the pairing function is
onto the set N \ {0}, i.e. that 0 is the only atom.

1.3.8 Pair numerals. Every natural number n can be uniquely presented
as a term called pair numeral. The class of pair numerals is the least class of
terms containing 0 and with every two terms τ1 and τ2 also the term (τ1, τ2).
We call this the pair representation of N.

1.3.9 Pair size. The length of the pair numeral τ denoting the number x is
5·n+1 where n is the number of pairing operations used in the construction of
the term τ . The arithmetization of the length function is the pair size function
|x|p yielding the number of pairing operations needed for the construction of
the pair numeral denoting x. The function is defined by the following clausal
definition:

|0|p = 0
|(x, y)|p = |x|p + |y|p + 1 .

1.3.10 Cantor’s pairing function. Without fixing the pairing function
(x, y) we do not know the pair representation of any natural number except

12



0 and 1 = (0, 0). Our next step is to determine the function. We first note
that the standard diagonal function J of Cantor (see [4]) offset by one (to
account for the atom 0), i.e. the function

J(x, y) = (x+ y)·(x+ y + 1)÷ 2 + x+ 1 ,

satisfies the properties 1.3.7(1) through 1.3.7(3). The initial segment of J is
tabulated in Fig. 1.1. The subscripts of values for J(x, y) give the pair size
|J(x, y)|p.

J(x, y) 0 1 2 3 4 5 6 · · ·
0 11 22 43 73 114 164 224 · · ·
1 32 53 84 124 175 235 305 · · ·
2 63 94 135 185 246 316 396 · · ·
3 103 144 195 255 326 406 496 · · ·
4 154 205 266 336 417 507 607 · · ·
5 214 275 346 426 517 617 727 · · ·
6 284 355 436 526 627 737 857 · · ·
...

...
...

...
...

...
...

...

Fig. 1.1. Pairing function J(x, y)

Unfortunately, the pairing function J is not suitable for our purposes be-
cause it cannot be used for the development of small functional computational
classes such as polynomial time, polynomial space, linear space etc. This was
demonstrated in [28]. The reason why J is not suitable can be seen when we
enumerate the natural numbers in the J-pair representation. The numbers
with the same pair size are not grouped together as it is the case with the
binary size of numbers enumerated in the binary notation. We can see from
Fig. 1.1 that in the middle of the group of consecutive numbers 4 through 10
we have two numbers with the pair size 4, namely 8 = J(J(0, 0), J(0, J(0, 0)))
and 9 = J(J(0, J(0, 0)), J(0, 0)), while the remaining numbers have the pair
size three.

1.3.11 Suitable pairing function. We obtain a suitable pairing function
(x, y) by keeping the numbers with the same pair size together. For that we
note that every natural number in pair representation can be viewed as a
binary tree. Here 0 is represented by the empty tree and the number (x, y)
is represented by a tree with the left subtree representing x and the right
subtree representing y. Note that that the number of inner nodes of the tree
representing x is |x|p. We enumerate all binary trees by listing the binary trees
with the lesser number of inner nodes before the ones with larger number of
inner nodes. Two different binary trees t1 and t2 with the same number of
inner nodes are listed lexicographically. This means that t1 is listed before t2

13



0r 1 = (0, 0)r
�� @@

2 = (0, 1)r
�� @@r
�� @@

3 = (1, 0)r
�� @@r

�� @@

4 = (0, 2)r
�� @@r
�� @@r
�� @@

5 = (0, 3)r
�� @@r
�� @@r

�� @@

6 = (1, 1)r
�� @@r

�� @@
r

��@@

7 = (2, 0)r
�� @@r

�� @@r
�� @@

8 = (3, 0)r
�� @@r

�� @@r
�� @@

9 = (0, 4)r
�� @@r
�� @@r
�� @@r
�� @@

10 = (0, 5)r
�� @@r
�� @@r
�� @@r

�� @@

11 = (0, 6)r
�� @@r
�� @@r

�� @@
r
��@@

12 = (0, 7)r
�� @@r
�� @@r

�� @@r
�� @@

13 = (0, 8)r
�� @@r
�� @@r

�� @@r
�� @@

14 = (1, 2)r
�� @@r

�� @@
r

��@@r
�� @@

15 = (1, 3)r
�� @@r

�� @@
r
�� @@r

�� @@

16 = (2, 1)r
�� @@r

�� @@r
�� @@

r
��@@

17 = (3, 1)r
�� @@r

�� @@r
��@@

r
��@@

18 = (4, 0)r
�� @@r

�� @@r
�� @@r
�� @@

19 = (5, 0)r
�� @@r

�� @@r
�� @@r

�� @@

20 = (6, 0)r
�� @@r

�� @@r
�� @@
r
��@@

21 = (7, 0)r
�� @@r

�� @@r
�� @@r
�� @@

22 = (8, 0)r
�� @@r

�� @@r
�� @@r

�� @@

Fig. 1.2. Enumeration of binary trees

14



if its left subtree is listed before that of t2, or if the left subtrees are identical,
the right subtree of t1 is listed before that of t2. An initial segment of the
enumeration is given in Fig. 1.2.

The enumeration of binary trees uniquely fixes the pairing function (x, y).
Namely, for two numbers x and y we take the x-th and y-th binary trees t1
and t2 (counting from zero). The position of the binary tree 〈t1, t2〉 is the
value of (x, y). Fig. 1.3 lists the initial segment of values of (x, y) in a tabular
form. The subscripts give the pair size |(x, y)|p. The function will be formally
introduced into PA in Sect. 8.3 where we also prove the properties 1.3.7(1)
through 1.3.7(3) as theorems of PA.

It can be shown that as a consequence of keeping the numbers with the
same pair size together we will have |x|p = Θ(log(x)), i.e. |x|p = O(log(x))
and log(x) = O(|x|p). This property assures a natural characterization by
pairing of computational complexity classes such as polynomial time or space
(see [28]).

(x, y) 0 1 2 3 4 5 6 · · ·
0 11 22 43 53 94 104 114 · · ·
1 32 63 144 154 375 385 395 · · ·
2 73 164 425 435 1216 1226 1236 · · ·
3 83 174 445 455 1266 1276 1286 · · ·
4 184 465 1316 1326 3997 4007 4017 · · ·
5 194 475 1336 1346 4047 4057 4067 · · ·
6 204 485 1356 1366 4097 4107 4117 · · ·
...

...
...

...
...

...
...

...

Fig. 1.3. Pairing function (x, y)

1.3.12 Conventions for the symbol comma. We will usually omit the
outermost pairing parentheses around pairing (τ1, τ2). Thus, for instance, we
can write f(x) = g(x), h(x) instead of f(x) = (g(x), h(x)). We postulate that
the pairing operator ‘,’ groups to the right, i.e. that (τ1, τ2, τ3) abbreviates
(τ1, (τ2, τ3)). We assign the lowest precedence to pairing. Thus x+ y · v, z is
an abbreviation for ((x+ (y · v)), z).

The omission of parentheses around pairing can lead to ambiguities in sit-
uations where commas could be confused with the separators of arguments
of n-ary functions. In such situations when we write f(τ1, · · · , τn, · · · , τn+m)
we (obviously) treat the commas as separators of arguments if m = 0 and we
understand the expression as an abbreviation for f(τ1, · · · , (τn, · · · , τn+m)) if
m > 1. Thus the first n−1 commas separate the arguments while the remain-
ing ones are the infix pairing operators. We adopt similar comma conventions
for n-ary predicates.

15



For instance, if f is binary then f((τ1, τ2), (τ3, τ4, τ5)) can be abbreviated
by the dropping of the outermost pairing parentheses to f((τ1, τ2), τ3, τ4, τ5).
The reader will note that we cannot drop the parentheses around τ1, τ2. If R
is an unary predicate then R((τ1, τ2)) can be written as R(τ1, τ2).

1.3.13 Projection functions. The pairing property 1.3.7(3) asserts that
every non-zero number x has a form (v, w) for some numbers v and w which
are uniquely determined by 1.3.7(1). The numbers are accessed by two unary
projection functions. The first projection function H (head) satisfies the fol-
lowing identities:

H(0) = 0
H(v, w) = v .

The second projection function T (tail) satisfies the following identities:

T (0) = 0
T (v, w) = w .

It should be clear that we have

x = H(x), T (x)↔ x > 0 .

1.3.14 Contraction to unary functions. We now establish a natural cor-
respondence between n-ary and unary functions and predicates over N.

If f is an n-ary function then we denote by 〈f〉 its contraction, which is
an unary function defined as follows:

〈f〉(x) =

{

f(x1, x2, . . . , xn) if x = x1, x2, . . . , xn−1, xn

0 otherwise.

From the above we get

f(x1, x2, . . . , xn) = 〈f〉(x1, x2, . . . , xn−1, xn) .

We note that the contraction 〈f〉 of an unary function f is the function f
itself. For n > 1 we clearly have

∃x1 · · · ∃xn x = x1, · · · , xn ↔ x = H T 0(x), H T 1(x) · · · H Tn−2(x), Tn−1(x)

↔ Tn−2(x) > 0 (1)

and thus we have

〈f〉(x) =

{

f(H T 0(x), H T 1(x) · · · H Tn−2(x), Tn−1(x)) if Tn−2(x) > 0
0 otherwise.

(2)

16



If R is an n-ary relation then we denote by 〈R〉 its contraction, which is an
unary predicate, satisfying:

〈R〉(x)↔ ∃x1∃x2 . . .∃xn (x = x1, x2, . . . , xn−1, xn ∧R(x1, x2, . . . , xn) ) .

From this we get

R(x1, x2, . . . , xn)↔ 〈R〉((x1, x2, . . . , xn−1, xn)) .

Thus in the presence of pairing there is no essential difference between
n-ary and unary functions, except that the expression f(x) is meaningless for
an n-ary function whenever n > 1 but well-defined for its contraction 〈f〉(x).

We extend the dual role of commas to sequences like ~x and ~τ . For instance,
when f is an n-ary function then the basic property of its contraction 〈f〉 is:

〈f〉(x1, · · · , xn) = f(x1, · · · , xn) .

The commas on the left of the identity stand for the pairing operator while
they are separators on the right. We can abbreviate this to 〈f〉(~x) = f(~x)
with the same understanding about the commas in the sequence ~x.

1.3.15 Arithmetization of finite sequences over N. There is a simple
way of arithmetizing finite sequences over natural numbers. We assign the
code 0 to the empty sequence ∅. The non-empty sequence x1 x2 . . . xn is coded
by the number (x1, x2, . . . , xn, 0) (see Fig. 1.4). The reader will note that the
assignment of codes is one to one, every finite sequence of natural numbers is
coded by exactly one natural number, and vice versa, every natural number
is the code of exactly one finite sequence of natural numbers. Codes of finite
sequences are called lists in computer science and this is how we will be calling
them from now on.

x, 0 x, y, 0 x, y, z, 0 x1, x2, . . . , xn, 0

r
�� @@

x 0

r
�� @@r
�� @@x

y 0

r
�� @@r
�� @@r
�� @@

x

y

z 0

r
�� @@r
�� @@ p p p r

�� @@

x1

x2

xn 0

Fig. 1.4. Lists

1.3.16 Length of lists. The list x1, x2, . . . , xn, 0 codes a finite sequence of
natural numbers of length n and we say that the list has the length n. The
unary length function L has the following clausal definition:

17



L(0) = 0
L(x, y) = L(y) + 1 .

1.3.17 Concatenation of lists. The binary list concatenation function x⊕
y has the following clausal definition:

0⊕ y = y (1)
(v, w)⊕ y = v, w ⊕ y . (2)

As an example we show here the computation of (1, 2, 3, 0) ⊕ (4, 5, 0).
The computation uses the clauses as rewriting rules and there is no need to
convert into decimal (or binary notation) during the computation:

(1, 2, 3, 0)⊕ (4, 5, 0)
(2)
= 1, (2, 3, 0)⊕ (4, 5, 0)

(2)
= 1, 2, (3, 0)⊕ (4, 5, 0)

(2)
=

1, 2, 3, 0⊕ (4, 5, 0)
(1)
= 1, 2, 3, 4, 5, 0 .

1.3.18 List indexing. The binary list indexing function (x)i yields the i-th
element (counting from 0) of the list x. For instance, (0, 1, 2, 3, 0)2 = 2. The
indexing function is defined by the following clausal definition:

(0)x = 0
(v, w)0 = v
(v, w)i+1 = (w)i

with recursion decreasing in the second argument.

1.3.19 List membership predicate x ε a. The binary list membership
predicate x ε a satisfying the specifications:

x ε a↔ ∃i(i < L(a) ∧ (a)i = x)

can be defined by the following clausal definition:

x ε y, a← x = y
x ε y, a← x 6= y ∧ x ε a .

The negative clause x 6ε 0 is implied by default.

Arithmetization of Trees.

1.3.20 Arithmetization of labeled binary trees. The type Bt of binary
trees labeled by natural numbers can be defined in most functional program-
ming languages by a union type:

Bt = E | Nd(N,Bt ,Bt) ,

This asserts that a value of type Bt is either the leaf E or a node of the form
Nd(x, t1, t2) where t1 and t2 are values of type Bt and x ∈ N is the label of
the node. The constant E and the function Nd are called constructors.

18



We arithmetize the values of the type Bt with the help of two constructor
functions E = 0, 0 and Nd(x, t1, t2) = 1, x, t1, t2. Note that this guarantees
that we have E 6= Nd(x, t1, t2). The predicate Bt(t) holding of codes of
labeled binary trees t has a clausal definition corresponding to the union
type definition:

Bt(E)
Bt Nd(x, t1, t2)← Bt(t1) ∧ Bt(t2) .

We identify labeled binary trees with their codes and from now on we will
say the binary tree t instead of the code of the binary tree t.

1.3.21 Flattening of binary trees. As an example of an operation over
binary trees we consider the function Flat(t) taking a binary tree t and yield-
ing the list of all labels in t read off t from left to right (inorder). The function
has the following clausal definition:

Flat(E) = 0
Flat Nd(x, t1, t2) = Flat(t1)⊕ (x,Flat(t2)) .

We can save the repeated concatenation by keeping the flattened list in an
accumulator with an auxiliary binary function f(t, a):

f(E, a) = a
f(Nd(x, t1, t2), a) = f(t1, x, f(t2, a)) .

We can now explicitly define a fast flatten by:

Flat(t) = f(t, 0) .

The correctness of this definition on labelled trees follows from the following
property:

Bt(t)→ ∀a f(t, a) = Flat(t)⊕ a

proved by complete induction on t.

1.3.22 Binary search trees. A binary tree t is a binary search tree if
for every subtree of t labeled by n all labels in its left son are less than n
and all labels in the right son are greater than n. This is equivalent to the
requirement that the labels of a binary search tree read off from left to right
increase. Hence, the predicate Bst holding of binary search trees has the
following explicit definition:

Incr(t)↔ ∀i∀j(i < j < L(t)→ (a)i < (a)j)
Bst(t)↔ Incr Flat(t) .

19



1.3.23 Membership in binary search trees. The binary predicate x ∈b t
of membership in binary search tree, has the following property:

Bst(t)→ (x ∈b t↔ ∃i x ε Flat(t)) .

The predicate has the following clausal definition:

x ∈b Nd(y, t1, t2)← x < y ∧ x ∈b t1
x ∈b Nd(y, t1, t2)← x = y
x ∈b Nd(y, t1, t2)← x > y ∧ x ∈b t2 .

Arithmetization of Symbolic Expressions

1.3.24 Numeric expressions. Suppose that we wish to operate symbol-
ically on numeric terms, which we call here expressions. Expressions are
formed from constants n and variables xi by the arithmetic operators + and
·. Functional programming languages use the following union type to specify
the domain of expressions:

Expr = Cns(N) | Var(N) | Add(Expr ,Expr) | Mul(Expr ,Expr) .

We arithmetize the expressions with the help of four constructors with explicit
clausal definitions:

Cns(x) = 0, x
Var(x) = 1, x
Add(x, y) = 2, x, y
Mul(x, y) = 3, x, y .

We can now code, for instance, the expression 356·x3 + x5 by the number

Add(Mul(Cns(356),Var(3)),Var(5)) =
2, (3, (0, 356), 1, 3), 1, 5 = 3 442 660 716 284 .

That the code is larger than three trillion should not be too surprising as its
pair size is 25 and the ratio between the length of decimal numbers and pair
size is roughly 1 to 2 (the ratio between the length of dyadic and pair size is
roughly 1 to 1.

The predicate Expr(a) true of codes a of expressions corresponds to the
above union type and has the following clausal definition:

Expr Cns(c)
Expr Var(i)
Expr Add(a, b)← Expr(a) ∧ Expr(b)
Expr Mul(a, b)← Expr(a) ∧ Expr(b) .

20



1.3.25 Denotation function for expressions. We will now define the
binary denotation (valuation) function Val(c, v) taking the code c of an ex-
pression τ and an assignment v which is a list assigning the value (a)i to
the variable xi. The application Val(c, v) yields the value of the expression
τ when the variables occurring in the expression take their values from the
assignment v. The denotation function has the following clausal definition:

Val(Cns(c), v) = c
Val(Var(i), v) = (v)i
Val(Add(a, b), v) = Val(a, v) + Val(b, v)
Val(Mul(a, b), v) = Val(a, v)·Val(b, v) .

This is a typical example where we wish to use the default clauses in order
not to clutter the definition. We do not care what value is yielded by the
application Val(c, n) if c does not code an expression. The reader will note
that in such case the value is not necessarily 0 because c can be ‘almost’ an
expression. For instance Val(Add(0,Cns(1)), 0) = 1.

Arithmetization of Numeric Domains

1.3.26 Arithmetization of the domain of integers Z. Integers, which
extend the natural numbers with the negative whole numbers, are used in
computer programming perhaps more often than the natural numbers. In-
stead of extending the domain of natural numbers N to the domain Z of
integers we arithmetize the latter domain in N. For that we need two con-
structor functions +(x) = 0, x and −(x) = 1, x which respectively code the
positive (including 0) and negative (excluding 0) numbers. The predicate
Z(k) which holds if k codes an integer has the following explicit definition:

Z(+(n))
Z(−(n+ 1)) .

The subtraction function x − y which is closed over the domain Z, i.e. such
that

Z(x) ∧ Z(y)→ Z(x− y)

holds, has the following explicit clausal definition:

+(n)−+(m) = +(n .−m)← n ≥ m
+(n)−+(m) = −(m .−n)← n < m
+(n)−−(m+ 1) = +(n+m+ 1)
−(n+ 1)−+(m) = −(n+m+ 1)
−(n+ 1)−−(m+ 1) = −(n .−m)← n ≥ m
−(n+ 1)−−(m+ 1) = +(m .−n)← n < m .

We can define other arithmetic functions over Z in a similar style.

21



1.4 Bootstrapping of PA

The reader accepting our arguments in preceding sections probably agrees
that our programs are to be definitions of computable functions and predi-
cates over the domain N of natural numbers. Definitions are concrete objects
given in a formal system of arithmetic and the defined function and predicate
symbols posses denotations in the domain N. Formal systems are necessary
because neither humans nor computers can work directly with the abstract
domain of natural numbers. The most natural candidate for the formal sys-
tem is the Peano arithmetic.

In this section we discuss the definitions of functions and predicates in
PA from the extensional point of view where we are prima facie not inter-
ested whether they are computable. Non-computable functions and predi-
cates play quite important role in the theory of programming because they
are often used with advantage for the specification and proofs of properties
of computable functions.

1.4.1 Peano arithmetic. Peano arithmetic (PA) is formulated as a first-
order logical theory in the language consisting of the constant 0, the unary
function symbol x′, and of two binary function symbols x + y and x·y. The
intended interpretation of PA is in the standard model N with the domain of
natural numbers N and with the interpretation of its symbols in the above
order as the number 0, the successor function S(x) = x+1, the addition, and
the multiplication functions.

The axioms of Peano arithmetic are

0 6= x′

x′ = y′ → x = y

0 + y = y

x′ + y = (x+ y)′

0·y = y

x′·y = x·y + y

plus the infinite number of induction axioms of the form

φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[x] (1)

for every formula φ[x] of the language. It is easy to see that all axioms are
satisfied in the standard model N .

We denote by nm the monadic numeral (see Par. 1.1.4) for n. Precisely,
nm is defined as a meta-theoretical function yielding terms of PA to satisfy:

0m ≡ 0
n+ 1m ≡ (nm)′ .

22



1.4.2 Extensions of Peano arithmetic. Computer programming requires
constant addition of definitions of new functions and predicates. Formal tools
in logic for this are extensions of theories, in our case extensions of PA.
This happens by the addition of a new function or predicate symbol to the
language of the current extension of PA together with new axiom(s) defining
the symbol.

We do not wish the extended theory to be inconsistent in the sense that it
can prove theorems not satisfiable in the standard model, for instance 0 = 1.
Once 0 = 1 is a theorem, the theory can prove any formula. The unextended
theory PA cannot prove any formulas not satisfied inN and so it is consistent.

In order to maintain the consistency we restrict our extensions to conser-
vative ones. Conservative extensions do not prove any new theorems in the
language before the extension, i.e. formulas which do not contain the new
symbol. Since 0 = 1 is such a formula the extended theory is consistent. We
actually go even further and restrict our extensions to extensions by defini-
tions which are a special case of conservative extensions where the extended
theory cannot prove any properties not expressible already in the original
language of PA. New function and predicate symbols are thus only a nota-
tional convenience which make our theorems and definitions more readable.
We gain on expressivity but not on power.

When we say PA in the following we always mean the current extension
of Peano arithmetic. Similarly, the term standard model of PA refers to the
standard model of PA from Par. 1.4.1 expanded by interpretations of all
function and predicate symbols in the current extension of PA.

1.4.3 Extensions of PA by explicitly defined predicates. We can, for
instance, extend PA with the binary comparison predicate x < y by adding
it to the language of the theory and then add a new axiom fully describing
the predicate:

x < y ↔ ∃z x+ z′ = y .

We can then use the axiom in proving properties of the new symbol, for
instance the transitivity:

x < y ∧ y < z → x < z .

The extension does not add any strength to PA because we can always elim-
inate all occurrences of < from a formula by replacing applications τ1 < τ2
with formulas ∃z τ1 + z′ = τ2.

We can then further extend PA with the binary predicate symbol ≤ with
the defining axiom:

x ≤ y ↔ x < y ∨ x = y .

In general, for any formula φ[x1, . . . , xn] of the current extension T of PA
we can form its extension S by explicit definition of the predicate R by adding
a new n-ary predicate symbol R together with its defining axiom:

23



R(x1, . . . , xn)↔ φ[x1, . . . , xn] . (1)

The new symbol can be always eliminated from a formula ψ of S by a
translation similar to the one describes above whereby we obtain a formula
ψ? of T . The extended theory S proves that the two formulas are equivalent:
ψ ↔ ψ?. The conservativity of S over T follows from the fact that S proves
ψ iff T proves ψ?.

We can even use the new predicate symbol R in induction formulas ψ of
the form 1.4.1(1) where φ is arbitrary formula of the language of S. This is
because the translation ψ? is an induction formula provable in the theory T .
S, by being an extension of T , proves ψ? and, since it also proves ψ ↔ ψ∗,
the theory S proves the induction formula ψ.

The reader will note that we have already used a definition by explicit
definition of a predicate in Par. 1.2.1 where we have defined

x | y ↔ ∃z x·z = y .

1.4.4 Extensions of PA by contextually defined functions. We can
extend PA by explicit definitions of functions similarly to extensions by ex-
plicit definitions of predicates. For instance, we can introduce the square
function x2 by explicit definition: x2 = x·x. In the general case we can take a
term τ [x1, . . . , xn] in the language of the current extension of PA and intro-
duce a new n-ary function symbol f by explicit definition with the defining
axiom:

f(x1, . . . , xn) = τ [x1, . . . , xn] . (1)

While certainly useful, this kind of extensions does not fully utilize the power
of logical notation to the same extent as extensions by explicit definitions of
predicates. Formulas φ in extensions 1.4.3(1) can contain arbitrary proposi-
tional connectives and quantifiers. The simpler syntax of terms τ in extensions
(1) has not the same expressivity.

We can use formulas in explicit definitions of function symbols where we
define a new function symbol in the context of a formula where instead of the
function f we introduce its graph f(x1, . . . , xn) = y as an (n+1)-ary relation.
For instance, the modified subtraction function x .− y can be introduced by
an explicit contextual definition as:

x .− y = z ↔ x ≥ y ∧ x+ z = y ∨ x < y ∧ z = 0 .

The point is that no matter what the numbers x and y are, exactly one of
x ≥ y and x < y holds. Moreover, in the former case there is a unique z s.t.
x+ z = y.

In general, for any formula φ[x1, . . . , xn, y] of the current extension T of
PA for which T proves the existence and uniqueness conditions:

24



∃yφ[x1, . . . , xn, y] (2)
φ[x1, . . . , xn, y1] ∧ φ[x1, . . . , xn, y2]→ y1 = y2 (3)

we can form the extension S by contextual definition of the function f by
adding a new n-ary function symbol f together with its defining axiom:

f(x1, . . . , xn) = y ↔ φ[x1, . . . , xn, y] . (4)

The new symbol can be always eliminated from a formula ψ of S
by a translation ψ?. The main idea is that for every formula ψ[y] s.t.
ψ[f(τ1, . . . , τn)] is a formula of S the theory S proves

ψ[f(τ1, . . . , τn)]↔ ∃y(f(τ1, . . . , τn) = y ∧ ψ[y])

Since (4) is an axiom of S, the theory then proves:

ψ[f(τ1, . . . , τn)]↔ ∃y(φ[τ1, . . . , τn, y] ∧ ψ[y])

where the formula on the right has at least one application of f less then the
formula on the right. Continuing in this way, we can eliminate all applications
of f from the formula ψ whereby we obtain a translation ψ?, which is formula
of T such that T proves ψ ↔ ψ∗. That S is conservative over T follows from
the highly non-trivial fact that S proves φ iff T proves φ?.

We can use the new function symbol f in induction formulas because
they are theorems of S for the same reason as was the case with the explicit
definition of predicates.

1.4.5 Introduction of integer division into PA. As an example of ex-
tension by contextually defined functions we show how to introduce the in-
teger division function x÷ y into PA by contextual definition:

x÷ y = q ↔ y > 0 ∧ ∃r(x = q·y + r ∧ r < y) ∨ y = 0 ∧ q = 0 .

This can be done because PA proves the existence condition:

∃q(y > 0 ∧ ∃r(x = q·y + r ∧ r < y) ∨ y = 0 ∧ q = 0)

as it directly follows from y > 0→ ∃q∃r(x = q·y+r∧r < y). The uniqueness
condition follows easily from the uniqueness of quotients and remainders:

q1·y + r1 = q2·y + r2 ∧ r1 < y ∧ r2 < y → q1 = q2 ∧ r1 = r2 .

1.4.6 The case analysis function D. Another example of extension by a
contextually defined function is the introduction into PA of the ternary case
discrimination function D satisfying:

D(0, y, z) = z

D(x+ 1, y, z) = y .

25



Computer scientists can visualize the function as

if x > 0 then y else z .

The case discrimination function is introduced into PA as follows:

D(x, y, z) = v ↔ x > 0 ∧ v = y ∨ x = 0 ∧ v = z .

The existence and uniqueness conditions are obviously provable.

1.4.7 Extensions of PA by explicitly defined functions. Extensions of
PA by explicit definitions 1.4.4(1) are special case of extensions by contextual
definitions:

f(x1, . . . , xn) = y ↔ τ [x1, . . . , xn] = y .

For instance, the remainder function is is explicitly introduced into PA
by:

x mod y = D(y, x .−(x÷ y)·y, 0) .

1.4.8 Characteristic functions of predicates. The characteristic func-
tion of an n-ary predicate P is the n-ary function f such that:

f(~x) =

{

1 if P (~x)
0 otherwise.

We obviously have

f(~x) > 1↔ P (~x) .

We usually designate the characteristic function of a predicate P by P∗.

1.4.9 Characteristic functions of = and <. The binary characteristic
functions =∗ and<∗ of the identity and less than predicates can be introduced
into PA by contextual definitions:

(x=∗y) = z ↔ x = y ∧ z = 1 ∨ x 6= y ∧ z = 0
(x<∗y) = z ↔ x < y ∧ z = 1 ∨ x ≥ y ∧ z = 0

whose existence and uniqueness conditions hold trivially.

1.4.10 Extensions of PA by definitions. Let T be an extension of PA
and S1 an extension of T either by explicit definition of a predicate P or by
contextual definition of a function f .

We say that a theory S whose language is the same as S1 is an extension
by definition of T if S and S1 are elementarily equivalent i.e. if both theories
prove exactly the same theorems.

26



The theory S is thus conservative over T , permits to translate away the
introduced symbols, and proves all induction formulas containing the newly
introduced symbol. An extension by definitions is a finite sequence of exten-
sions with every sequence an extension by definition.

We will sketch out below how to formulate a few increasingly more pow-
erful forms of extensions of PA in the sense of expressive power and comfort
but which will still be extensions by definitions. Comfortable and easy to
use forms of extensions of PA are needed in order to obtain the kind of pro-
gramming style computer programmers are used to. The last schema will the
schema of extensions by clausal definitions. Clausal definitions, besides being
very readable and comfortable to use, have yet another important property
because they are flexible enough to control the computation of defined func-
tions and predicates (see Sect. 1.7).

1.4.11 Extensions of PA by minimalization. Every extension of PA
which contains the predicate < and which proves the existence condition:

∃yφ[~x, y]

can be extended by minimalization with a new function symbol f and with
the defining axiom:

φ[~x, f(~x)] ∧ ∀y(y < f(~x)→ ¬φ[~x, y]) . (1)

We will use a more suggestive notation as an abbreviation for (1):

f(~x) = µy[φ[~x, y]] . (2)

The idea is that the function f defined by this definition yields for every ~x
the minimal y such that φ[~x, y] holds.

Extension by minimalization is an extension by definition because (1)
follows from the extension by contextual definition:

f(~x) = y ↔ φ[~x, y] ∧ ∀z(z < y → ¬φ[~x, z]) .

As an example we introduce into PA the whole part of the square root
function:

[
√
x] = µy[x < (y + 1)2] (3)

which satisfies the specification:

[
√
x]2 ≤ x < ([

√
x] + 1)2 .

The extension is legal because PA proves the existence condition ∃y x <
(y + 1)2.

27



1.4.12 Extensions of PA by primitive recursion. We wish to extend
PA with a new function symbol f satisfying the defining axioms:

f(0, ~y) = τ1[~y] (1)
f(x′, ~y) = τ2[x, ~y, f(x, ~y)] (2)

where τ1[~y and τ2[x, ~y, z] are terms in the language of PA before the extension
containing at most the indicated variables. This is an extension by primitive
recursion and one has to work hard before one can demonstrate that it is an
extension by definition.

The difficulty with this kind of extension lies in the finding of a formula
φ[x, ~y, z] in the language of PA before the extension so f can be introduced
by contextual definition:

f(x, ~y) = z ↔ φ[x, ~y, z] .

The formula must encode in its bound variable s the course of values sequence
f(0, ~y), f(1, ~y), . . . , f(x−1, ~y), f(x, ~y) needed in the computation of f(x, ~y).
The elements of the sequence s can be encoded as digits in the base 2k:

digit position: 2k·x 2k·(x−1) · · · 2k·1 2k·0

s = f(x, ~y) f(x−1, ~y) · · · f(1, ~y) f(0, ~y)
.

The number k must be sufficiently large so we have f(i, ~y) < 2k for all i s.t.
0 ≤ i ≤ x. The formula φ is the one on the right-hand-side of the following
contextual definition:

f(x, ~y) = z ↔ ∃k∃s((s)[k]
0 = τ1[~y] ∧ (s)[k]

x = z ∧

∀i(i < x→ (s)[k]
i+1 = τ2[i, ~y, (s)[k]

i ]))

where the ternary bounded indexing function (s)[k]
i is introduced into PA by

explicit definition:
(s)[k]

i = s÷ 2k·i mod 2k .

We have sketched above how to introduce into PA the function f by prim-
itive recursion. The careful reader has noted that we can do the introduction
only in such extensions of PA which contain the exponentiation function 2x.

The introduction into PA of the function 2x is even harder than primitive
recursion. We somehow have to encode in the language of PA its course of
values sequence for the recursive clauses

20 = 1
2x0 = (2x)2 ← x > 0
2x1 = 2·(2x)2

by extremely limited means with basically just the addition, multiplication,
and the predicate of divisibility. We devote the entire section 8.1 to this task.

28



The extension by primitive recursion does not mean not only the addition
of the two defining axioms (1) and (2) for f . We still need that the induction
axioms for formulas containing the new symbol f are theorems of the ex-
tended theory. It can be shown that for that it suffices to add a single axiom
of induction for the formula φ[x, ~y, f(x, ~y)] where φ is as above.

1.4.13 Extensions of PA by course of values recursion with mea-
sure. The next schema of recursion is extremely general. We wish to extend
the current extension of PA, call it T , to the theory S by course of values
recursion with measure µ with a new n-ary function symbol f and with the
axiom:

f(~x) = τ [λ̇~y.D((µ[~y]<∗µ[~x]), f(~y), 0); ~x] . (1)

Here τ [f ; ~x] is an arbitrary term of the language S and the measure term µ[~x]
is of the language T .

Without any restrictions on recursive applications of f in τ we cannot
always expand the standard model of T with an interpretation of f so S
satisfies f(~x) = τ [f ; ~x]. However, we can always surround every recursive
application with a guard guaranteeing the decrease of recursive arguments
in the measure µ. This means that every recursive application f(~ρ) in τ is
replaced by the term:

D((µ[~ρ]<∗µ[~x]), f(~ρ), 0)

whereby we obtain the term on the right-hand-side of (1) which is expressed
by the quasi-lambda notation.

We assume that the language of T contains the pairing function which is
introduced into PA by quite a complicated series of extensions whose descrip-
tion takes the whole of Sect. 8.3. The important thing is that the extensions
involve nothing more complicated than primitive recursion.

We now outline how to find a formula φ[~x; y] of T such that when T is
extended by definition to S1 with the axiom

f(~x) = y ↔ φ[~x; y] (2)

the theories S and S1 are elementarily equivalent, i.e. they prove the same
theorems. In order to achieve this we have to guarantee that S proves the
induction axioms for formulas applying the new symbol f . This can be done
with a single induction axiom for the formula φ[~x, f(~x)]. This, and (1) are
thus the new axioms of S.

We will introduce the function f with the help of a predicate arithmetiz-
ing the computation of f in a computation tree. Without loss of generality,
because we can always work with contractions, we assume that f is unary and
that the term τ is built up from the variable x and from the numerals nm by
pairing (τ1, τ2) and by applications of unary functions g1, . . . , gk. Computa-
tion trees are binary and they have triples 〈ρ, a, v〉 as labels in their non-leaf

29



nodes. The node with such a label records the computation of a subterm ρ
of τ with the value a assigned to the variable x and with v recording the
value (denotation) of ρ in this assignment. The sons of the node record the
necessary subcomputations.

The form of the term ρ determines the shape of the sons t1 and t2 as
follows. If ρ ≡ ρ1, ρ2 then the computation tree is:

〈(ρ1, ρ2), a, (v1, v2)〉
〈ρ1, a, v1〉

t1

〈ρ2, a, v2〉
t2

where the value v1 of ρ1 is computed in the left son and the value v2 of ρ2 in
the right son. The value of (ρ1, ρ2) is then the pair (v1, v2).

If ρ ≡ x or ρ ≡ nm then the respective computation trees are:

〈x, a, a〉 〈nm, a, n〉

where there are no subcomputations because the values of x and nm can be
determined directly as a and n respectively.

If ρ ≡ gi(ρ1) then the computation tree is

〈gi(ρ1), a, gi(v)〉
〈ρ1, a, v〉

t

where we record in the left son the computation of the argument ρ1 into the
value v and then the value of gi(ρ1) is then gi(v). There is not need to record
any computation in the right son.

Finally, if ρ ≡ f(ρ1) then there are two possible computation trees:

〈f(ρ1), a, w〉
〈ρ1, a, v〉

t1

〈τ, v, w〉
t2

〈f(ρ1), a, 0〉
〈ρ1, a, v〉

t1

In both cases the value v of the argument ρ1 is computed in the left son.
The two cases are determined by the outcome of the test µ[v] < µ[a]. If
the measure decreases then the computation tree is shown above on the left.
This is when the identity f(x) = τ [f ;x] is used as the computation rule in
the form f(vm) 7→ τ [f ; vm]. The value w of the term τ is computed in the
right son and the value of the recursive application f(vm) is determined as
w. If the outcome of the test is negative then the computation tree is shown
above on the right where the value of f(vm) is 0. The reader will note that
the computation of f(ρ1) thus evaluates the recursive guard.

30



It should be obvious that we can construct a computation tree for any
subterm ρ of τ and any assignment a of the value of the variable x because
the terms in the labels of the tree are always smaller except in the right
sons of recursive applications but then the measure decreases and the initial
measure µ[a] can decrease only finitely many times.

We arithmetize this computation with the help of a predicate Ct(t) hold-
ing iff t codes a computation tree for a subterm ρ of τ . The informal reasoning
above on the existence computation trees is arithmetized in such a way that
T proves:

∃v∃t1∃t2Ct((pτq, x, v), t1, t2)

and that the value v and the subtrees t1 and t2 are unique. Here pτq stands
for a term of T denoting the code of the term τ . We can now define f by the
contextual definition:

f(x) = y ↔ ∃t1∃t2Ct((pτq, x, y), t1, t2) .

The right-hand-side formula, after translating away the introduced auxiliary
functions and predicates (such as Ct), becomes the formula φ in the language
of T from (2).

The auxiliary predicate Ct must have a definition which uses at most
primitive recursion. We can explicitly define it from two auxiliary predicates
as follows:

Ct(t)↔ ∀u(u E t ∧ u > 0→ Nd(u))

The predicate u E t holds whenever u is (the code of) a subtree of (the tree
coded by) t and the predicate Nd(u) has a simple explicit definition codifying
the local properties of nodes of computation trees which are expressed by
the six tree diagrams given above. Both auxiliary predicates use the pairing
function for coding. The subtree predicate has a definition by course of values
recursion:

u E t← u = t ∨ ∃n∃t1∃t2(t = n, t1, t2 ∧ (u E t1 ∨ u E t2))

which is a simple case of the general schema (1), i.e.

uE∗t = D(u=∗t, 1, D(u,D(uE∗H T (t), 1, uE∗T T (t)))) , (3)

that it and it can be easily reduced to an instance of primitive recursion. The
reader will note that the guards around the two recursive applications are
superfluous because the recursion goes down in the second argument.

1.4.14 Fragments of Peano Arithmetic. The strength of functions in-
troduced into PA can be measured by the quantifier complexity of inductive
axioms needed to prove the existence conditions for their introduction.

The simplest quantifiers are the bounded ones:

31



∃x(x ≤ τ ∧ φ[x])
∃x(x ≤ τ → φ[x])

where the term τ does not contain the variable x. Bounded quantifiers can
be replaced by functions which successively try the finitely many values x =
0, 1, . . . , τ and test the formula φ[x] for each of them. The functions are
primitive recursive in the functions needed to implement the characteristic
function of φ∗.

Actually, every formula of the language of PA (before any extensions
except with the predicate ≤) is provably equivalent in PA to one of the
formulas:

∃x1∀x2 . . . Qxnφ (1)
∀x1∃x2 . . . Qxnφ (2)

where the (unbounded) quantifiers alternate and Q is either ∃ or ∀ depending
on the arity of n. The formula φ contains at most bounded quantifiers and
propositional connectives. The two kinds of formulas are designated as Σn
and Πn respectively.

The induction axioms of PA permit induction formulas of arbitrary quan-
tifier complexity. The fragments IΣn are the subtheories of PA with the
induction schemas restricted to Σn-formulas. It can be shown that the frag-
ment IΣn proves all induction axioms for Πn-formulas.

Every recursive function has a contextual definition by a Σ1-formula
φ[~x, y]:

f(~x) = y ↔ φ[~x, y] (3)

although PA (IΣn) is not always strong enough to prove its existence con-
dition ∃yφ[~x, y]. Thus not all recursive functions can be introduced into PA
(IΣn). Those which can, are called the provably recursive functions of PA
(IΣn). The provably recursive functions of IΣ1 are exactly the primitive
recursive functions whereas those of PA are ≺ε0-recursive functions (see [8]).

A function f is Σk-definable if the formula φ in (3) is a Σk-formula. If
its existence condition can be proved in the theory T (PA or a fragment
IΣn) then f is Σk-definable in T . Provably recursive functions of T are thus
Σ1-definable in T .

Every Σk-definable function is also Πk-definable because every such def-
inition (3) can be reformulated as

f(~x) = y ↔ ∀z(φ[~x, z]→ y = z)

where the formula on the right-hand-side is equivalent to a Πk-formula.
A predicate P is Σk-definable (Πk-definable) if it can be explicitly defined

as
P (~x)↔ φ[~x]

32



with φ[~x] a Σk-formula (Πk-formula). Recursive predicates are characteristic
predicates of recursive functions and so both recursive functions and predi-
cates have Σ1 and Π1 definitions. Such functions and predicates are called
∆1-definable. In general, ∆k-definable functions and predicates have both Σk
and Πk definitions.

If we define a function or a predicate as provably recursive in IΣ1 then we
will usually not mention this explicitly and we will just say that the function
or predicate is introduced into PA. For any other extension we mention either
the definability of the formula and/or the strength of the theory.

1.5 Clausal Extensions of PA

The schema of definitions by course of values recursion with measure 1.4.13(1)
is extremely general because it does not restrict in any way the recursion in
the term τ . Nevertheless, it is not a good one to use in computer programming
for two reasons.

The first reason are the explicit guards on recursive applications whose
evaluation can be time-consuming. We can eliminate the guards if we restrict
ourselves to special forms of defining terms τ for which PA can prove that
the measure of recursive applications decreases. Definitions with such terms
are called regular.

The second reason is the low readability of definitions by the schema. The
reader should inspect the definition 1.4.13(3) of the subtree predicate E via
its characteristic function and he should reformulate the same definition in
LISP, Pascal, or C. The problem with such definitions is the use of destructor
functions (in this case the projection functions H and T ) instead of the mod-
ern pattern matching notation as it is known from functional programming
languages. The difference in readability between the two style is striking as
can be seen from the following clausal definition of the same predicate:

u E t← u = t
u E n, t1, t2 ← u 6= n, t1, t2 ∧ (u E t1 ∨ u E t2) .

In the design of our clausal definitions we have substantially expanded the
concept of pattern matching by going to patterns in formulas rather than
staying with patterns in terms. The difference in expressivity and readability
is comparable to the difference between explicit and contextual definitions of
functions (see Par. 1.4.4). The schema of clausal definitions is probably best
explained with a concrete example.

1.5.1 Square root function revisited. Suppose that we wish to extend
PA with a better program for the function [

√
z] satisfying:

[
√
z]2 ≤ z < ([

√
z] + 1)2

33



than the one by minimalization in 1.4.11(3). This was a ‘naive’ program
exponentially slower than it should have been because it executed a brute
force search in timeO(z). The following clausal definition introduces the same
function in a computationally optimal form which runs in time O(log(z)):

[
√

0] = 0
[
√
z] = 1 ← z < 4 ∧ z > 0

[
√

4·x+ i] = s0 ← 4·x+ i ≥ 4 ∧ i < 4 ∧ [
√
x] = s ∧ 4·x+ i < (s1)2

[
√

4·x+ i] = s1 ← 4·x+ i ≥ 4 ∧ i < 4 ∧ [
√
x] = s ∧ 4·x+ i ≥ (s1)2 .

The clauses are just formulas in the language of PA even though their impli-
cations are customarily written in the converse form. The clauses should be
completely self-explanatory and the reader should have no difficulties what-
soever to understand the properties of the defined function.

[
√
z] = y ↔ case

z < 4→ case
z = 0→ 0 = y
z > 0→ 1 = y

z ≥ 4→ let
z = 4·x+ i ∧ i < 4→x,i

let
[
√
x] = s→s case

4·x+ i < (s1)2 → s0 = y
4·x+ i ≥ (s1)2 → s1 = y

Fig. 1.5. The definition of [
√
z] with case formulas.

1.5.2 Generalized case formulas. The only problem with the clausal def-
inition of the function [

√
z] in Par. 1.5.1 is to recognize that the clauses con-

stitute a definition. We will show that the clauses are an extension of PA by
definition. Toward that end we write the clauses in a form with case formulas
given in Fig. 1.5 which resemble contextual definitions (albeit recursive). The
reader should think of case formulas as conjucts of their alternatives some
of which have universally quantified local variables. For instance, he should
visualize the following three alternative case formula:

case
φ1 → ψ1

φ2[x, y]→x,y ψ2[x, y]
φ3[x]→x ψ3[x]

as standing for the formula

(φ1 → ψ1) ∧ ∀x∀y(φ2[x, y]→ ψ2[x, y]) ∧ ∀x(φ3[x]→ ψ3[x]) .

34



The assumptions in the alternatives of a case formula should be complete,
pairwise exclusive, and the local variables should be uniquely determined. In
the above three alternative case this means that we have:

φ1 ∨ ∃x!∃y!φ2[x, y] ∨ ∃x!φ3[x]
φ2[x, y] ∨ φ3[x]→ ¬φ1

φ2[x, y]→ ¬∃xφ3[x] .

Under those conditions the case formula is equivalent to the following dis-
junctive formula:

φ1 ∧ ψ1 ∨ ∃x∃y(φ2[x, y] ∧ ψ2[x, y]) ∨ ∃x(φ3[x] ∧ ψ3[x]) .

1.5.3 Let formulas. Some of the case formulas have only one alternative
and their sole purpose is to introduce local variables; the reader should vi-
sualize them as a generalization of let constructs as known from functional
programming languages. For that reason we write let instead of case as, for
instance:

let
z = 4·x+ i ∧ i < 4→x,i φ[x, i]

which splits the argument z by pattern matching into the unique values x
and i satisfying the shown relation. The local variables x and i can be then
referred to in the body φ[x, i] of the alternative.

1.5.4 Unfolding of the contextual definition of [
√
z]. The contextual

definition from Fig. 1.5 is transformed to the four clauses for [
√
z] by unfold-

ing. Unfolding, in this case, means the splitting of the alternatives presented
in the disjunctive form where we rely on the fact that φ← ψ1 ∨ ψ2 and

(φ← ψ1) ∧ (φ← ψ2)

are propositionally equivalent and that φ← ∃~xψ and ∀~x(φ← ψ) are logically
equivalent provided the variables ~x do not occur in φ. We then split the con-
juncted clauses, drop the outermost universal quantifiers, and use properties
of identity. For instance, the first and the third clauses for [

√
z] are in the

following form just before the properties of identity are applied to them:

[
√
z] = y ← z < 4 ∧ z = 0 ∧ 0 = y

[
√
z] = y ← z ≥ 4 ∧ z = 4·x+ i ∧ i < 4 ∧
[
√
x] = s ∧ 4·x+ i < (s1)2 ∧ s0 = y .

1.5.5 Definition of [
√
z] by generalized course of values definition

with measure. We will now transform the contextual recursive formula for
[
√
z] in Fig. 1.5 into a generalized course of values definition with measure.

The definition is given in Fig. 1.6 and contains case terms instead of case

35



formulas. Both definitions are satisfied by the same function and so they are
equivalent. Case terms are significantly less readable than the case formulas
and require explanation given in Paragraphs 1.5.6 through 1.5.9. We will
define the functions applied in the case terms in Fig. 1.6 in Par. 1.5.16.

[
√
z] = case

sgn(z<∗4) = 0→ case
sgn(z=∗0) = 0→ 0
sgn(z=∗0) = 1→ 1

sgn(z<∗4) = 1→ let
0, qr(z) = 0, x, i→x,i

let
0, [
√
x] = 0, s→s case

sgn(4·x+ i<∗(s1)2) = 0→ s0
sgn(4·x+ i<∗(s1)2) = 1→ s1

Fig. 1.6. The definition of [
√
z] with case terms.

case
τ = 0→ α0

...
τ = m− 1

m
→ αm−1

τ = mm, x1, . . . , xnm →x1,...,xnm αm[x1, . . . , xnm ]
...

τ = k − 1
m
, x1, . . . , xnk−1 →x1,...,xnk−1

αk−1[x1, . . . , xnk−1 ]

Fig. 1.7. The general form of a case term.

1.5.6 Case terms. The general form of case terms is given in Fig. 1.7 where
0 ≤ m < k and all nm, . . .nk−1 are positive numbers. For m ≤ j < k we
abbreviate the local variables x1, . . . xnj to ~xj . The local variables ~xj may
occur in the terms α1[~xj ] but not in the term τ . Although all local variables
in ~xj must be pairwise different, the sets ~xj1 and ~xj2 may share variables
whenever j1 6= j2. The terms τ and αj may contain additional non-local
variables as parameters.

Before the case term from Fig. 1.7 is admitted as legal it must satisfy the
following completeness condition:

τ = 0 ∨ . . . ∨ τ = m− 1m ∨ ∃~xi τ = mm, ~xm ∨ . . . ∨ ∃~xk−1 τ = k − 1m, ~xk−1 .
(1)

We will need more general case terms guarded by a condition which is a
formula of PA. The case term from Fig. 1.7 is legal under a guard φ if PA

36



proves the completeness condition (1) under the assumption φ. Note that
an absolute case term, i.e. a case term without guard, is guarded by any
condition.

When the guard of a case term is satisfied then the discriminator term τ
denotes a (disjoint) union value determined by m, k, nm, . . . , nk−1. The tag
of the union value τ is the denotation of τ if τ < mm and the denotation of
H(τ) if τ ≥ mm.

The reader will note that the alternatives in (1) are pairwise disjoint and,
for instance, for j1 < m and m ≤ j2 < k we have

τ = j2m, ~xj2 → τ 6= j1m

because j1 < j2 < j2, ~xj2 holds.
The tag j of τ determines the meaning (denotation) of the case term as the

meaning of the term αj if j < m and the meaning of αj [~xj ] when m ≤ j < k
with the assignments to the local variables ~xj uniquely determined from the
union value τ = j

m
, ~xj . We abbreviate the case term from Fig. 1.7 to

casem,k(τ, α0, . . . , αm[~xm], . . .) . (2)

The generalized term (2) is well-formed under a guard φ if φ is a guard for
the case term, for every j < m the generalized term αj is well-formed under
the guard φ ∧ τ = j

m
, and for every m ≤ j < k the generalized term αj [~yj ]

is well-formed under the guard φ ∧ τ = j
m
, ~yj .

1.5.7 Let terms. Let terms are case terms with m = 0 and k = 1, i.e. one
alternative case terms with local variables. For instance

let
0, [
√
x] = 0, s→s α[s] .

Note that the tag 0 is superfluous and it is included in order to maintain the
uniform form of case terms. Also note that the sole purpose of let terms is to
introduce local variables.

φ→ α = y ↔ case
φ0 → α0 = y

...
φm−1 → αm−1 = y
φm[x1, . . . , xnm ]→x1,...,xnm αm[x1, . . . , xnm ] = y

...
φk−1[x1, . . . , xnk−1 ]→x1,...,xnk−1

αk−1[x1, . . . , xnk−1 ] = y

Fig. 1.8. The correspondence between the case terms and formulas.

37



1.5.8 Annotation of case terms. The connection of case terms to case
formulas is established by the annotation of a case term with assumption
formulas. The assumption formulas for the case term in Fig. 1.7 guarded by
φ are φ0, . . . , φm−1, φm[~ym], . . . , φk−1[~yk−1] with the condition that we have

φ→ τ = j
m
↔ φj (1)

whenever j < m and

φ→ τ = j
m
, ~yj ↔ φj [~yj ] (2)

whenever m ≤ j < k. The reader will note that this guarantees the com-
pleteness and pairwise exclusivity of the assumption formulas as well as the
uniqueness of local variables. This annotated case term is abbreviated to

casem,k(τ, (φ0 → α0), . . . , (φm →~ym αm), . . .) . (3)

We can think of all case terms as being annotated because the unannotated
term in Fig. 1.7 can be brought into the annotated form (3) by taking as
its assumption formulas the corresponding identities on the left-hand-sides
of (1) and (2). If we abbreviate the term (3) by α then the connection to the
corresponding case formula is given in Fig. 1.8.

D(τ=∗0m, α
?
0,

. . .
D(τ=∗m− 1

m
, α?m−1,

D(H(τ)=∗mm, α
?
m[H T 1(τ), . . . , H Tnm−1(τ), Tnm(τ)],

. . .
D(H(τ)=∗k − 2

m
,α?k−2[H T 1(τ), . . . , H Tnk−2−1(τ), Tnk−2(τ)],
α?k−1[H T 1(τ), . . . , H Tnk−1−1(τ), Tnk−1(τ)]) . . .)) . . .)

Fig. 1.9. The term of PA which is the translation of the generalized term in Fig.
1.7.

1.5.9 The meaning of case terms. We have informally presented the
intended meaning of case terms in Par. 1.5.6. Case terms may bind local
variables and so they are instances of variable binding operators. The lambda
terms λx.τ are another well-known examples of such operators. Because of
technical complications of bound variables we do not introduce the case terms
formally into PA and treat them as concretely presented syntactic objects
only on the level of meta-theory. We use α, β, as syntactic variables to range
over generalized terms which are built up from the object terms of the lan-
guage of PA by the case term constructs.

To every generalized term α we associate as its translation an object term
α? in such a way that the denotations of α? in the models of PA are the

38



same as the intended denotations of the generalized terms. The translation
is defined by recursion on the structure of generalized terms in such a way
that the translation of the generalized term 1.5.6(2) (or 1.5.8(3)) is the object
term given in Fig. 1.9.

1.5.10 Generalized course of values definitions with measure. We
call

f(~x) = α[[f ]µ~x; ~x] (1)

a generalized course of values definition with measure µ if its translation
f(~x) = α∗[[f ]µ~x; ~x] is a definition of f by course of values with measure µ. The
function f is said to be defined by the generalized definition.

1.5.11 Regular generalized definitions. We can drop the guards around
recursive applications of formulas in generalized definitions 1.5.10(1) if we
restrict the recursive applications in α to regular applications. The idea is
that for every recursive application f(~ρ) occurring in α PA proves

ψ1 ∧ . . . ∧ ψk → µ[~ρ] < µ[~x]

where ψ1, . . . , ψk are the annotation formulas governing the recursive oc-
currence in α. This means that if present the generalized definition (1) in an
equivalent contextual form with a case formula φ:

f(~x) = y ↔ φ[f ; ~x]

then the governing formulas are read off from the assumptions on case formu-
las enclosing the recursive application. For instance, for the single recursive
application [

√
x] in the definition in Fig. 1.5 we have

z ≥ 4 ∧ z = 4·x+ i ∧ i < 4→ x < z

and so the measure of the definition is the argument z itself.
Generalized definitions 1.5.10(1) with regular recursive applications are

called regular definitions. For regular generalized definitions we not only have
the extensional property that

α?[[f ]µ~x; ~x] = α?[f ; ~x]

holds for all ~x but we also have a stronger intensional property that the
recursive applications f(~ρ) can be strictly evaluated whenever their governing
formulas hold. Strict evaluation (cf. Par. 1.7.3) means that the arguments ~ρ
are evaluated to ~ρ1 before the rewrite rule f(~ρ1) I α[f ; ~ρ1] is applied.

39



1.5.12 Extensions of PA by clausal definitions. Let us designate the
current extension of PA by T . We now describe a clausal extension of T to
S with a new function symbol f . The clausal definition of a function f is
obtained by the unfolding of a regular generalized definition:

f(~x) = α[f ; ~x] (1)

with α a well-formed generalized term under the guard >. The translated
formula α? must be in the language of S and there must be an extension
by definition of the theory T to S1 with a contextual definition f(~x) = y ↔
φ[~x, y] for some formula φ of the language of T . The formula φ is obtained
from the course of values definition with measure f(~x) = α?[[f ]µ~x; ~x]

We obtain the clauses for f by transforming the generalized definition (1)
into an equivalent contextual form with generalized case formulas

f(~x) = y ↔ ψ[f ; ~x]

and then by unfolding. The unfolded clauses are added as new axioms of
S together with the single induction formula for φ[~x; f(~x)]. The theory S is
equivalent to the theory S1 and so it proves all induction formulas containing
the new function symbol f . Moreover, because S1 is an extension of T by
definition, so is S.

For instance, the clausal definition of the function [
√
z] given in Par. 1.5.1

is obtained from the regular generalized definition in Fig. 1.6 which is trans-
formed into a form with generalized case formulas in Fig. 1.5. The clauses for
[
√
z] are unfolded as described in Par. 1.5.4.

1.5.13 D-case terms. In this, and the next two paragraphs, we present
three kinds of case terms which are basic.

The D-case terms are absolute and come in two forms differing only in
annotation:

case2,2(sgn(x), (x > 0→ α0), (x = 0→ α1)) (1)
case2,2(sgn(P∗(~τ)), (P (~τ)→ α0), (¬P (~τ)→ α1)) . (2)

The unary function sgn has the following explicit definition:

sgn = 1 .−x .

The reader will note that we have sgn(x+ 1) = 0 and sgn(0) = 1 and so PA
proves

case2,2(sgn(0), α0, α1)? = case2,2(1, α0, α1)? = α?1 = D(0, α?0, ?1)

and

case2,2(sgn(x+ 1), α0, α1)? = case2,2(0, α0, α1)? = α?0 = D(x+ 1, α?0, α
?
1) .

40



This means that D-case terms are extensionally applications of the case dis-
crimination (if-then-else) function D. However, there is a crucial intensional
difference in the way the two are computed. Applications of the function D
are computed strictly, i.e. arguments before the application D, while the D-
case terms, as all case terms, are computed non-strictly (see Par. 1.7.4).

For the first form of D-case terms we have sgn(x) = 0 ↔ x > 0 and
sgn(x) = 1↔ x = 0 and thus the conditions on the assumption formulas are
satisfied. The second form of D-case terms is extensionally just an instanti-
ation of the first form with P∗(~τ) where P∗ is the characteristic function of
the predicate P . The annotation with assumption formulas is legal because
we have sgn P∗(~τ) = 0↔ P (~τ) and sgn P∗(~τ) = 1↔ ¬P (~τ).

1.5.14 Binary case terms. Binary case terms are absolute and have the
annotated form

case0,2(b(τ), (τ = z0→z α0[z]), (τ = z0→z α1[z])) (1)

where the unary function b is introduced into PA by a contextual definition:

b(x) = y ↔ ∃z(x = z0 ∧ y = 0, z) ∨
∃z(x = z1 ∧ y = 1, z)

whose existence and uniqueness conditions are easily provable.
The function b(x) yields the union values 0, z or 1, z depending on the

parity of the number x. The reader will note that the conditions on the
assumption formulas which are b(x) = 0, z ↔ x = z0 and b(x) = 1, z ↔ x =
z1 are satisfied.

1.5.15 Cartesian case terms. Cartesian case (let) terms have the anno-
tated form

case0,1(c(τ), (τ = v, w →v,w α0[v, w])) (1)

where the unary function c is introduced into PA by a contextual definition:

c(x) = y ↔ x = 0 ∧ y = 0 ∨ x > 0 ∧ y = 0, x .

The completeness condition (cf 1.5.6(1)) for Cartesian case terms is

∃v∃w c(τ) = 0, v, w

and it is implied by any guard at least as strong as τ > 0. Under such
guard the condition on the assumption formula is satisfied because we have
c(τ) = 0, v, w ↔ τ = v, w.

41



1.5.16 Derived case terms. Derived case terms have the functions applied
in their discriminator terms definable by generalized definitions with basic
case terms.

For instance, the two let terms used in the generalized definition in Fig.
1.6 are derived terms. The second of them is a let term as known from
functional programming languages. The general form of such terms is:

case0,1((0, τ), (τ = x→x α0[x])) .

The first let term of Fig. 1.6 applies the function qr yielding the pair
consisting of the quotient and remainder after the division of z by 4. The
term has the form:

case0,1((0, qr(τ)), (τ = 4·q + r ∧ r < 4→q,r α0[q, r]))

with the condition on its assumption formula satisfied because we have:

0, qr(τ) = 0, q, r ↔ τ = 4·q + r ∧ r < 4 .

This let term is derived because the function qr(z) can be defined with two
nested binary case terms:

qr(z) = case
b(z) = 0, u→u case

b(u) = 0, q →q q, 0
b(u) = 1, q →q q, 2

b(z) = 1, u→u case
b(u) = 0, q →q q, 1
b(u) = 1, q →q q, 3 .

The unfolded clausal definition of qr just before the identity optimizations
is:

qr(z) = q, 0← z = u0 ∧ u = q0
qr(z) = q, 2← z = u0 ∧ u = q1
qr(z) = q, 1← z = u1 ∧ u = q0
qr(z) = q, 3← z = u1 ∧ u = q1

which becomes after the identity optimizations:

qr(q00) = q, 0
qr(q10) = q, 2
qr(q01) = q, 1
qr(o11) = q, 3 .

1.5.17 Pair case terms. Pair case terms are another example of derived
terms and they have the annotated form

case1,2(p(τ), (τ = 0→ α0), (τ = v, w →v,w α1[v, w]))

where the unary function p is introduced into PA by explicit clausal definition:

42



p(0) = 0
p(v, w) = 1, v, w .

The function p(x) yields the union values 0 or 1, v, w. The conditions on the
assumption formulas are satisfied because we have p(x) = 0 ↔ x = 0 and
p(x) = 1, v, w ↔ x = v, w.

The clausal definition of p is unfolded from the generalized definition with
basic terms:

p(x) = case
sgn(x) = 0→ let

c(x) = 0, v, w →v,w 1, v, w
sgn(x) = 1→ 0 .

The reader will note that the let term in the definition is well-formed because
its Cartesian case term has its guard satisfied because sgn(x) = 0↔ x > 0.

A pair case term is, for instance, used in the generalized definition

x⊕ y = case
p(x) = 0→ y
p(x) = 1, v, w →v,w v, w ⊕ y

from which the clausal definition of the list concatenation function is un-
folded:

0⊕ y
(v, w)⊕ y = v, w ⊕ y .

1.5.18 Defaults in clausal definitions. From a given clausal definition
of a function f we can always remove the clauses f(~ρ) = 0 ← . . . and imply
them by default.

For instance, the list indexing function from Par. 1.3.18 can be defined
without its default clause as:

(v, w)0 = v
(v, w)i+1 = (w)i .

The clausal definition of the denotation function Val for expressions was
given in Par. 1.3.25 without the default clauses. The full definition is

Val(Cns(c), v) = c
Val(a, v) = 0← ¬∃c a = Cns(c)
Val(Var(i), v) = (v)i
Val(a) = 0← ¬∃i a = Var(i)
Val(Add(a, b), v) = Val(a, v) + Val(b, v)
Val(c) = 0← ¬∃a∃b c = Add(a, b)
Val(Mul(a, b), v) = Val(a, v)·Val(b, v)
Val(c) = 0← ¬∃a∃b c = Mul(a, b) .

This definition has a cluttered look and it should demonstrate the rationale
behind the default clauses.

43



1.5.19 Clausal definitions of predicates. Clausal definitions of predi-
cates are obtained by systematic modifications of clausal definitions of their
characteristic functions. We explain the modifications with an example of the
clausal definition of list membership predicate x ε a given in Par. 1.3.19. The
clausal definition of its characteristic function xε∗a can be given with the
default clauses included as follows:

xε∗0 = 0
xε∗(y, a) = 1← x = y
xε∗(y, a) = 1← x 6= y ∧ xε∗a = 1
xε∗(y, a) = 0← x 6= y ∧ xε∗a = 0 .

Since we have P∗(~x) = 1↔ P (~x) and P∗(~x) = 0↔ ¬P (~x), we can write the
definition as:

x 6ε 0
x ε y, a← x = y
x ε y, a← x 6= y ∧ x ε a
x 6ε y, a← x 6= y ∧ x 6ε a .

When we omit the first and last clauses by default we obtain the definition
in Par. 1.3.19.

1.5.20 A digression on the role of notation in mathematics and in
computer programming. We have been always puzzled by the question
why, in the age of dazzling computer generated graphics, the theoreticians of
computer programming can live with an ancient typewriter style notation for
their programs. A glance in most books on functional programming languages
reveals programs like:

filter [] = []
filter (y:ys) | p y = y : filter ys
filter (y:ys) | otherwise = filter ys .

whereas the same definition in our mathematical notation looks as follows:

filter(0) = 0
filter(v, w) = v,filter(w)← P (v)
filter(v, w) = filter(w) ← ¬P (v) .

The reader will note that the test P (v) in our clauses unfolds from a D-case
term and so the repeated evaluation of P (v) is avoided. The same is achieved
with the otherwise caluse in the first program.

The typewriter style is even more puzzling because the readability of
programs is one of the most basic dictums of a good programming language
design. The situation is similar in the existing automated theorem provers,
or rather intelligent proof checkers. We typically see in them formulas like:

forall x ( Sqrt(x)^2 <= x and x < ( Sqrt(x) + 1 )^2 )

44



although mathematicians, who in general do not put so much emphasis on
the readability as computer scientists, would not dream of presenting the
formula in a form different than:

∀x([
√
x]2 ≤ x ∧ x < ([

√
x] + 1)2) .

Part of the reason for this strange way of presentation lies in the tradi-
tionally understood role the syntax analysis should play in the design and
presentation of computer programs. Language designers seem to insist on the
‘what you see is what you get’ approach to the writing of programs. This is
because otherwise, they claim, the parsing of programs with fancy mathemat-
ical notation would be difficult. True, but the same computer scientists use,
apparently without any thoughts, a mark-up language (most often Latex)
when writing their papers. They know that they have to enter their formulas
in a slightly less readable marked up form and for the price of this minor
inconvenience the formulas will be presented in an esthetically pleasing form.

The reader has certainly noticed that we consistently use mathemati-
cal notation for function and predicate applications, logical connectives, and
quantifiers. CL, our current implementation of the clausal language, has
somewhat limited Latex-like possibilities of presenting formulas as

∃y(x⊕ y ≺ [
√
x] ∧ x 6= y) .

In order to simplify the syntax analysis, the above (somewhat nonsensical)
formula is typed in as

\e y ( Prec(App(x,y),Sqrt(x)) & x != y) .

The cultural gap between what is the standard in the supposedly ultra-
modern computer science and in the old-fashioned mathematics is wide. Ref-
erees of our papers which we submit to computer science conferences almost
invariably chide us for the funny looking syntax of our programs without
apparently realizing that we do not use anything special, just the language
of Peano arithmetic.

The clauses of the present CL system are still syntactically analyzed and
so we cannot use fancy assumption formulas in our pattern matching presen-
tation of arguments. We plan to change this dramatically with the prepared
new version of CL. We plan to limit the syntax analysis to the parsing of
simple terms and formulas. The case terms will be prompted in a top-down
fashion. This, together with the enormous flexibility of extensible syntax of
our case terms, will permit the use of arbitrary assumption formulas in the
annotations of case terms. The reader will note that the ‘syntax-less’ syntax
of our clausal definitions, and the almost unlimited power of extensibility of
case terms, will be possible only because the constraints on case terms will
have to be proved in the proof system before a new kind of a case term will
be admitted.

45



The existing version of CL has a builtin set of pattern matching expres-
sions by far surpassing the ones permitted in current functional languages
such as Haskell. Patterns in Haskell are expressions (terms) whereas already
the current version CL permits also pattern formulas such as z = 4·x+ i∧ i <
4. The dramatic difference between the powers of expressibility of patterns
as terms and patterns as formulas can be compared to the similarly dramatic
difference between the power of explicit definitions f(~x) = τ in PA which are
limited to applications in τ of previously introduced function symbols and
the power of contextual definitions f(~x) = y ↔ φ where one has at disposal
in the formula φ the full logical apparatus of propositional connectives and
quantifiers.

We are convinced that the radical step of abandoning in the planned
version of CL of the syntax analysis in favor of top-down prompting, together
with the full extensibility of case terms, will unleash dramatically new ways
of presentation of programs. The reader will note that this will happen fully
within the language of Peano arithmetic without the addition of any reserved
words or fancy syntax of current programming languages.

1.6 Limits of Provably Recursive Definitions in PA

1.6.1 Ordinal numbers less than ε0. We wish to give a definition of a
function V which is ∆1-definable and so it is effectively computable (recur-
sive) but not provably recursive in PA. The function V will grow so enor-
mously fast that it will be practically uncomputable for all but the smallest
arguments. The function will be defined with a measure into the initial seg-
ment of ordinal numbers less than the first epsilon number ε0. The number
satisfies the identity ε0 = ωε0 .

It is well-known that every ordinal number ≺ ε0 can be uniquely denoted
in the Cantor’s normal form by a term

ωα1 + ωα2 . . .+ ωαn + 0 (1)

where n ≥ 0, α1 � α2 � . . . � αn, and the terms αi are constructed similarly.
Let α ≺ ε0 be an ordinal whose Cantor’s normal form is (1) and β ≺ ε0

an ordinal whose Cantor’s normal form is

ωβ1 + ωβ2 . . .+ ωβm + 0 .

The natural sum α ] β of the two ordinals is the ordinal less than ε0 whose
Cantor’s normal form is

ωγ1 + ωγ2 . . .+ ωγn+m + 0

where each γi is some αj or βj and all αj and βj are some γk. It should be
clear that we have α ] β = β ]α � α, β.

46



It is not hard to see that every ordinal number less than ε0 is denoted (but
not uniquely) by a term built up from 0 by the binary operation α ]ωβ . We
abbreviate (α ]ωβ) ] ωγ to α ]ωβ ] ωγ . The advantage of this representation is
that we do not have to order the exponents of ω in non-increasing order and,
for instance, the terms α ]ωβ ] ωγ and α ]ωγ ] ωβ denote the same ordinals.

1.6.2 Coding of ordinals ≺ε0 in N. We encode the ordinals less than ε0
into natural numbers by encoding the ordinal number 0 by 0 ∈ N and the
ordinal number α ]ωβ by the natural number b, a where a and b encode α and
β respectively. It should be clear that every natural number is a code of an
ordinal. Note that we have b, c, a 6= c, b, a whenever b 6= c but both numbers
code the same ordinal: α ]ωβ ] ωγ .

We ‘overload’ the ordinal function α ]ωβ and explicitly introduce it as a
binary function over N:

a ] ωb = b, a .

In order to distinguish the two functions we will use variables α, β, γ, . . . to
range over ordinals and the variables a, b, c, . . . to range over the correspond-
ing natural numbers coding ordinals.

The ternary function a ] ωb·k over N yielding the code of the ordinal

α ]

k
︷ ︸︸ ︷

wβ ] . . . ] wβ

is introduced into PA by primitive recursion:

a ] ωb·0 = a
a ] ωb·(k+1) = a ] ωb·k ] ωb .

The binary function ωik over N yielding the code of the ordinal designated
by the same symbol is introduced into PA by primitive recursion:

ωi0 = 0 ] ω0·i
ωik+1 = 0 ] ωω

i
k .

We also overload the ordinal relation ≺ and use it as a binary relation
a ≺ b over N holding of codes if α ≺ β holds. The relation is provably
recursive in IΣ1, and although transitive and irreflexive, it is not an order
because the law of trichotomy does not hold for it (this is because of the
non-unique coding of ordinals). We will need a special case of ≺ as a ternary
relation a ≺ ωik which is introduced into PA by course of values recursion in
a:

0 ≺ ωik ← k > 0 ∨ i > 0
a ] ω0 ≺ ωi+1

0 ← a ≺ ωi0
a ] ωb ≺ ωik+1 ← a ≺ ωik+1 ∧ b ≺ ωik .

47



1.6.3 Arithmetization of fundamental sequences for limit ordinals.
We call the code a of an ordinal less than ε0 a right successor code if a = b ] ω0

for some b. A non-zero code a which is not a right successor is a right limit
code. The code a is a right limit iff a = c, b = b ] ωc for some b and c > 0.

We arithmetize the fundamental sequences (α)[k] for limit ordinals α (see
[21]) by primitive recursion:

(a ] ωb ] ω
0
)[k] = a ] ωb·(k+1)

(a ] ωb ] ω
c

)[k] = a ] ω(b ] ωc)[k] ← c 6= 0 .

IΣ1 proves
a 6= 0→ (a)[k] ≺ a .

1.6.4 A function growing faster than functions provably recursive
in PA. Consider the following clauses for the unary function symbol V :

V (0 ] ω0·k) = 0 ] ω0·k
V (a ] ωb ] ω

0
] ω0·k) = V ((a ] ωb ] ω

0
)[k] ] ω0·1)

V (a ] ωb ] ω
c

] ω0·k) = V ((a ] ωb ] ω
c

)[k] ] ω0·k)← c 6= 0 .

The clauses for V are well-discriminated because every number x can be
uniquely written as x = d⊕ e where ∀y(y ε d→ y = 0) and

e = 0 ∨ ∃a∃b∃c e = (c, b), a .

Note that then d codes a finite ordinal, i.e. d = 0 ] ω0·n for n = L(d), and e is
either 0 or it codes a transfinite ordinal e = a ] ωb ] ω

c

. Thus the first clause,
where e = 0, is discriminated from the remaining two where e 6= 0. The last
two clauses are discriminated on whether b ] ωc is a right successor (c = 0)
or a right limit (c 6= 0). We have

a ] ωb ] ω
c

] ω0·k � (a ] ωb ] ω
c

)[k] ] ω0·max(1, k)

and so the recursive argument in the last two clauses decreases in the relation
≺. This relation is not an order over N so it cannot be a well-order. However,
the relation is well-founded and so the recursion has to stop after finitely
many steps.

The problem is that PA is not strong enough to prove (in the form of a
schema of well-founded induction on ≺) that the relation ≺ is well-founded.
This means that the function V , although ∆1-definable, i.e. recursive, is not
provably recursive and so it cannot be introduced into PA by extensions by
definitions.

On the other hand, for every m > 0, n > 0 and any i the fragment
IΣm+n−1 proves that the restriction of ≺ to codes ≺win, i.e. the explicitly
defined relation

a ≺n,i b↔ a ≺ b ∧ b ≺ wimnm ,

is well-founded. This means that IΣn proves a schema of well-founded induc-
tion on ≺n,i for Σ1-formulas.

48



1.6.5 Extended Ackermann-Péter function. We have chosen the above
form of definition of the function V for two reasons. The first one is that the
function has a close connection to an extension into transfinite codes of the
well-known Ackermann-Péter function from which we can define the so called
fast growing hierarchy of functions. The second reason is a close connection
to intensional primitive recursive functionals (see Par. 1.9.27).

We define a binary function A over N by explicit definition:

A(a, n) = LV (0 ] ωa ] ω0·n) .

The definition must be done in the standard model of PA because the function
A cannot be introduced into PA. The clauses for V imply (in the model) the
following recurrences for the function A:

A(0, n) = n+ 1

A(a ] ω0, 0) = A(a, 1)

A(a ] ω0, n+ 1) = A(a,A(a ] ω0, n))

A(a ] ωb, n) = A((a ] ωb)[n], n)← b 6= 0 .

The binary Ackermann-Péter function which grows faster than all primi-
tive recursive functions and satisfies:

Ack(0, n) = n+ 1 (1)
Ack(m+ 1, 0) = Ack(m, 1) (2)

Ack(m+ 1, n+ 1) = Ack(m,Ack(m+ 1, n)) (3)

can be now explicitly defined as Ack(m,n) = A(0 ] ω0·m,n). The reader will
note that we have 0 ] ω0·m ≺ ω1

1 and so the codes of ordinals used in the
computation of Ack do not even start to exploit the incredible rate of growth
of the function A applied to the codes of larger ordinals.

1.6.6 Fast growing hierarchy. The extended Ackermann-Péter function
can be also used to define a fast growing hierarchy of functions Fα similar
to the ones studied by Wainer [29] and Schwichtenberg [22] (see also Rose
[21]). To that end we assign to every ordinal α ≺ ε0 as its canonical code a
the code obtained from the Cantor’s normal form for α by replacing + by
natural sums ]. We then explicitly define:

Fα(x) = A(a, x)

and obtain the following properties of functions Fα:

F0(x) = x+ 1

Fα+1(x) = F x+1
α (1)

Fα(x) = F(α)[x](x) α is a limit ordinal.

We have chosen the hierarchy functions in such a way that for finite ordinals
m we have Fm(n) = Ack(m,n).

49



1.6.7 Provably recursive restrictions of V . It is well-known that the
function Fε0 satisfying:

Fε0(x) = F(ε0)[x](x) = Fω1
x
(x) = A(ω1

x, x) =

LV (0 ] ωω
1
x ] ω0·x) = LV (ω1

x+1 ] ω
0·x)

is not provably recursive in PA. This is another reason why the function V
cannot be provably recursive.

Let us now investigate restrictions of V which are provably recursive in
PA. The unary function Ve(a) is introduced into PA by explicit clausal defi-
nition:

Ve(0 ] ω0·n) = 0 ] ω0·n
Ve(a ] ωb ] ω

0
] ω0·n) = a ] ωb·(n+1) ] ω0·1

Ve(a ] ωb ] ω
c

] ω0·n) = a ] ω(b ] ωc)[n] ] ω0·n← c 6= 0 .

and its binary iteration V ne (p) is introduced by primitive recursion:

V 0
e (p) = p
V n+1
e (p) = Ve V

n
e (p) .

The standard model of PA then satisfies:

∃n∃mV ne (a) = 0 ] ω0·m (1)

which is the condition of regularity for an expansion of the standard model
of PA by a function V defined by minimalization:

V (a) = T µp[V H(p)
e (a) = 0 ] ω0·T (p)] (2)

The clauses for V are then provable in PA extended by the axiom (2). This
means that Peano arithmetic is not strong enough to prove the existence
condition (1) because otherwise V would be provably recursive.

On the other hand, for k ≥ 1 and any i the fragment IΣk proves

a ≺ ωimkm → ∃n∃mV ne (a) = 0 ] ω0·m (3)

and so the function Vk,i satisfying

Vk,i(d) = 0 ] ω0·n← d ≺ ωimkm ∧ d = 0 ] ω0·n
Vk,i(d) = Vk,i(a ] ωb·(n+1) ] ω0·1)← d ≺ ωimkm ∧ d = a ] ωb ] ω

0
] ω0·n

Vk,i(d) = Vk,i(a ] ω(b ] ωc)[n] ] ω0·n)← d ≺ ωimkm ∧ d = a ] ωb ] ω
c

] ω0·n ∧ c 6= 0

is provably recursive in IΣk and the standard model of PA satisfies

a ≺ ωimkm → Vk,i(a) = V (a) .

For any k ≥ 1 and any ordinal α ≺ ω1
k with the canonical code a we have

α ≺ ωik−1 for some i > 0 and so ωα ≺ ωik. Thus 0 ] ωa ] ω0·x ≺ ωimkm and, since

50



Fα(x) = A(a, x) = LV (0 ] ωa ] ω0·x) = LVk,i(0 ] ωa ] ω0·x) ,

the function Fα is provably recursive in IΣk. Hence all functions Fα where
α ≺ ε0 are provably recursive in PA.

1.7 Computation of Clausal Definitions

We have introduced clausal definitions with the help of generalized terms
in such a way that to every clausal definition there is a regular generalized
course of values definition with measure. We will now show how to use the
generalized definitions for effective (and efficient) computation. Annotations
on case terms play no rule in their computation.

Computation, like provability, has to do with the shape of terms rather
than with their denotations and so it is an intensional affair concerned with
the syntactical form of definitions of functions rather than with the functions
themselves.

1.7.1 Mixed numerals. We will compute over the class of mixed numerals
which are the least set of terms containing the constant 0, with every terms
ρ1, ρ2 also the terms ρ11 and (ρ1, ρ2), and with every term ρ 6≡ 0 also the term
ρ0. Binary and pair numerals are thus proper subsets of mixed numerals.

In contrast to monadic, binary, or pair numerals, the mixed numerals do
not represent the natural numbers uniquely. For instance, the number three
is denoted by four mixed numerals which are all different as terms:

011 (0, 0)1 01, 0 (0, 0), 0 .

1.7.2 Mixed definitions of functions. We will compute functions de-
fined by mixed definitions which are certain regular generalized course of
values definitions with measure. The generalized definitions use D, binary,
Cartesian, and case terms derived from these. The object terms in the defini-
tions are built up from the constant 0 and variables by applications of binary
successors, pairing, and of previously defined functions. Decimal numerals
are abbreviations for the corresponding binary numerals and predicates are
computed from definitions of their characteristic functions.

We distinguish two classes of mixed definitions. Mixed definitions in the
narrow sense, or narrow mixed definitions, are such that the measure terms in
recursive generalized definitions apply only functions which are also definable
by narrow mixed definitions. Unlimited mixed definitions allow functions in
the measures to be introduced into PA by any extension by definition, say
by a contextual definition.

The difference in the two classes is substantial. It is easy to see that
the narrow mixed definitions define only primitive recursive functions while
arbitrary mixed definitions define all provably recursive functions of PA, i.e.
the ≺ε0-recursive functions.

51



1.7.3 Reductions. We compute the well-formed generalized terms α by
reductions. The terms α must be closed, i.e. without free (non-local) variables.
Reductions proceed by locating in α, which is not yet a mixed numeral, the
leftmost and innermost generalized term, called the redex, and by rewriting
it with a corresponding generalized term, called contractum. The rewriting is
repeated until the generalized term being reduced becomes a mixed numeral.
For the full list of redex-contracta pairs see Par. 1.7.4. We write α I α1 if α1

is obtained from α by a finite number (possibly zero) of reductions.
Reductions are simpler to understand than the description of computa-

tion by compilation (translation) into a well understood code whether ma-
chine or abstract. Experienced reader can easily visualize the translation from
the description of reductions. In order to make the description of reductions
as simple as possible we use substitution of closed terms for free variables.
Substitution will be replaced in the translated code by environments which
will be accessed for the values of variables (for the idea of environments see
Par. 1.9.13).

It can be shown that every well-formed closed generalized term α reduces
after finitely many reductions to a mixed numeral ρ, i.e. α I ρ. Mixed nu-
merals are irreducible because they do not contain any redexes. Although α
and ρ are possibly different as terms, they have the same denotation, i.e.
α = ρ is satisfied in the standard model (extended with generalized terms),
or alternatively PA proves α∗ = ρ.

1.7.4 Redexes and their contracta. In the following we list all redex
contracta pairs using the notation I. We denote by α closed generalized
terms (which in special case are terms of PA), by τ closed terms of (the
current extension of) PA, and ρ by the mixed numerals. The reader will note
that for all redex contracta pairs α1 I α2 the terms α1 and α2 denote the
same natural number, i.e. PA proves α?1 = α?2. The reduction

ρ00 I ρ0

removes one leading zero. Reductions

sgn(0) I 01

sgn(ρ1) I 0
sgn(ρ0) I 0 if ρ 6≡ 0

sgn(ρ1, ρ2) I 0

simplify the discriminators of D-case terms. Reductions

52



b(0) I 0, 0
b(ρ0) I 0, ρ if ρ 6= 0
b(ρ1) I 00, ρ

b(ρ1, ρ2) I 0, ρ where ρ0 = ρ1, ρ2 (1)
b(ρ1, ρ2) I 01, ρ where ρ1 = ρ1, ρ2 (2)

simplify the discriminators of binary case terms. Reductions

c(ρ) I 0, ρ1, ρ2 where ρ = ρ1, ρ2 (3)

simplify the discriminators of Cartesian case terms. The reader will note that
in any such then we must have ρ 6≡ 0. The reduction

f(~ρ) I α[f, ~ρ]

opens a mixed definition f(~x) = α[f ; ~x].
The final set of reductions involves case terms (both basic and derived)

casem,k(ρ, α0, . . . , αm[~ym], . . .) I α (4)

where if ρ = j
b

with j < m then α ≡ αj and if ρ = j
b
, ~ρj then α ≡ αj [~ρj ]. The

reader will note that the well-formedness restrictions on case terms guarantee
that the term ρ denotes a union value determined by m, k, nm, . . . , nk−1.

Reductions (1), (2) involve and reductions (3), (4) may involve conversions
between representations of mixed numerals. The no conversion condition for
the reduction (3) is ρ ≡ ρ1, ρ2 and for (4) the condition is ρ ≡ j

b
with j < m

and ρ ≡ j
b
, ~ρj with m ≤ j < k. Conversions are effectively computable in

linear space and polynomial time (see [28]), but nevertheless they are time
consuming.

1.8 Data Types

Conversions in the marked reductions of Par. 1.7.4 are quite time consuming
and we would like to avoid them. This can be done by means of syntac-
tic restrictions on the form of mixed definitions by means of typing. As an
additional bonus, the well-typed definitions of functions can be efficiently
compiled into machine code (or to C for that matter).

Types are intuitively certain sets of data values. Since our values are
natural numbers, the types are certain subsets of N, and hence can be defined
by unary type predicates. With a proof system integrated with a programming
language we can define arbitrary type predicates and provide proofs that
our definitions of functions yield values of certain types when provided with
arguments of some types. We, however, feel that the full power of the proof
system should be reserved to the proofs of theorems about our functions
rather than for the typing.

53



We think that the type predicates should form a rather weak class so
the typing can be performed in a decidable manner. Moreover, as mentioned
above, the typing should prevent needless conversion of representation of
data values and should enable efficient compilation. For that the types should
reflect the memory representation of data structures and it seems to us that
the Pascal-style typing is a natural choice. Pascal-style type predicates can
be then naturally extended to polymorphic type predicates in the style of ML.

Our basic philosophy of typing differs from the standard theory of types
in programming languages (see for instance [18]) in that the latter explicates
the types by many sorted theories. This sharply contrasts with our approach
where the definitions of programs are typeless (all functions are over N).
We understand the typing only as an add on feature which enables efficient
compilation and can catch many trivial errors. Our definitions are computed
independently of, and unaffected by, the polymorphic types assigned to them.

There are two aspects to typing. The extensional aspect deals with the
specification of the class of type predicates. The intensional aspect deals with
a decidable typing calculus for deriving assertions about the types of terms,
generalized terms, and definitions. Well-typed closed generalized terms then
reduce without any conversion of mixed numerals. Well-typed definitions of
functions and predicates with the polymorphic types instantiated, can be
efficiently translated into machine code.

1.8.1 Pascal-style type predicates. Pascal-style type predicates can be
defined by ordinary clausal definitions of predicates whose syntax is severely
restricted. We will by convention choose the predicate symbols to be postfix
operators whose applications are written as x : T and read as (the value of)
x is of type T . The reader should view the combination : T as the symbol
of a type predicate rather than to view : as a binary infix operator taking a
value and a type. In the following we will use S, T as meta-variables ranging
over the symbols for type predicates.

Pascal-style type predicates can be classified as primitive, Cartesian, list,
and union type predicates.

1.8.2 Primitive type predicates. The type of natural numbers is given
by the predicate N with the following explicit clausal definition:

x : N .

The type N is the type of natural numbers. Values of type N can be repre-
sented in computer memory as the bignums of LISP, i.e. as numbers in the
unlimited precision.

In a concrete implementation of CL we can choose more kinds of primitive
type predicates. Unsigned and signed limited precision numbers represented
in memory by, say, 32-bit words come to mind.

54



1.8.3 Cartesian type predicates. Suppose that T1, . . .Tn have been in-
troduced into PA as type predicates. The unary type predicate T explicitly
defined by the clausal definition

x1, . . . , xn : T ← x : T1 ∧ . . . ∧ x : Tn

is the type predicate of Cartesian product of T1, . . . , Tn.
For instance, the predicate

x, y, z : N3 ← x : N ∧ x : N ∧ x : N

is the type of triples of natural numbers. The reader will note that the same
predicate has a simpler definition

x, y, z : N3

which, however, does not have the prescribed syntactic form.

1.8.4 List type predicates. Suppose that T hat been introduced into PA
as a type predicate. The predicate

0 : List(T )
x, y : List(T )← x : T ∧ y : List(T ) .

is the type predicate of lists with elements from T . The reader should read
the combination : List(T ) as a ‘structured’ predicate symbol rather than as
an operator taking types and yielding types.

Note that in the absence of polymorphism, the Pascal-style typing requires
that, for instance, the predicates List(N) and List(N3 ) should be introduced
as two different predicates. The reader will also note that we have ∀xx :
List(N).

The memory representation of values of type List(T ) can be a 32-bit
pointer which is either nil for empty lists or a pointer to a Cartesian pair
T×List(T ).

1.8.5 Union type predicates. Union type predicates hold of union values.
Rather than discussing the general form of union types we illustrate them
with an example. Consider the following clausal definition:

0 : Bt(T )
1, n, l, r : Bt(T )← n : T ∧ l : Bt(T ) ∧ r : Bt(T )

where the type predicate T has been previously introduced into PA. A more
familiar definition of the same predicate is with the help of two constructor
functions E = 0 and Nd(n, l, r) = 1, n, l, r as

E : Bt(T )
Nd(n, l, r) : Bt(T )← n : T ∧ l : Bt(T ) ∧ r : Bt(T ) .

55



Values of type Bt(T ) are union values determined by 1, 2, and 3 (the arity
of the value with the tag 1) where the values 1, n, l, r have the components
appropriately typed.

Values of this type may be represented by pointers. The value E by
nil and the values with the tag 1 by a pointer to a Cartesian quadruple
N×N×Bt(T )×Bt(T ) with the first component being the tag 1.

The reader will note that we have

x : Bt(T )→ x : Bt(N)

for any union type predicate Bt(T ).

1.8.6 ML-style type predicates. Polymorphic typing in the style of the
programming language ML corrects the greatest shortcoming of Pascal-style
typing where the symbol T in the application x : List(T ) is a part of the predi-
cate symbol rather than a second argument to the binary predicate x : List(t)
where the type parameter t ranges over all Pascal-style typing predicates. We
cannot achieve this without going to the second-order arithmetic because in
PA both arguments x and t must be natural numbers. Hence, the argument t
does not range over type predicates but over the codes of type predicates. The
polymorphic list predicate is then introduced into PA as a binary predicate
by the following clausal definition:

0 : List(t)
x, y : List(t)← x :: t ∧ y : List(t)

which applies a binary universal typing predicate x :: t. The reader will note
the bold colon symbol signifying that this is a binary infix predicate rather
than a part of the predicate symbol.

The universal predicate, which will be discussed in Par. 1.8.9, is such that
PA proves

x :: ′T (t1, . . . , tn)↔ x : T (t1, . . . , tn) (1)

for every type predicate T with n type parameters, i.e. an (n + 1)-ary type
predicate x : T (t1, . . . , tn), introduced into PA. Here ′T (τ1, . . . , τn) is an ab-
breviation for a certain term of PA which denotes the code of x : T (τ1, . . . , τn).
When T has no paramaters, i.e. when x : T is a unary type predicate, then
(1) should be read as

x :: ′T ↔ x : T .

This style of polymorphism which permits type parameters in the form of
variables ranging over (codes of) Pascal-style types but no new types is called
predicative polymorphism (see, for instance, [18]).

With the polymorphic list type predicate one now takes arbitrary type
predicate T and writes x : List(′T ) instead of having to introduce the type
predicate : List(T ) separately for each T .

56



We introduce a convention of writing the type applications ′T (τ1, . . . , τn)
for n ≥ 0 in an abbreviated form T (τ1, . . . , τn). We can thus write x : List(T )
instead of x : List(′T ). The reader will note that by (1) the last is equivalent
to x :: ′List(′T ) which can be abbreviated to x :: List(T ).

Polymorphic type of binary trees is defined by the type predicate with
one type parameter:

E : Bt(t)
Nd(n, l, r) : Bt(t)← n :: t ∧ l : Bt(t) ∧ r : Bt(t) .

We can now, for instance, assert x : Bt List(N3 ) which is an abbreviation for
x : Bt(′List(′N3 )) or equivalently x :: Bt List(N3 ) which is an abbreviation
for x :: ′Bt(′List(′N3 )).

1.8.7 Polymorphic vector type predicate. Vectors (arrays) are exten-
sionally lists of given length. The importance of vectors lies in their inten-
sional properties of having good memory representations. It would seem that
we need two kinds of vector types. The ternary polymorphic type predicate
x : Vect1(n, t) holding of fixed vectors is introduced into PA by primitive
recursion:

0 : Vect1(0, t)
v, w : Vect1(n+ 1, t)← v :: t ∧ w : Vect1(n, t) .

For every positive number n and every type predicate T fixed vectors x :
Vect1(nb,

′T ) are represented in memory just like the Pascal arrays of type
array[0..(n−1)] ofT .

The binary polymorphic type predicate x : Vect(t) holding of flexible
vectors is introduced explicitly into PA by:

n, x : Vect(t)← x : Vect1(n, t) .

For every type predicate T the flexible vectors x : Vect(′T ) are repre-
sented in computer memory as pointers to dependent Cartesian pairs of type
N×Vect1(n, ′T ) where the value of the first component is n. The first com-
ponent thus holds the length of the vector.

As it turns out, the practice of programming in our programming language
Trilogy II, in which we have implemented the system CL, shows that fixed
vectors are not used at all. For this reason we will work below with the flexible
vectors only.

1.8.8 Operations on vectors. Although vectors are extensionally just
lists, it is of advantage to select some operations on them as basic ones and
enforce by means of typing that the vectors are efficiently operated upon
through these operations (see Par. 1.8.17). The restrictions will guarantee
efficient compilation of vector operations into machine code provided the
problems of in-place modification (see subsection ??) have been solved.

57



There are three operations on vectors: creation of new vectors New(n, v),
indexing of vectors a[i], and modification of vectors a[i := v]. The operations
are introduced into PA with the help of auxiliary operations performing the
same tasks with fixed vectors whose clausal definitions are:

New1(0, v) = 0
New1(n+ 1, v) = v,New1(n, v)
(v, a)[0]1 = v
(v, a)[i+ 1]1 = a[i]1
(v, a)[0 := w]1 = w, a
(v, a)[i+ 1 := w]1 = v, a[i := w]1 .

The operations for (flexible) vectors are then introduced into PA by explicit
clausal definitions:

New(n, v) = n+ 1,New1(n+ 1, v)
(n, a)[i] = a[i]1 ← i < n
(n, a)[i] = a[0]1 ← i ≥ n
(n, a)[i := v] = n, a[i := v]1 ← i < n
(n, a)[i := v] = n, a← i ≥ n .

The reader will note that in the application Nev(n, v) the number n is not the
length of the vector but rather its highest index. This means that the result
is a vector with at least one component. This arrangment is important for
the smooth typing of vector operations where the indexing operation yields
an element of its argument vector (rather than the default 0 which is difficult
to type properly) even if the index is out of bounds.

1.8.9 The universal typing predicate. We can introduce into PA by a
detour through some auxiliary predicates a binary primitive recursive pred-
icate x :: c which acts as the universal typing predicate and is such that PA
proves

x :: pTq◦(t1, . . . , tn, 0)↔ x : T (t1, . . . , tn) (1)

for every type predicate T with n type parameters introduced into PA. Here
pTq is a certain term of PA denoting the code of T obtained by the arith-
metization (see below) of the definition of T . The infix constructor function
◦ codes the type application of T to its parameters. When T is without
parameters then (1) should be read as

x :: pTq◦0↔ x : T .

The notation ′T (ρ1, . . . , ρn) discussed in Par. 1.8.6 stands for the term
pTq◦(ρ1, . . . , ρn, 0) and so (1) can be written as:

x :: ′T (ρ1, . . . , ρn)↔ x : T (t1, . . . , tn) .

58



The arithmetization of type predicates calls for the following constructors
which are explicitly introduced into PA as follows: N = 0; trec = 1; c◦p =
2, c, p; vect(t) = 3, t; t1×t2 = 4, t1, t2; t1×∗t2 = 5, t1, t2; Un(m, s) = 6,m, s;
and par(n) = 7, n.

PA proves the following properties of the universal typing predicate:

x :: t→ t = N ∨ ∃s t = vect(s) ∨ ∃s1∃s2 t = s1×s2 ∨
∃s1∃s2 t = s1×∗s2 ∨ ∃m∃s t = Un(m, s) ∨ ∃c∃p t = c◦p

x :: N

x :: vect(t)↔ ∃n∃a(x = n+ 1, a ∧ L(a) = n+ 1 ∧ ∀i(i ≤ n→ (a)i :: t))
x :: t1×t2 ↔ ∃v∃w(x = v, w ∧ v :: t1 ∧ w :: t2)

x :: t1×∗t2 ↔ x = 0 ∨ x :: t1×t2
x :: c◦p↔ x :: sb(c, c, p)

x :: Un(m, s)↔ x < m ∨ ∃i∃y(i < L(s) ∧ x = m+ i, y ∧ y :: (s)i) .

The constant N denotes the code of the definition of the type predicate
N (see Par. 1.8.2), i.e. pNq ≡N , and so

′N ≡ pNq◦0 ≡N◦0 .

The term vect par(0) denotes the code of the definition of the one-parameter
type predicate Vect (see Par. 1.8.7), i.e. pVectq ≡ vect par(0), and so

′Vect(ρ) ≡ pVectq◦(ρ, 0) ≡ vect par(0)◦(ρ, 0) .

For every t1 and t2 the term t1×t2 denotes the code of the Cartesian product
of t1 and t2. We abbreviate t1×(t2×t3) to t1×t2×t3. Thus, for instance, the
code pN3q of the type predicate N3 (see Par. 1.8.3) is ′N×′N×′N , and so

′N3 ≡ pN3q◦0 ≡
(N◦0×N◦0×N◦0)◦0 .

For every t1 and t2 the term t1×∗t2 codes the ‘optional’ Cartesian product
of t1, t2 which holds of 0 or of Cartesian products t1×t2.

For instance, the code pListq of the polymorphic list type predicate List(t)
(see Par. 1.8.6) is as in the following:

′List(ρ) ≡ pListq◦(ρ, 0) ≡ (par(0)×∗trec)◦(ρ, 0) .

The constructor par codes the type parameters in the codes of type pred-
icates with type parameters such that the i-th parameter is coded by
par(i− 1b). The constructor trec codes recursive applications of type pred-
icates in their definitions. The purpose of both constructors can be seen from
the following:

59



x :: ′List(t)⇔ x :: (par(0)×∗trec)◦(t, 0)⇔
x :: sb(par(0)×∗trec,par(0)×∗trec, t, 0)⇔
x :: t×∗(par(0)×∗trec)◦(t, 0)⇔
x = 0 ∨ x :: t×(par(0)×∗trec)◦(t, 0)⇔
x = 0 ∨ ∃v∃w(x = v, w ∧ v :: t ∧ w :: (par(0)×∗trec)◦(t, 0)⇔
x = 0 ∨ ∃v∃w(x = v, w ∧ v :: t ∧ w :: ′List(t))⇔
x = 0 ∨ x :: t×′List(t)⇔ x :: t×∗′List(t) .

The three-place substitution function sb(c, d, p) yields the code obtained
from the code c by substituting in it for every occurrence of parameter par(i)
the value (p)i and for every occurrence of trec the value d◦p. The substitution
works as just explained only if for a constructor c◦p all occurrences of the
constructor trec within c are enclosed by at least one occurrence of vect,
×, ×∗, or Un. For instance, in the above type derivation for x :: ′List(t) we
had (par(0)×∗trec)◦(t, 0). If the condition on trec in c is not satisfied then
sb(c, c, p) = 0. The condition on trec guarantees the termination of recursive
openings of ◦. Clausal definitions of recursive type predicates must be regular
in the first argument and so the condition on trec is always satisfied for their
codes.

The substitution sb(c, d, p) is shallow in the sense that it does not enter
the codes e◦q embedded in c. This means that we have no non-local param-
eters and recursion in the codes and as a consequence the predicate x :: c is
primitive recursive.

The constructor Un codes union type predicates. The idea is that we have
x :: Un(m, ρm, . . . , ρk−1, 0) iff x is a union value determined by m, k, nm, . . . ,
nk−1 (see Par. 1.5.6). Moreover, for every j s.t. m ≤ j < k the number nj is
the ‘arity’ of the code ρj , i.e. the code has a form σ1× . . .×σnj , and we have
x = j

b
, y1, . . . , ynj with y1 :: σ1, . . . , ynj :: σnj . The reader will note that the

last is equivalent to x = j
b
, y and y :: ρj .

For instance, the code pBtq of the polymorphic type predicate of labelled
binary trees Bt(t) (see Par. 1.8.6) is as in the following:

′Bt(ρ) ≡ pBtq◦(ρ, 0) ≡
Un(1b, (par(0)×trec×trec), 0)◦(ρ, 0) .

1.8.10 Type terms. We will present below a calculus for deriving asser-
tions about well-typed generalized terms and definitions. For that we need a
flexible language whose terms ρ denote codes of type predicates. The terms
are called type terms and they are used in applications x :: ρ. Type terms are
constructed from variables (say t1, t2, . . . ) ranging over type codes (i.e. over
N) by constructors ρ1×ρ2, ρ1×∗ρ2,

Un(mb, ρm, . . . , ρk−1, 0) ,

60



and by type applications of the form ′T (ρ1, . . . , ρn) where T is a type predi-
cate with n-parameters previously introduced into PA. The reader will recall
that the last type application abbreviates the term pTq◦(ρ1, . . . , ρn, 0).

For every type predicate T with n parameters (n ≥ 0) introduced into
PA except N and Vect we take its code pTq, express it via constructors as
a term of PA, shallowly replace in it every subterm par(ib) by the variable
ti+1, every subterm trec by the type term ′T (t1, . . . , tn) We obtain thereby
a type term ρ[t1, . . . , tn] such that PA proves

x :: ′T (t1, . . . , tn)↔ x :: ρ[t1, . . . , tn] (1)

For instance, for the type predicates mentioned in Par. 1.8.9 PA proves

x :: N3 ↔ x :: N×N×N
x :: List(t)↔ x :: t×∗List(t)
x :: Bt(t)↔ x :: Un(1, (t×Bt(t)×Bt(t)), 0)

where we have consistently used the abbreviations for type applications (see
Par. 1.8.6).

1.8.11 The typing calculus. We wish to type a mixed definition of the
n-ary function symbol f in the polymorphic style of ML (see [7]) as

f :: ρ1, . . . , ρn 7→ρ (1)

where ρ, ρ1, . . . , ρn are type terms. This extensionally means

x1 :: ρ1 ∧ . . . xn :: ρn → f(x1, . . . , xn) :: ρ , (2)

but intensionally the typing (1) is a much stronger assertion because it will
be derived in a considerably weaker calculus, indeed a decidable one, than a
formal proof system of the first-order theory PA.

Consider for instance, the explicit clausal definition:

f(x) = 3, x

for which PA trivially proves

x :: N → f(x) :: N

but we will not be able to derive f :: N 7→N in the type calculus.
The derivation of (1) in the weak type calculus will guarantee for all mixed

numerals τ1, . . . , τn for which the typing calculus derives τ1 :: ρ1, . . . , τn ::
ρn the computation by reduction of applications f(τ1, . . . , τn) without any
mixed numeral conversions. A mixed numeral τ such that the typing calculus
derives τ :: ρ is called a canonical numeral of type ρ. Another advantage of
the derivation of (1) in the typing calculus with closed type terms (without

61



free type variables) is that the definition of f can be efficiently compiled
into machine code or into the programming language C using the Pascal-like
representation of its data types.

The typing calculus will be deriving either assertions of the form (1) or
type sequents of the form

∆⇒ α :: ρ (3)

where α is a generalized term and ρ a type term. ∆ is a sequence of finitely
many (possibly empty) assumptions (guards). The assumptions are of the
form x :: ρ or f :: ρ1, . . . , ρn 7→ρ. The order of assumptions in ∆ is irrelevant
and the reader can treat ∆ as a finite set or, alternatively, he can enrich
the type calculus by structural rules permitting interchange, duplication, and
the removal of duplications in the assumption sequence ∆. We say that the
typing calculus derives α :: ρ if it derives the sequent ∅ ⇒ α :: ρ.

Derivations in the typing calculus are trees with roots of the form (1)
or (3). The derivation trees are constructed in the usual way by means of

rules of inference which are of the form
φ1 . . . φn

φ
where the conclusion φ is

derived from the premises φ1, . . .φn. We do not exclude n = 0 and such rules
are axioms.

The typing calculus is extensible in the sense that with every extension by
definition of PA the typing calculus is extended with new rules of inference
involving the newly introduced symbols.

We leave it to the reader to check that whenever the typing calculus
derives the sequent ∆⇒ α :: ρ then PA proves ∆? → α∗ :: ρ where ∆? stands
for the conjunction of translated assumptions. Here an assumption x :: ρ is
translated into itself and an assumption f :: ρ1, . . . , ρn 7→ρ into

∀x1 . . .∀xn(x1 :: ρ1 ∧ . . . xn :: ρn → f(x1, . . . , xn) :: ρ) .

Similarly, when (1) is derived in the typing calculus then PA proves (2). These
two facts prove the soundness of the typing calculus. The completeness of the
calculus is not desirable because of its intensional benefits.

In the following paragraphs we present the inference rules of the typ-
ing calculus categorized into groups. We use the possibly subscripted meta-
variables α to range over generalized terms (including PA terms), τ to range
over PA terms, and ρ, σ to range over type terms.

1.8.12 Inference rules using assumptions. Only two kinds of inference
rules use assumptions (guards) in sequents. The first kind are axioms which
type object variables and the second kind are rules with n premises typing
applications of n-ary function symbols:

62



∆,x : ρ⇒ x : ρ
∆, f :: ρ1, . . . , ρn 7→ρ⇒ τ1 :: ρ1 . . . ∆, f :: ρ1, . . . , ρn 7→ρ⇒ τn :: ρn

∆, f :: ρ1, . . . , ρn 7→ρ⇒ f(τ1, . . . , τn) :: ρ

1.8.13 Axioms typing the constant 0. The constant 0 can be typed in
three ways. This kind of multiple typing is often called ad hoc polymorphism.
The first two kinds are given by the following axioms and the third kind is
discussed in Par. 1.8.16:

∆⇒ 0 :: ′N ∆⇒ 0 :: ρ1×∗ρ2

1.8.14 Axioms typing the binary successor functions. The binary
successor functions ·0 and ·1 have the following typing:

·0 :: ′N 7→′N ·1 :: ′N 7→′N

The reader will note that this, the typing of 0 as ′N , and the typing of
function applications (see Par. 1.8.12) permits to derive the sequents ∆ ⇒
τ :: ′N where τ are binary numerals. The assumptions about the types of
binary successor functions can be eliminated from ∆ by the rules discussed
in Par. 1.8.21. This enables the derivation of τ :: ′N for all binary numerals.
As it happens, these are the only mixed numerals which can be typed as N .
Compare this with a trivial proof of τ :: ′N in PA for arbitrary terms τ .

1.8.15 Inference rules typing applications of the pairing function.
Pairs can be typed in three ways. The first two kinds type pairs as Cartesian
products:

∆⇒ τ1 :: ρ1 ∆⇒ τ2 :: ρ2

∆⇒ τ1, τ2 :: ρ1×ρ2

∆⇒ τ1, τ2 :: ρ1×ρ2

∆⇒ τ1, τ2 :: ρ1×∗ρ2

and the third kind as union values (see Par. 1.8.16).

1.8.16 Inference rules typing union values. Union values are typed by
two kinds of inference rules:

∆⇒ j
b

:: Un(mb, ρm, . . . , ρk−1, 0)
where j < m

∆⇒ τ :: ρj
∆⇒ j

b
, τ :: Un(mb, ρm, . . . , ρk−1, 0)

where m ≤ j < k

63



The reader will note that the binary numerals j
b

can be typed either as ′N
(see Par. 1.8.14) or as union values. Binary numerals are included as tags also
in union value pairs typed by the inference rules of the second kind. Pairs
can be thus typed either as (optional) Cartesian products or as union values.

1.8.17 Axioms typing operations on vectors. The three operations on
vectors introduced in Par. 1.8.8 have the following polymorphic typing:

New :: ′N, t 7→′Vect(t) ·[·] :: ′Vect(t), ′N 7→t

·[· := ·] :: ′Vect(t), ′N, t 7→′Vect(t)

These are the only inference rules for the typing of vectors. Thus every well-
typed function definition with the vector type must be built up from the
three operations and/or auxiliary functions applying the operations.

1.8.18 Axioms typing the discriminators of basic case terms. The
discriminators of case terms (both basic and derived) yield union-values. For
the typing of case terms we wish the union values to be typed by union types.
This is achieved for the discriminators of the three basic case terms by the
following typing axioms

sgn :: ′N 7→′Bool sgn :: ′Bool 7→′Bool
b :: ′N 7→Un(0, ′N, ′N, 0) c :: t1×t2 7→Un(0, (t1×t2), 0)

where the union type predicate Bool is introduced into PA as follows:

Bool(0)
Bool(1) .

It should be clear that we have

x :: ′Bool↔ x :: Un(2b, 0)

but the reader should not associate the value 0 with truth and 1 with false-
hood because the characteristic functions of predicates yield 1 for truth and
0 for falsehood. The type Bool should be understood simply as holding of 0
or 1.

The function sgn is typed in two ways in a form of ad hoc polymorphism.
The first typing is intended to be used with the first form 1.5.13(1) of D-
terms which test for zero. The second typing is intended for the second form
1.5.13(2) where the arguments of sgn are results of characteristic functions
of predicates. The reader will recall that we treat the clausal definitions of
characteristic functions of predicates as defining the predicates themselves
and we wish the functions to be typed as . . . 7→′Bool .

64



1.8.19 Inference rules typing case terms. The idea of typing of a case
term

casem,k(τ, α0, . . . , αm−1, αm[y1, . . . , ynm ], . . . , αk−1[y1, . . . , ynk−1 ])

under assumptions ∆ by a type term ρ is to type its discriminator by a union
type

Un(mb, (σ
(m)
1 × . . .×σ(m)

nm ), . . . (σ(k−1)
1 × . . .×σ(k−1)

nk−1
), 0) (1)

and all of its terms αi by ρ. Note that the assumption formulas in case terms
do not play any role. We can type only such guarded case terms whose guards
are implied by the assumptions ∆. However, the implication is not to be
proved in PA but rather in the typing calculus with its limited means. The sole
purpose of guards is to act as assumptions for the proof of the completeness
condition 1.5.6(1). Note that the property is satisfied under assumptions ∆
by the typing under the same assumptions of the disciminator term τ by the
union type (1). These considerations lead to the following inference rule:

∆⇒ τ :: Un(mb, (σ
(m)
1 × . . .×σ(m)

nm ), . . . (σ(k−1)
1 × . . .×σ(k−1)

nk−1
), 0)

∆⇒ α0 :: ρ
...

∆⇒ αm−1 :: ρ

∆, y1 :: σ(m)
1 , . . . , ynm :: σ(m)

nm ⇒ αm :: ρ
...

∆, y1 :: σ(k−1)
1 , . . . , ynk−1 :: σ(k−1)

nk−1
⇒ αk−1 :: ρ

∆⇒ casem,k(τ, α0, . . . , αm−1, αm[y1, . . . , ynm ], . . . , αk−1[y1, . . . , ynk−1 ]) :: ρ

∅ ⇒ 0 :: Un(2b, 0)

∅ ⇒ 0 :: Bool

∅ ⇒ 1 :: Un(2b, 0)

∅ ⇒ 1 :: Bool

∅ ⇒ 0 :: Bool×∗List(Bool)

∅ ⇒ 0 :: List(Bool)

∅ ⇒ 1, 0 :: Bool×List(Bool)

∅ ⇒ 1, 0 :: Bool×∗List(Bool)

∅ ⇒ 1, 0 :: List(Bool)

∅ ⇒ 0, 1, 0 :: Bool×List(Bool)

∅ ⇒ 0, 1, 0 :: Bool×∗List(Bool)

∅ ⇒ 0, 1, 0 :: List(Bool)

Fig. 1.10. Example of a derivation in the typing calculus.

65



1.8.20 Inference rules introducing defined type predicates. Every
type predicate T other than N or Vect can be presented by a typed term in
the form 1.8.10(1). For such predicates we have the following typing rules:

∆⇒ α :: ρ[ρ1, . . . , ρn]
∆⇒ α :: ′T (ρ1, . . . , ρn)

As an example of such rules we show in Fig. 1.10 the derivation of 0, 1, 0 ::
List(Bool) where the reader will recall that 1 stands for the binary numeral
1b.

1.8.21 Inference rules eliminating assumptions on function types.
For the typing of function applications (see Par. 1.8.12) we need assumptions
of the form 1.8.11(1). The assumptions can be eliminated by the following
inference rules:

∆, f :: ρ1, . . . , ρn 7→ρ⇒ α :: ρ f :: σ1, . . . , σn 7→σ
∆⇒ α :: ρ

where the assumption f :: ρ1, . . . , ρn 7→ρ is an instance of the polymorphic
typing f :: σ1, . . . , σn 7→σ in the second premise. The instance is obtained by
a possible simultaneous substitution of suitable type terms for some (or all)
type variables occurring in the type terms σ, σ1, . . . , σn.

1.8.22 Inference rules typing mixed definitions of functions. We can
derive the typing of a form 1.8.11(1) for a mixed definition f(x1, . . . , xn) =
α[f ;x1, . . . , xn] with n ≥ 1 by typing the body α[f ;x1, . . . , xn] under assump-
tions about the types of its free variables and about the type of f (this is
needed for possible recursive applications). This is captured by the following
inference rules:

x1 :: ρ1, . . . , xn :: ρn, f :: ρ1, . . . , ρn 7→ρ⇒ α :: ρ
f :: ρ1, . . . , ρn 7→ρ

If f is a constant, i.e. a nullary function, and it has an explicit mixed
definition f = α then we type it by the following inference rules

∅ ⇒ α :: ρ
f :: ρ

.

1.8.23 Type inference. Type inference is the name for the general problem
of deriving a type assertion about an untyped or partially typed program.
Clausal definitions are untyped. Even when a type definition is well-typed,
i.e. typeable, it can happen that it can be typed in an ad hoc polymorphism
by more than one unrelated types. For instance

f(x) = x, 0, 0

66



can be typed as f :: t 7→t×N×N , f :: t1×∗t2 → List(t1×∗t2), or f ::
N 7→List(N). There are many more typings when one considers union types.
It is probably the case that any typeable definition can be typed by a finite
number of principal, i.e. most general typings, such that any typing is an
instance of one of the typings.

What is important is that for any sequent ∆ ⇒ α :: ρ we can decide the
formula

∃~t(∆? → α? :: ρ)

by finding the type witnesses for ~t. This is done by adaptation of the unifi-
cation algorithm for polymorphic typing of Milner [17]. We can thus decide
whether function definitions are well-typed.

1.8.24 Computation of well-typed mixed terms. All closed generalized
terms used in mixed definitions reduce to mixed numerals. We claim that the
well-typed ones reduce without taking the reductions marked in Par. 1.7.4.
We note first of all, that all reductions preserve the types and so all terms in
a chain of reductions are well-typed.

Reductions 1.7.4(1) or (2) are taken when the discriminator of a binary
case term is b(ρ1, ρ2) with ρ1 and ρ2 mixed numerals. Since the case term is
well-typed, we have b :: N 7→Un(0, N,N, 0), the argument of b must be typed
as N . However, all mixed numerals of type N are binary numerals and so the
situation cannot happen.

Reductions 1.7.4(3) are taken when reducing the discriminator of a Carte-
sian case term c(ρ) with ρ a mixed numeral. Since the only typing for c is
c :: t1×t2 7→Un(0, (t1×t2), 0), we must have ρ :: t1×t2 for some t1 and t2. Thus
ρ ≡ ρ1, ρ2 and there is no conversion.

Reductions 1.7.4(4) are taken when the mixed term discriminator ρ of a
case term denotes a union value. Since the case term is well-typed, ρ must
be of an union type 1.8.19(1). But the mixed numerals of this type are of the
form either j

b
or j

b
, ~ρj and so the reduction takes place without conversion.

If a mixed definition of f is typed as f :: σ1, . . . , σn 7→σ then its application
f(ρ1, . . . , ρn) to mixed numerals s.t. ρ1 :: σ1, . . . , ρn :: σn is typed as ρ and
the application reduces to a mixed numeral without conversions.

1.8.25 Compilation of well-typed mixed definitions. If a mixed def-
inition of a function f is non-polymorphically typed, i.e. typed as f ::
σ1, . . . , σn 7→σ without variables in the type terms σ, σ1, . . . , σn, then the
types are Pascal-like. Since all applications of auxiliary functions needed by
the definition of f must go through inference rules in Par. 1.8.21, also the
types of the auxiliary functions are Pascal-like. There is no conversion in the
computation of any well-typed application of f and so the definition of f and
of its auxiliary functions can be compiled into machine code (or C) with the
standard Pascal-like representation of all types used. True, the auxiliary func-
tions can be polymorphically typed and applied with different instantiations

67



but there is only a finite number of such. Thus the auxiliary functions can
be compiled in multiple copies with different Pascal-like types. An objection
that this is memory consuming is not a serious one because the machine (or
C) code is compact, memories of modern computers are large, and the addi-
tional storage is nothing compared with the storage needed by the graphic,
music, or video files.

1.9 Intensional Functionals

It is often said that LISP is a programming language based on the lambda
calculus of functionals, i.e. functions operating on functions. It seems to us
quite surprising that this characterization was not seriously questioned be-
fore because the domain of LISP are S-expressions. and so there can be no
extensional functionals in LISP. Functionals of LISP are only coded into S-
expressions in the form of intensional functionals. This is done by a universal
partial function Apply. Since S-expressions can be embedded into natural
numbers by the pairing function, it suffices to analyze the situation in the
domain N.

We would like to note that although intensional functionals have been
studied in logic, for instance by Tait [25], the author does not know of an
analysis done on such a large scale as ours. By that we mean that we analyze a
real typing system, which is moreover a polymorphic one, and the definitions
of functionals expressed in a real programming language such as the extensi-
ble language of clausal definitions. In contrast, the analysis by Tait was of a
simple type system whose types have been generated from N by 7→, and of
a simple language of primitive recursive functionals (Gödel’s T ). Moreover,
our proposal for the introduction of functionals into a programming language
leads to a very useful extension of mixed definitions. The proposed language
is very simple to understand and use.

1.9.1 Universal function. To every Σ1-definition of a unary partial func-
tion f we can assign its code c. The reader will note that such an f does
not have a Π1-definition unless it is total, i.e. recursive. We can then find a
Σ1-definition (but not a Π1) of a binary partial universal function U(c, x).
The universal function is such that U(c, x) ' f(x) holds for all x. This should
be read as that either both U(c, x) and f(x) are defined and the results are
identical, or neither is defined.

The assignment of codes can be extended to n-ary partial Σ1-definable
functions f to which we assign the same codes c as to their unary contractions
〈f〉. We then have

f(x1, . . . , xn) ' 〈f〉(x1, . . . , xn) ' U(c, x1, . . . , xn) .

The universal function U has a code because its contraction 〈U〉 is Σ1-
definable. Applications U(c, x) are in the Computability theory usually writ-

68



ten as {c}(x). Functional programming languages would use the notation
c(x) or c x. We will write c•x in order to make visible that the application
operator is a binary function over N. The operator associates to the left and
we let c•x•y to stand for (c•x)•y.

We work in PA with total functions only and so one possibility would to
introduce the universal function • into PA as the ∆2-definable completion of
the partial function. Any definition of a partial function f with an argument
c passed in the body of f to the first argument of • can be viewed as an
intensional functional where the argument c is the code of a function rather
than the function directly. Intensional functionals would thus be ∆2-definable
as completed partial functions.

We are interested in a characterization of decidable (actually primitive
recursive) constraints on arguments under which the intensional functionals
can be computed. Decidable constraints will allow us to use instead of the
∆2-definable • a ∆1-definition of its restriction to properly typed arguments.

One of the possibilities for the constraints on arguments is to use a syn-
tactic scheme of stratification of arguments in order to prevent the self-
application c•c of which we cannot decide in general whether its computation
terminates or not.

1.9.2 Hereditarily recursive operations. The simplest stratification of
arguments of functionals is by function types s7→t which are called in logic
finite types. The ground type is N and when the types s and t have been
defined then we can define the type s7→t by explicit definition:

c : s7→t↔ ∀x(x :: s→ ∃y(c•x ' y ∧ y :: t)) .

The function type s7→t thus holds of all intensional functionals c which are
defined and yield functionals of type t if applied to functionals of type s. Such
functionals are known as hereditarily recursive operations [5, 27]. This is a
perfectly feasible approach except that it does not integrate well-with our
data types. The reason is that the function types are of increasing quantifier
complexity. While the predicate c : N 7→N can be defined by a Π2-definition,
the definition of c : (N 7→N)7→N 7→N requires a Π3-formula and the definition
of

c : (N 7→N)7→N 7→N)7→(N 7→N)7→N 7→N

a Π4-formula etc. The increasing quantifier complexity of function types
means that we cannot introduce into PA the predicate x :: t with t admitting
besides data types also the function types.

In order to stay within PA we substantially weaken the function types
where we intuitively let c :: s7→t to hold iff c codes a mixed definition of
a unary function f s.t. f :: s7→t is derivable in the typing calculus (see
Par. 1.9.11).

69



1.9.3 Bland intensional functionals. We will investigate first a rather
limited class of intensional functionals which we call bland as opposed to a
substantially larger class of curried functionals which will be introduced in
Par. 1.9.18.

The idea of bland functionals is simple enough. Suppose for a moment
that we have managed to introduce into PA the application operator • and
that we have suitably extended the definition of the universal typing predicate
x :: t (see Par. 1.8.9) to function types t = s1 7→s2 by treating the symbol 7→
as a new constructor function: s7→t = 8, s, t. PA will prove

x :: s7→t ∧ y :: s→ x•y :: t . (1)

In order to be able to derive this also in the typing calculus we extend it with
the axiom:

·•· :: (s7→t), s7→t
. (2)

We also extend the narrow mixed definitions by allowing in them appli-
cations of the operator • and call them bland definitions. Suppose now that
we have introduced into PA by a bland definition an n-ary function symbol
f . Suppose further that the definition is well-typed and that we have derived
in the (extended) typing calculus f :: s1, . . . , sn 7→t. The function f will have
assigned a code ′f such that PA will prove:

′f :: s1× . . .×sn 7→t (3)
x1 :: s1 ∧ . . . ∧ xn :: sn → ′f•(x1, . . . , xn) = f(x1, . . . , xn) . (4)

Whenever, the index property (4) holds we say that the function f has an
index ′f . We will see below that in the case of bland functionals the sufficient
condition for f to have an index is that we have a well-typed bland definition
of f .

The typing property (3) is derivable in PA but not in the typing calculus.
For that we add to the typing calculus new axioms:

∆, f :: s1, . . . , sn 7→t⇒ ′f :: s1× . . .×sn 7→t
. (5)

1.9.4 Computation of well-typed bland terms. We compute bland
functionals by adding to the mixed numerals as new irreducible terms also
the codes ′f of bland functionals f with indices and close them under pair-
ing and binary successors. We call this extended class the bland numerals.
Note that unlike the mixed numerals, the class of bland numerals is defined
relatively to the current extension of PA. The new reductions are

′f•(~ρ) I f(~ρ) (1)

70



where ~ρ are bland numerals and f(~ρ) is well-typed.
It can be shown that the reductions of all well-typed terms terminate

with bland terminals with no conversions whatsoever. Note that while terms
typed by function types are obtained from the indices of bland functionals by
the operator •, the only irreducible numerals of function types are the codes
′f of functions with bland definitions.

1.9.5 Example: The bland functional Map. The canonical example of
use of functionals is in the functional programming the binary functional Map
which is defined by

Map(f, 0) = 0
Map(f, v, w) = f•v,Map(f, w) .

The function is polymorphically typeable as

f :: s7→t,List(s)7→List(t)

and so it has an index ′Map such that ′Map :: (s7→t)×List(s)7→List(t) and
PA proves:

f :: s7→t ∧ x :: List(s)→ ′Map•(f, x) = Map(f, x) . (1)

1.9.6 Comment on the introduction of bland functionals. The reader
will probably agree that the idea and use of (bland) intensional functionals
is simple. The description of their computation is straightforward because
it takes just one additional easy to understand kind of reductions 1.9.4(1).
This should be contrasted with the following outline of the hard work needed
to introduce the function types and the application operator into PA and to
prove the indexing properties 1.9.3(4). The hard work involves the arithme-
tization of both the typing calculus and of the computation process. Both
are needed for the definition of the application operator • and for the proofs
of the indexing properties. We stress here that the difficult introduction of •
and its inefficient definition has to do only with the semantics of proving that
the reduction 1.9.4(1) preserves meaning, i.e. that PA proves ′f•(~ρ) = f(~ρ).
The simplicity and the efficiency of computation with bland functionals is
not affected by the inefficient definition of •.

1.9.7 Arithmetization of generalized terms. We now arithmetize the
generalized terms used in bland definitions. For that we use the following
constructors: z = 0; S0(a) = 1, a; S1(a) = 2, a; P (a, b) = 3, a, b; a•b = 4, a, b;
sgn(a) = 5, a; b(a) = 6, a; c(a) = 7, a; cs(d,m, t) = 8, d,m, t; rec(a) = 9, a;
xi = 10, i; and cd(a, n,m, e) = 11, a, n,m, e. The first eight constructors code
in that order applications of the nullary function 0, binary successors x0, x1,
pairing, the application operator •, and of the functions sgn, b, and c used
in the basic case terms.

Case terms

71



casem,k(τ, α0, . . . , αm−1, αm[y1, . . . , ynm ], . . . , αk−1[y1, . . . , ynk−1 ])

are coded as

cs(pτq,m, (0, pα0q), . . . , (0, pαm−1q), (nm, pαmq), . . . , (nk−1, pαk−1q), 0) .

The n-tuples of arguments τ1, τ2, . . . , τn−1, τn applied to function symbols
are coded by pairing

P (pτ1q,P (pτ2q, . . . ,P (pτn−1q, pτnq) . . .))

when n ≥ 2, and as pτ1q when n = 1.
Applications f(~τ) of n-ary function symbols defined by bland definitions

are coded as ′f•(p~τq) or as rec(p~τq). The last when f is applied recursively
within its definition. Codes ′f of defined functions are explained in Par. 1.9.8.

The coding of variables by xi requires some explanation because ′f codes a
definition of the unary contraction function 〈f〉. Moreover, the coding of local
variables in case terms has to be taken into account. With unary functions
a single variable and the projection functions H, T suffice. We can extract
by projections both arguments and local variables from a single environment
(((x, y1), . . .), yp−1), yp where x collects the arguments, yp collects the local
variables of the closest enclosing case term, yp−1 collects the local variables
of the next enclosing case term and so on. The reader will note that such
a scheme makes the coding of arguments and local variables dependent on
their position within a generalized term. Actually, we can dispense with the
projection functions because we can extract the values from an environment
x by the dyadic indexing function x[i] with the clausal definition:

x[0] = x
(v, w)[i1] = v[i]
(v, w)[i2] = w[i] .

For instance, if the environment is x = ((a, b, c), d, e), f then we have x[19] = b
and x[13] = e. We then code by xi the (value of the) variable extracted from
the environment x by the dyadic index i.

1.9.8 Arithmetization of bland definitions. We will now assign codes
to the bland definitions f(x1, . . . , xn) = α[f ;x1, . . . , xn] where n > 0. For
that we use the four-place constructor cd. If the generalized definition is
explicit then we code it simply as ′f ≡ cd(pαq, nb, 0, 0).

If the definition is recursive we have to work harder. The reader will recall
that our goal is to extend the primitive recursive universal typing predicate
with function types. If the above definition is typed as f :: s1, . . . , sn 7→t
we wish ′f :: s1× . . .×sn 7→t to hold. If the predicate is to remain primitive
recursive we need a syntactic check of regularity of definitions. Regularity
conditions are semantic ones but we enforce them by proofs within PA. The

72



check that the proof p proves the regularity condition for f is primitive re-
cursive and so we could include p, say as cd(pαq, nb, ppq, 0), in the code of
f . This, of course, would call for the arithmetization of proofs in PA which
by itself would not be that complicated, but in order to prove properties of
codes we would need to derive in PA many properties of the arithmetized
proof predicate. This amounts to the work needed in the formal proof of the
second Incompleteness theorem of Gödel which is hardly ever done in detail.

Fortunately, we can fall back on the use of syntactic guards from course
of values definitions with measure. For the above f we have a measure term
µ for which the typing calculus derives

x1 :: s1, . . . , xn :: sn ⇒ µ :: N .

The reader will note that this is the reason why we require that bland func-
tionals be defined by mixed definitions in the narrow sense.

One problem still remains when the guard on a recursive application of
f within α fails. We have to yield a default value, say 0. This is perfectly
in order with untyped definitions but with the typed ones we wish that the
typing property 1.9.3(1) of the application operator • holds. For that we have
to yield a default value of type t. But what if t is a polymorphic type we know
nothing about? For instance, f(x) = f(x) is a perfectly legal course of values
definition with the measure x. The defined function satisfies f(x) = 0 because
the guard always fails. The reader can easily convince himself that our typing
calculus derives among others also the polymorphic typing f :: List(t)7→t.
Even if we had the argument x of f at our disposal it could be the empty list
0 and we would not be able to produce a value of type t.

Fortunately, we can include into the code of f the code of an auxiliary
default term α1 for which the typing calculus derives:

x1 :: s1, . . . , xn :: sn ⇒ α1 :: t .

The sole purpose of α1 is to yield default values when the recursion guard
fails. The reader will note that with the nonsensical definition f(x) = f(x) we
would have problems to come up with a default term typed as x :: List(t)⇒
α1 :: t. It can be shown that to every well-typed regular bland definition of
a recursive function f there is a default term. This is because the satisfac-
tion of regularity conditions requires that there is at least one branch in the
generalized term α without recursive applications.

These considerations lead us to the assignment of code

′f ≡ cd(pαq, nb, pµq, pα1q)

to the above recursive definition of f where µ is the measure term and α1

is the default term. We have included the arity n of f in its code so we can
assign the same code both to bland and curried functionals. The arity is not
needed in the definition of the bland application operator •.

73



If the reader is worried about such complicated coding we hasten to say
that the codes of bland functionals are not needed in order to compute them.
During the computation we rely just on the reduction 1.9.3(1) where the code
′f might be just the address of the (pseudo) machine code for f . The coding
would be important only in an extremely unlikely case when one wished to
prove properties of codes.

1.9.9 Arithmetization of the typing calculus. Our next task is the
arithmetization of the typing calculus from Sect. 1.8. To that end we intro-
duce into PA a unary primitive recursive predicate Dt(p) holding of codes p
of derivation trees in the calculus. A node in p, which corresponds to one ap-
plication of rule of inference, is coded with the help of a five-place constructor
function explicitly introduced into PA as:

(

p

a[r; s] :: t

)

= (a, r, s, t), p .

Here the bottom line of the function symbol represents the sequent in the
conclusion of an inference rule where a is the code of a generalized term typed
by the type t, r is the type coding the typing assumptions on the recursive
applications in a and s is the type coding the assumptions on the variables
free in a. The premises of the rule are coded by the list p of codes of derivation
trees; p = 0 means that the coded inference rule has no premises, i.e. that it
is an axiom.

Because the predicate Dt(p) has many clauses corresponding to the in-
ference rules of the type calculus we illustrate its definition only with a few
clauses. The measure of recursion in Dt is the argument p which means that
the definition is by course of values recursion.

Here are a couple of clauses for Dt coding axiom rules:

Dt

(

0
z[r; s] :: N

)

Dt

(

0
z[r; s] :: t1×∗t2

)

.

Some clauses coding inference rules with one or two premises:

Dt

(

p1, 0
S1(a)[r; s] :: N

)

← Dt(p1) ∧ p1 =
(

q1

a[r; s] :: N

)

Dt

(

p1, p2, 0
P (a, b)[r; s] :: t1×t2

)

← Dt(p1) ∧ p1 =
(

q1

a[r; s] :: t1

)

∧

Dt(p2) ∧ p2 =
(

q2

b[r; s] :: t2

)

Dt

(

p1, 0
P (a, b)[r; s] :: t1×∗t2

)

← Dt(p1) ∧ p1 =
(

q1

P (a, b)[r; s] :: t1×t2

)

.

Clauses for Dt making use of assumptions in the antecedents of sequents are:

74



Dt

(

p1

rec(a)[r1 7→r2; s] :: t

)

← Dt(p1) ∧ p1 =
(

q1

a[r1 7→r2; s] :: r1

)

∧ t = r2

Dt

(

0
xi[r; s] :: t

)

← t = s[[i]]

where the indexing function s[[i]], which selects the type of the variable xi from
the assumption type s, is introduced into PA by course of values recursion:

t[[0]] = t
(t1×t2)[[i1]] = t1[[i]]
(t1×t2)[[i2]] = t2[[i]] .

Clauses coding the inference rules concerned with the application operator
are:

Dt

(

p1, p2, 0
(a•b)[r; s] :: t2

)

← Dt(p1) ∧ p1 =
(

q1

a[r; s] :: t1 7→t2

)

∧

Dt(p2) ∧ p2 =
(

q2

b[r; s] :: t1

)

Dt

(

p1, p2, p3, 0
cd(a, n,m, e)[r; s] :: t1 7→t2

)

← n > 0 ∧Arity(t1) ≥ n ∧

Dt(p1) ∧ p1 =
(

q1

a[t1 7→t2; t1] :: t2

)

∧

Dt(p2) ∧ p2 =
(

q2

m[0; t1] :: N

)

∧

Dt(p3) ∧ p3 =
(

q3

e[0; t1] :: t2

)

.

Here the function Arity(t), which counts the Cartesian types in the type t,
is introduced into PA by:

Arity(t1×t2) = Arity(t2) + 1
Arity(t) = 1← ¬∃t1∃t2 t = t1×t2 .

One clause for Dt opens the type definitions:

Dt

(

p1

a[r; s] :: c◦u

)

←Dt(p1) ∧ p1 =
(

q1

a[r; s] :: sb(c, c, u)

)

1.9.10 Arithmetized bland typing predicate. The four-place predicate
a[r; s] :: t arithmetizing the relation of derivability in the typing calculus and
holding whenever the sequent a[r; s] :: t is derivable is introduced into PA by
the following explicit definition:

a[r; s] :: t↔ ∃pDt
(

p

a[r; s] :: t

)

.

In view of the discussion in Par. 1.8.23 it should not be too surprising that PA
proves that there is a primitive recursive bound on the existential quantifier
in above definition and so the predicate is primitive recursive.

75



Nevertheless, the predicate a[r; s] :: t is quite complex because it is the
arithmetization of the typing calculus which has inference rules relative to
the current extension of PA. The above predicate must take care of all pos-
sible extensions with bland definitions of intensional functionals and with
definitions of type predicates. This happens through encoding of function
and type definitions.

1.9.11 Bland function types. We are now ready to add function types to
the universal typing predicate. Toward that end we introduce the construc-
tor function s7→t = 8, s, t and replace the definition of the universal typing
predicate x :: t (see Par. 1.8.9) with its proper extension where the following
holds

x :: s7→t↔ ∃a∃n∃m∃e(x = cd(a, n,m, e) ∧ x[0; 0] :: s7→t) . (1)

The reader will note that if x :: s7→t holds then we have s = s1× . . .×sn
and cd(a, n,m, e). Moreover, by inspecting the codes a, s1, . . . , sn, and t
we should be able to extend PA with suitable definitions of types and bland
functionals in such a way that x codes a bland definition of an n-ary function
f and the typing calculus derives f :: s1, . . . , sn 7→t.

1.9.12 Type levels. An important measure of complexity of a recursive
typed definition is its type level which counts the complexity of its function
types. We introduce into PA the unary function lev(t) yielding the type level
of the (code of the) type t to satisfy the following:

lev(N) = 0
lev vect(t) = lev(t)

lev(s×t) = lev(s×∗t) = max(lev(s), lev(t))
lev(c◦p) = lev sb(c,N , p)

lev(Un(m, s) = max
tεs

lev(t)

lev(s7→t) = max(lev(s) + 1, lev(t)) .

Type level of a value x s.t. x :: t is lev(x). Note that the type level of a
function definition with index ′f :: s7→t is thus lev(s7→t) > 0. Values with type
level 0 are data structures typed by types without any function types. We
for instance, have lev List Vect(N×N) = 0 and lev List Vect(N×(s7→t)) =
lev(s7→t) > 0. Functions over data structures with type level 0 are of type
level 1 and functions taking such functions as arguments are at least of type
level 2.

1.9.13 Arithmetization of computation of bland terms. We will now
arithmetize the computation of generalized bland terms. We will capture the
computations by a computation tree rather than by a reduction sequence. We

76



Ct

(

0

z[c;x] = 0

)

Ct

(

0

xi[c;x] = x[i]

)

Ct

(

p1, 0

S0(a)[c;x] = y0

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y

)

Ct

(

p1, 0

S1(a)[c;x] = y1

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y

)

Ct

(

p1, p2, 0

P (a, b)[c;x] = y1, y2

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧

Ct(p2) ∧ p2 =

(

q2

b[c;x] = y2

)

Ct

(

p1, 0

sgn(a)[c;x] = 0

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y + 1

)

Ct

(

p1, 0

sgn(a)[c;x] = 1

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = 0

)

Ct

(

p1, 0

b(a)[c;x] = 0, y

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y0

)

Ct

(

p1, 0

b(a)[c;x] = 1, y

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

Ct

(

p1, 0

c(a)[c;x] = 0, y1, y2

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1, y2

)

Ct

(

p1, p2, 0

cs(a,m, t)[c;x] = y2

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧ y1 < m ∧

(t)y1 = n, b ∧Ct(p2) ∧ p2 =

(

q2

b[c;x] = y2

)

Ct

(

p1, p2, 0

cs(a,m, t)[c;x] = y3

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧ y1 ≥ m ∧

y1 = j, y2 ∧ j ≥ m ∧ j < L(t) ∧ (t)j = n, b ∧

Ct(p2) ∧ p2 =

(

q2

b[c; (x, y2)] = y3

)

Ct

(

p1, p2, p3, p4, 0

rec(a)[c;x] = y4

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧ c = cd(b, n,m, e) ∧

Ct(p2) ∧ p2 =

(

q2

m[0; y1] = y2

)

∧

Ct(p3) ∧ p3 =

(

q3

m[0;x] = y3

)

∧ y2 < y3 ∧

Ct(p4) ∧ p4 =

(

q4

b[c; y1] = y4

)

Ct

(

p1, p2, p3, p4, 0

rec(a)[c;x] = y4

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧ c = cd(b, n,m, e) ∧

Ct(p2) ∧ p2 =

(

q2

m[0; y1] = y2

)

∧

Ct(p3) ∧ p3 =

(

q3

m[0;x] = y3

)

∧ y2 ≥ y3 ∧

Ct(p4) ∧ p4 =

(

q4

e[0;x] = y4

)

Ct

(

0

cd(a, n,m, e)[c;x] = cd(a, n,m, e)

)

.

Fig. 1.11. Part I of predicate holding of computation trees for functionals.77



Ct

(

p1, p2, p3, 0

(a•b)[c;x] = y3

)

← Ct(p1) ∧ p1 =

(

q1

a[c;x] = y1

)

∧ y1 = cd(d, n,m, e) ∧

Ct(p2) ∧ p2 =

(

q2

b[c;x] = y2

)

∧

Ct(p3) ∧ p3 =

(

q3

d[y1; y2] = y3

)

.

Fig. 1.12. Part II of predicate holding of computation trees for bland functionals.

do this similarly to the arithmetization of the typing calculus by introducing
into PA a five-place constructor function:

(

p

a[c;x] = y

)

= (a, c, x, y), p .

Here the bottom line of the function symbol represents one step in the com-
putation where the (code of) term a is evaluated into y in the environment
where c codes recursive applications and x holds the values of free variables
in a. The list p codes the subcomputations.

Figure 1.11 contains a part of clauses of a definition by course of values
recursion of the primitive recursive predicate Ct. Ct(p) holds if p encodes
the computation tree for a bland term. The clauses in the figure are common
to trees encoding computation of both bland and curried functionals. Figure
1.12 contains a clause for Ct pertaining to bland functionals only.

The reader will note the change of the environment in the second clause
evaluating the codes of case terms in Figure 1.11. The code a of the discrim-
inator term has been evaluated to y1 = j, y2 where y2 are the values of local
variables for the j+1-st (code of) term b in the list of codes t. The parame-
ters of the case are coded by x and the code b is evaluated in the extended
environment x, y2.

The two clauses for rec(a) in the same figure show how the code a of the
recursive argument is evaluated to y1, its measure to y2, and the measure
of arguments x to y3. If y2 < y3 then the recursion guard is satisfied and
recursion takes place where the code of the recursive definition b is evaluated
in the environment y1. If y2 ≥ y3 then the guard fails and the default code e
is evaluated instead.

Figure 1.12 contains a single clause evaluating the code a•b. If this is
well-typed then the code a must evaluate to y1 = cd(d, n,m, e) coding a
bland definition. Its arguments b are evaluated to y2 and the evaluation of
the body d of the definition takes place with the recursion environment y1

and argument environment y2.

1.9.14 Characterization of computation of bland terms. The Main
lemma on bland functionals asserts that well-typed codes can be evaluated,
i.e. PA proves

78



(r = 0 ∨ r = r1 7→r2 ∧ c :: r) ∧ (s = 0 ∨ x :: s) ∧ a[r; s] :: t

→ ∃y∃pCt
(

p

a[c;x] = y

)

. (1)

The cases r = 0 and/or s = 0 take care of codes a without recursive in-
vocations and/or without free occurrences of variables. By inspection of the
definition of the predicate Ct one can see that the values y and p are uniquely
determined.

Bland definitions of functions such that neither they nor their measures
apply the application operator • are the mixed definitions in the narrow
sense and they define exactly the primitive recursive functions. Moreover, all
primitive recursive functions can be defined by well-typed bland definitions.
Every unary primitive recursive function has a bland definition such that
for its code c we have c :: N 7→N . Thus (c•x0)[0;x] ::N and so we obtain

Ct

(

p

(c•x0)[0;x] = y

)

for some y and p from the main lemma. This means

that the lemma guarantees the evaluation of every unary primitive recursive
function and so the lemma cannot be proved in the fragment IΣ1. It is
mildly surprising that the lemma can be proved already in the fragment IΣ2.
Moreover, when lev(s) = 0 then already IΣ1 proves for every n the following
special case of the main lemma:

x :: s ∧ lev(s) = 0 ∧ nm[0;x] :: t→ ∃y∃pCt
(

p

nm[0;x] = y

)

.

1.9.15 Definition of the bland application operator •. In preparation
for the introduction into PA of the application operator for bland functionals
we explicitly define a binary predicate

Wtappl(c, x)↔ ∃s∃t(c :: s7→t ∧ x :: s) .

The unbounded existential quantifiers have primitive recursive bounds and
so the predicate is a primitive recursive one.

We now introduce the application operator • by the following Σ1 contex-
tual definition:

c•x = y ↔Wtappl(c, x) ∧ ∃pCt
(

p

(c•x0)[0;x] = y

)

∨ ¬Wtappl(c, x) ∧ y = 0

whose existence condition follows from the Main lemma 1.9.14(1) and the
uniqueness condition holds because the values y and p are uniquely deter-
mined. Although the definition of the operator is Σ1, it is not a primitive
recursive function. This is because the Main lemma is provable only in IΣ2.

1.9.16 Characterization of bland functionals. Functions definable by
bland definitions (both typed and untyped) are clearly primitive recursive in
the bland application operator • which is provably recursive in IΣ2.

79



The fragment IΣ2, but not IΣ1, proves the typing property 1.9.3(1)
of the application operator •. Similarly, for every well-typed definition of
f :: s1, . . . , sn → t, IΣ2 proves that ′f is the index of f by proving the prop-
erties 1.9.3(3) and 1.9.3(4). If the type levels of types s1, . . . , sn are 0 then
both properties are provable even in IΣ1 and so the function f is primitive
recursive.

We can also characterize bland functionals in terms of computer program-
ming languages as those afforded by the applicative part of the programming
language C enriched with polymorphism. This is because functions can be
arguments and results in C but we do not have there the true lambda ab-
straction (see Par. 1.9.17). Thus the only functions accepted and yielded by
C functionals are those defined in C.

1.9.17 Ackermann-Péter function defined by a detour through
bland functionals. We introduce into PA by primitive recursion a binary
bland iteration functional

F (f, 0) = f(1)
F (f,m+ 1) = f•F (f,m)

typed as F :: (N 7→N), N 7→N . The functional has thus a bland index ′F
typed as

′F :: (N 7→N)×N 7→N . (1)

Note that we have F (f,m) = f (m+1)(1) where f (0)(a) = a and f (i+1)(a) =
f•f (i)(a). We would like to define a function

A(0) = ′S
A(n+ 1) = λm.′F•(A(n),m) .

where S :: N 7→N is the successor function. We do not intend to introduce
lambda terms into PA (because they are variable binding operators just as
the case terms), but we can equivalently define by primitive recursion:

A(0) = ′S
A(n+ 1) = ′Cf •A(n) .

provided we can find an auxiliary functional Cf which is a curried form of
F , i.e. such that

Cf :: (N 7→N)7→N 7→N (2)

and ′Cf •f•m = ′F•(f,m). We can then explicitly define the Ackermann-
Péter function as Ack(n,m) = A(n)•m. The function Ack is not primitive
recursive and so it cannot have a bland definition with the typing Ack ::
N,N 7→N . Thus the functional Cf cannot have a typed bland definition. On
the other hand, the functional Cf can be introduced into PA by an explicit
definition

80



Cf (f) = cd(′F•P (f,x0), 1, 0, 0) .

PA even proves

f :: N 7→N → L(f) :: N 7→N ∧ ′Cf •f•m = ′F•(f,m)

but Cf cannot be typed as (2). Nevertheless, the above explicit definition of
Ack shows the power of the bland application operator • as at least as strong
as the Ackermann-Péter function.

We will introduce below the curried functionals where the index of ′F will
obtain the curried type ′F :: (N 7→N)7→N 7→N rather than the bland type (1).
We will not need then the functional Cf because we can directly define the
above A by well-typed primitive recursion:

A(0) = ′S
A(n+ 1) = ′F•A(n) .

The Ackermann-Péter function is then defined as a typed curried functional
with the same explicit definition: Ack(n,m) = A(n)•m.

Curried types of indices give the curried functionals powers equivalent to
lmabda abstraction. But, as we will see below, there is a price to be paid for
the increased power of definability. For instance, the application operator •
for curried functionals still has a Σ1-definition but the whole of PA cannot
prove its existence condition.

1.9.18 Curried intensional functionals. Curried intensional functionals
differ from the the bland ones in the index properties, in function types, and
in the meaning of the application operator •.

Curried definitions are just like bland definitions, i.e. narrow mixed defi-
nitions in •, except that for every well-typed definition f :: s1, . . . , sn 7→t the
code ′f of f has the curried index properties:

′f :: s1 7→ . . . 7→sn 7→t (1)
x1 :: s1 ∧ . . . ∧ xn :: sn → ′f•x1• . . . •xn = f(x1, . . . , xn) . (2)

This seemingly small change from the bland index type s1× . . .×sn 7→t to the
curried index type s1 7→ . . . 7→sn 7→t has far reaching consequences as (2) will
not be provable in PA unless the type levels of s1, . . . , sn will be 0. Property
(2) will be though satisfied in the standard model of PA.

The typing property (1) will be derivable in PA but not in the typing
calculus. For that we have to replace the bland typing axioms 1.9.3(5) by

∆, f :: s1, . . . , sn 7→t⇒ ′f :: s1 7→ . . . 7→sn 7→t
. (3)

The reader can visualize the curried application operator • to be the
completion of the following partial function operating on codes:

81



c•x '











c1 c codes f(y1, y2 . . . , yn) ' τ [f ; y1, y2 . . . , yn], n > 1, and
c1 codes g(y2, . . . , yn) ' τ [g;x, y2, . . . , yn]

{c}(x) otherwise.

Here the partial universal function {c}(x) discussed in Par. 1.9.1 can be
visualized as defined by

{c}(x) ' y ↔ ∃pCt
(

p

(c•x0)[0;x] = y

)

.

1.9.19 Computation of well-typed curried terms. We compute bland
terms into curried numerals which are obtained from the mixed numerals by
the addition as new irreducible terms of all well-typed application terms

′f•ρ1 . . . •ρk

where 0 ≤ k < n, the n-ary function f has a well-typed curried definition, and
ρ1, . . . , ρk are curried numerals. We close the above terms under pairing and
binary successors. Note that similarly as bland numerals, the class of curried
numerals is defined relatively to the current extension of PA. We replace the
reductions 1.9.3(1) for bland indices by the following ones:

′f•ρ1• . . . •ρn I f(ρ1, . . . , ρn) (1)

where f is as above, f(ρ1, . . . , ρn) is well-typed, and ρ1, . . . , ρn are curried
numerals.

It can be shown that the reductions of all well-typed curried terms ter-
minate in curried terminals with no conversions whatsoever.

1.9.20 Arithmetized curried typing predicate. Going from bland to
curried functionals we must change the codes of defined function applications
f(τ1, . . . , τn) from ′f•(pτ1, . . . , τnq) to

′f•pτ1q• . . . •pτnq .

We then modify the definition of the arithmetized type derivation predicate
Dt(p) from Par. 1.9.9 by replacing its clause concerned with the typing of
codes cd(a, n,m, e) of function definitions by the following clause taking into
account the curried typing axioms 1.9.18(3):

Dt

(

p1, p2, p3, 0
cd(a, n,m, e)[r; s] :: t

)

← n > 0 ∧Uncurry(n, t) = t1 7→t2 ∧

Dt(p1) ∧ p1 =
(

q1

a[t1 7→t2; t1] :: t2

)

∧

Dt(p2) ∧ p2 =
(

q2

m[0; t1] :: N

)

∧

Dt(p3) ∧ p3 =
(

q3

e[0; t1] :: t2

)

.

82



Here the binary primitive recursive function Uncurry is introduced into PA
to satisfy:

Uncurry(n, t) =

{

s1× . . .×sn 7→u if t = s1 7→ . . . 7→sn 7→u
0 otherwise.

The typing predicate a[r; s] :: t arithmetizing the derivability in the curried
typing calculus is now introduced into PA as a primitive recursive predicate
just as in Par. 1.9.10.

1.9.21 Curried function types. Curried function types are defined simi-
larly as in Par. 1.9.11 except that the property 1.9.11(1) is replaced by

x :: s7→t↔ ∃a∃n∃m∃e(x = cd(a, n,m, e) ∧ x[0; 0] :: s7→t) ∨
∃y∃z∃u(x = y•z ∧ y :: u 7→s7→t ∧ z :: u) .

In spite of the unbounded existential quantifier on u, the predicate x :: t is
primitive recursive.

1.9.22 Arithmetization of computation of curried terms. We mod-
ify the predicate Ct arithmetizing computations of bland functionals (see
Par. 1.9.13) by replacing its a•b clause given in Figure 1.12 by the following
clauses:

Ct

(

p1, p2, p3, 0
(a•b)[c;x] = y4

)

← Ct(p1) ∧ p1 =
(

q1

a[c;x] = y1

)

∧

Ct(p2) ∧ p2 =
(

q2

b[c;x] = y2

)

∧

Red(1, y1, y2) = d, y3 ∧ d = cd(k, n,m, e) ∧

Ct(p3) ∧ p3 =
(

q3

k[d; y3] = y4

)

Ct

(

p1, p2, 0
(a•b)[c;x] = y3

)

← Ct(p1) ∧ p1 =
(

q1

a[c;x] = y1

)

∧

Ct(p2) ∧ p2 =
(

q2

b[c;x] = y2

)

∧

Red(1, y1, y2) = 0 ∧ y1•y2 = y3 .

Here the ternary function Red is introduced into PA by course of values
recursion in the second argument:

Red(i, cd(k, n,m, e), y) = cd(k, n,m, e), y ← n = i
Red(i, cd(k, n,m, e), y) = 0← n > i
Red(i, a•b, y) = Red(i+ 1, a, b, y) .

We have Red(1, y1, y2) = d, y3 iff d = cd(k, n,m, e),

y1 = d•x1• . . . •xn−1 ,

83



and y3 = x1, . . . , xn−1, y2. This means that the computation step codes
the reduction 1.9.19(1) and the function whose definition is coded by d
should be applied to arguments y3. If Red(1, y1, y2) = 0 then we have
y1 = cd(k, n,m, e)•x1• . . . •xi for i + 1 < n and the value of a•b is the
code of the irreducible curried term:

y3 = y1•y2 = cd(k, n,m, e)•x1• . . . •xi•y2 .

1.9.23 Characterization of computation of curried terms. The in-
troduction of curried function types increases so strongly the power of in-
tensional functionals that PA does not prove the curried counterpart of the
Main lemma 1.9.14(1):

(r = 0 ∨ r = r1 7→r2 ∧ c :: r) ∧ (s = 0 ∨ x :: s) ∧ a[r; s] :: t

→ ∃y∃pCt
(

p

a[c;x] = y

)

(1)

although the formula is satisfied in the standard model of PA.
Only the following special forms are provable in PA:

x :: s ∧ lev(s) = 0 ∧ nm[0;x] :: t→ ∃y∃pCt
(

p

nm[0;x] = y

)

.

As the code n gets more complex the induction axioms needed to prove the
special case are of increasing quantifier complexity. It can be shown that
every provably recursive function of PA can be introduced in this way by a
suitable choice of the code n.

1.9.24 The theory PA(V). If one wishes to have the intensional function-
als with the full power of lambda abstraction, and all adherents of functional
programming in the style of Haskell would agree, then one needs to strengthen
PA. The strengthening of PA is not needed because we wish to have more
provably recursive functions but because we wish comfortable programming
with curried functionals.

The strengthening of PA to the theory PA(V) is obtained by suitably
extending PA with the auxiliary functions and predicates needed in the defi-
nition of the function V (see Par. 1.6.4) and then adding the three clauses for
V as axioms. One also needs to extend the induction axioms so one can use
the symbol V in the induction formulas. Since V is ∆1-definable by a formula
φ[x, y], it suffices to add one induction axiom for the formula φ[x, V (x)]. The
remaining induction axioms with V are then provable. The theory PA(V) is
consistent (because the clauses for V are satisfied in the standard model of
PA) but it is not a conservative extension of PA.

Nevertheless, the theory PA(V) is strong enough to prove the Main
Lemma 1.9.23(1) for the computation of curried functionals.

84



1.9.25 Definition of the curried application operator. We proceed
similarly as in Par. 1.9.15. We first introduce into PA(V) the binary predicate

Wtappl(c, x)↔ ∃s∃t(c :: s7→t ∧ x :: s) .

The unbounded existential quantifiers have primitive recursive bounds and
so the predicate is a primitive recursive one.

We then introduce into PA(V) the application operator • by the following
contextual Σ1-definition:

c•x = y ↔Wtappl(c, x) ∧ ∃pCt
(

p

(c•x0)[0;x] = y

)

∨ ¬Wtappl(c, x) ∧ y = 0

(1)

whose existence condition follows from the Main lemma 1.9.23(1) and the
uniqueness condition holds because the values y and p are uniquely deter-
mined. Although the definition of the operator is Σ1, it is not a provably
recursive function of PA. This is because the Main lemma is provable only in
PA(V).

1.9.26 Characterization of curried functionals. Functions definable by
curried definitions (both typed and untyped) are clearly primitive recursive in
the curried application operator • defined by 1.9.25(1) as provably recursive
in PA(V) but not in PA.

The theory PA(V), but not PA, proves the typing property 1.9.3(1) of
the curried application operator •. For every well-typed curried definition of
f :: s1, . . . , sn → t, PA(V) proves that ′f is the index of f by proving the
properties 1.9.18(1) and 1.9.18(2). If the type levels of types s1, . . . , sn are
0 then both properties are provable even in PA and so the function f is
provably recursive in PA.

1.9.27 Fast growing hierarchy defined as curried functionals. We
will now demonstrate the power of curried functionals by defining the func-
tions Fα(x) of the fast growing hierarchy (see Par. 1.6.6) as curried functionals
with indices. We will be moving at the limits of definability by curried func-
tionals and so we will be able to introduce at one time only the functions Fα
where for some fixed number M we have α ≺ ω1

M .
We first define by primitive recursion the ternary iteration functional

I(k, x, y) of polymorphic type I :: N, (t 7→t), t 7→t which we abbreviate to
x(k)(y):

x(0)(y) = y

x(k+1)(y) = x•(x(k)(y)) .

For each n ≤M we define the function types T k as abbreviations:

85



T 0 ≡ ′N
Tn+1 ≡ Tn 7→Tn

and also (n+ 1)-ary intensional functionals In+1 of types

In+1 :: Tn, Tn−1, . . . , T 1, T 0 7→T 0

explicitly defined by:

I1(k) = k

I2(x1, k) = x1•(k+1)

I3
0 (x2, x1, k) = x

(k+1)
2 (x1)•1

In+4
0 (xn+3, xn+2, xn+1, . . . , x1, k) = x

(k+1)
n+3 (xn+2)•xn+1• . . . •x1•k .

Since the definitions are well-typed, the functionals have indices ′In+1 such
that PA(V) proves ′In+1 :: Tn+1 and

xn :: Tn ∧ . . . x1 :: T 1 → ′In+1•xn• . . . •x1•k = In+1(xn, . . . , x1, k) .

We now introduce into PA(V) a unary function in a: KM+1(a) by explicit
definition:

KM+1(a) = ′IM+1

and for n = M−1,M−2, . . . , 0 a sequence of unary functions in a: Kn+1(a)
by course of values recursion:

Kn+1(0) = ′In+1

Kn+1(a ] ωb) = Kn+2(b)•Kn+1(a) .

We claim that every function Fα of the fast growing hierarchy where
α ≺ ω1

M , with a the canonical code of the ordinal α, can be explicitly defined
by:

Fα(k) = K1(0 ] ωa)•k .

Moreover, the functions Fα are defined by well-typed curried definitions and
have indices.

Preparatory to the proof of our claim we derive in PA(V) for each n < M
by induction on k:

Kn+1(a ] ωb·k) = (Kn+2(b))k)(Kn+1(a))

K1(a ] ω0·k)•m = K1(a)•(m+k)

and by complete induction on c:

xn+1 :: Tn+1 ∧ . . . ∧ x1 :: T 1 →
Kn+2(a ] ωb ] ω

c

)•xn+1• . . . •x1•k = Kn+2((a ] ωb ] ω
c

)[k])•xn+1• . . . •x1•k .

86



We then prove by ≺w1
M induction on a:

a ≺ w1
M → V (a) = 0 ] ω0·(K1(a)•0) .

We thus have

Fα(k) = A(a, k) = LV (0 ] ωa ] ω0·k) = L(0 ] ω0·(K1(0 ] ωa ] ω0·k)•0) =

K1(0 ] ωa ] ω0·k)•0 = K1(0 ] ωa)•k .

We now show that the definitions of Kn+1 and Fα are well-typed and
so the functionals have indices. To that end we introduce the type predicate
a : O of a being the code of an ordinal ≺ε0 by

0 : O
a ] ωb : O ← b : O ∧ a : O .

The reader will note that the type O is coextensive with the type List(O)
and so we have a :: O.

The three functions over the codes of ordinals defined in Paragraphs 1.6.2
and 1.6.3 have well-typed definitions and we have · ] ω· :: O,O7→O, · ] ω··· ::
O,O, N 7→O, and (·)[·] :: O, N 7→O. It can be then shown that the curried
functionals Kn+1 have well-typed definitions such that Kn+1 :: O7→Tn+1

and thus also Fα has a well-typed definition Fα : N 7→N .

87



1.10 Issues Open to Further Research

UNFINISHED we do not propose solutions and only outline possible expli-
cation in PA of issues which must be solved before declarative programming
can replace imperative one. The most pressing are the destructive updates.

Destructive Updates

UNFINISHED this is the most important problem to be solved in declar-
ative programming. It is usually tackled as a problem of arrays but it is
actually a more general problem of destructive updates of recursive container
data structures because the large databases which have to be updated with-
out copying before declarative programs manipulating them become feasible.

1.10.1 Modification functions. UNFINISHED

1.10.2 Dags in PA. The problem of updating trees would be relatively sim-
ple were it not the case that during the computation of declarative programs
the trees represented in memory become directed acyclic graphs (dags).

For instance, the function

f(x, y) = x, y, x

applied to two mixed numerals as f(ρ1, ρ2) constructs a dag: ....
This dag can be represented by the generalized term

let
ρ1 = x→x x, ρ2, x .

Generalized terms bind variables and for that reason we did not introduce
them into PA. There is another possibility of representing dags in PA with
explicit ‘pointers’: m = T T (m), ρ2, ρ1.

1.10.3 Pointers as values. We prever to deal with pointers as values and
to that end we introduce a binary ‘memory pointing’ function m. p which is
defined by dyadic induction:

m. 0 = m
(m1,m2). p1 = m1. p
(m1,m2). p1 = m1. p
(m1,m2). p2 = m2. p .

Dags which we are interested in will be represented by dag terms which
are built up from 0 by pairing ρ1, ρ2 and by pointers m. p where p is a dyadic
numeral. UNFINISHED always exists the unique m which means no cycles.
Perhaps comment on constraints when the uniqueness is relaxed.

88



If ρ[m] is a subterm of the heap τ [m] s.t. ∃mm = τ [m] then the ternary
dag indexing function ρ[p]τ yields the dereferenced subterm (i.e. a subterm
which is not a pointer) of τ selected from ρ by the pointer p:

ρ[0]τ ≡

{

ρ if ρ ≡ 0 or ρ ≡ ρ1, ρ2

τ [p]τ if ρ ≡ m. p

(ρ1, ρ2)[p1]τ ≡ ρ1[p]τ

(ρ1, ρ2)[p2]τ ≡ ρ2[p]τ

(m. r)[p]τ ≡ τ [r ? p]τ .

We clearly have
m = τ [m]→ m. p = τ [p]τ .

The indexing function is used in the binary dag denotation function ρτ which
yields the denotation of a dag term ρ[m] relatively to the heap τ s.t. ∃mm =
τ [m]. The denotation function satisfies:

0τ = 0
(ρ1, ρ2)τ = ρ1

τ , ρ2
τ

(m. p)τ = (τ [p]τ )τ .

1.10.4 Dag programs. For the sake of simplicity we do not deal with
dyadic numerals and arithmetic. The dag programs we are interested in are
obtained by the unfolding of certain regular clausal definitions with measure.
The definitions are constructed from variables, 0, pairing, applications of pre-
viously defined (by dag programs) functions , and from the generalized pair
case terms.

UNFINISHED what about the measures.

1.10.5 Reduction of dag programs. We will reduce terms τ [m] built
up from 0, by pairing, applications of functions, generalized terms, and by
pointers. Pointers m. p in the terms point to the heap (store) m. Note that
the terms τ may contain at most the variable m free. The state of the store
is given by a dag term ρ[m] such that ∃mm = ρ[m].

We will reduce terms τ [m] in the context of the heap and we can visualize
the reduction of the formula:

m = ρ[m] ∧ τ = y

One reduction step is

m = ρ[m] ∧ τ [m] = y I m = ρ1[m] ∧ τ1[m] = y (1)

where the leftmost and outermost redex in τ is replaced by its corresponding
contractum whereby we obtain a term τ1. The reduction may involve the

89



change of the heap whose new state is given by the dag term ρ1. The reduction
terminates with an irreducible numeral τ which is either 0 or a pointer.

The invariant of the reduction step (1) is

∃m(m = ρ[m] ∧ τ [m] = y)↔ ∃m(m = ρ1[m] ∧ τ1[m] = y)

which means that although the term τ and the heap ρ change, the denotation
y of τ1[m] does not.

The initial term τ to be reduced is closed, which means that τ does not
contain any pointers m. p. The initial formula is m = 0∧ τ = y with the heap
m empty. The reduction of τ goes on until the term τ becomes an irreducible
term τ1 which will be either 0 or a pointer. We will have

m = 0 ∧ τ = y I m = ρ[m] ∧ τ1[m] = y

for some dga term ρ representing the heap and so

τ = y ↔ ∃m(m = 0 ∧ τ = y)↔ ∃m(m = ρ[m] ∧ τ1[m] = y) .

1.10.6 Redexes. cons and applications. the role of the stack.

1.10.7 Comment on operational versus denotational. bisim.

Conservative Second-Order Calculus of Extensions

UNFINISHED Universal quantification: for all extensions such and such
φ holds. Existential quantificaton: for specification: there exists an extension
such that φ holds.

1.10.8 Universal second order quantification: ∀2I. ∀P (φ1[P ]→ φ2[P ]
is proved if by extending PA with P and a new axiom φ1[P ] we can prove
φ2[P ].

The ‘schema’ of induction:

∀P∀p(P (0, p) ∧ ∀x(P (x, p)→ P (x′, p))→ ∀xP (x, p)) .

is not a good example because it is not provable.

1.10.9 Universal instantiation: ∀2E. UNFINISHED with a term or
formulas with possibly empty parameters.

1.10.10 Existential second order quantification: ∃2I. Specification:

∃f∀x f(x)2 ≤ x < (f(x) + 1)

is proved by (possibly empty extension of PA so a term τ [x] is in the language
and proving

τ [x]2 ≤ x < (τ [x] + 1) .

Note: Most often we will have τ [x] ≡ f(x).

90



1.10.11 Existence property: ∃2E. UNFINISHED inversion

1.10.12 Combined second order quantification.

∀g∀h∃f∀p∀x(f(0) = g(p) ∧ f(x′, p) = h(x, f(x, p), p))

Minimalization function:

∀P (∀p∃yP (y, p)→ ∃f∀p f(p) = µy[P (y, p)])

where f(~x) = µy[P (y, ~x)] abbreviates

∀y(f(~x) = y ↔ P (y, ~x) ∧ ∀z(z < y → ¬P (z, ~x)))

1.10.13 Conservativity. Every first-order property proved by a detour
through a second order one is provable in PA.

1.10.14 Tree of extensions. UNFINISHED
UNFINISHED existential instantiation of functions by proofs as a gen-

eralization of extraction of programs.

Extraction of Programs from Proofs

UNFINISHED

Abstract Data Types

1.10.15 Abstraction Types. UNFINISHED

1.10.16 Representants. UNFINISHED Let ∼ be an equivalence over
T :

x ∼ y → T (x) ∧ T (y)
T (x)→ x ∼ x
x ∼ y → y ∼ x

x ∼ y ∧ y ∼ z → x ∼ z .

We define a predicate provably recursive in ∼:

Isr(x)↔ ∀y(y ∼ x→ y ≥ x)

and a function provably recursive in ∼:

r(0) = 0
r(x+ 1) = y + 1← Isr(x+ 1) ∧ r(x) = y ∧ Isr(y)
r(x+ 1) = y ← Isr(x+ 1) ∧ r(x) = y ∧ ¬Isr(y)
r(x+ 1) = r(x)← ¬Isr(x+ 1) .

91



If T is infinite, i.e. if
∃y(y ≥ x ∧ T (y))

then

x ∼ y → r(x) = r(y)
T (x) ∧ T (y) ∧ r(x) = r(y)→ x ∼ y

∃y(x = r(y) ∧ T (y)) .

1.10.17 Finite Sequences. Sequences and three specializations: lists, ar-
rays, queues, first typeless, then typed.

1.10.18 Finite Sets. Language: ∅ empty set, s ∪ {a} insert into set, ch
choice function, |s|s size of the set, Set predicate of being a set. SET is
abbreviation for the formulas of the following groups:

Properties of ch, ∅, and Set :

ch(∅) = 0 .

Clausal property of set size (there is no measure which goes down):

|s|s = 0← ch(s) = 0
|s|s = |t|s + 1← ch(s) = x, t .

Clausal definition of predicate x : Set (|s|s is the measure):

∅ : Set
s : Set ← ch(s) = y, t ∧ t : Set .

Clausal definition of set membership (|s|s is the measure):

x ∈ s← ch(s) = y, t ∧ (x = y ∨ x ∈ t) .

Extensionality:

s : Set ∧ t : Set → (s = t↔ ∀x(x ∈ s↔ x ∈ t)) .

Properties of insert:

s : Set → s ∪ {x} : Set
s ∪ {x} : Set → (y ∈ s ∪ {x} ↔ y = x ∨ y ∈ s) .

1.10.19 Typing of sets. Every implementation of SET can be typed for
every type T by defining:

s : Set(T )↔ s : Set ∧ ∀x(x ∈ s→ x : T ) .

We can then prove the typing properties:

∅ : Set(T )
s : Set(T ) ∧ ch(s) = x, t→ x : T ∧ t : Set(T )

x : T ∧ s : Set(T )→ s ∪ {x} : Set(T ) .

92



1.10.20 Finite Sets II. Language: ∅ empty set, s ∪ {a} insert into set, ch
choice function, Axioms: Properties of ch:

ch(∅) = 0
ch(s) = x, t→ t < s .

Clausal definition of set membership

x ∈ s← ch(s) = y, t ∧ (x = y ∨ x ∈ t) .

Extensionality:

s = t↔ ∀x(x ∈ s↔ x ∈ t) .

Basic property of insert:

y ∈ s ∪ {x} ↔ y = x ∨ y ∈ s .

UNFINISHED three implementations, bitmap, ordered list, binary
search tree, Note that membership can be faster than through choice.

1.10.21 Abstract binary trees. Language: ∅, Nd(n, s, t). Axioms:

x = ∅ ∨ ∃n∃s∃t x = Nd(n, s, t) (1)
∅ 6= Nd(n, s, t) (2)

Nd(n1, s1, t1) = Nd(n2, s2, t2)→ n1 = n2 ∧ s1 = s2 ∧ t1 = t2 (3)
s < Nd(n, s, t) ∧ t < Nd(n, s, t) . (4)

Optimization by Computer-Aided Transformations

Some ten years ago there was a considerable research into the techniques
of computer-assisted program transformations in order to optime programs.
This was before the semantics of programming languages was sufficiently sim-
plified so the languages could be designed together with formal proof systems.
The following problem shows how a rather deep knowledge of properties of
underlying data structures is required before programs can be transformed
in computer assisted way.

1.10.22 Breadth-first Numbering. We present a so called functional pro-
gramming pearl posed by John Launchberry and discussed by Chris Okasaki
in [19]:

Given a tree, create a new tree of the same shape, but with the values
at the nodes replaced by the numbers 1, 2,. . . in breadth-first order.

93



Okasaki’s solution in the programming language ML can be formulated for
our binary trees (see Par. 1.3.20) by designing an auxiliary function B(n, a) =
b taking a number n and a forest a of type List Bt(t) into the forest b of type
List Bt(N), such that L(a) = L(b), the trees of b are of the same shape as
the corresponding trees in a, and the entire forest is numbered starting with
n in a breadth-first order. For instance, if a is the forest:

a

b
c

d
b

c
d c

Then b = B(1, a) should be the forest:

1
5

8
6

2
7

3 4

The function B looks at its second argument as a queue and yields and works
with the output forest as a backward queue to which one adds in the front
and removes from the end:

B(n, 0) = 0
B(n, [E]⊕ a) = [E]⊕B(n, a)
B(n, [Nd(x, t, s)]⊕ a) = [Nd(n, t1, s1)]⊕ a1 ←

B(n+ 1, a⊕ [t]⊕ [s]) = a1 ⊕ [t1]⊕ [s1] .

In the third clause of B, the subtrees t and s are placed at the end of the
argument queue and after the recursive application B(n+ 1, a⊕ [t]⊕ [s]) = b
they will be correctly numbered as t1 and s1 respectively in the output forest
b which is destructed from the end as b = a1 ⊕ [t1] ⊕ [s1]. The forest a1 is
now correctly numbered to follow the tree Nd(n, t1, s1) in the forest yielded
by B(n, [Nd(x, t, s)]⊕ a).

The clausal definition of B(n, a) is regular in the measure
∑

sεa 2·|t|t + 1
where |s|t is the size of the tree s clausally defined as:

|E|t = 0
|Nd(x, s1, s2)|t = |s1|t + |s2|t + 1 .

This is because UNFINISHED
The function Bf (t) breadth-first numbering the tree t is now explicitly

defined as:

Bf (t) = t1 ← B(1, [t]) = [t1]

because the breadth-first numbering of t is the same as the breadth-first
numbering of the single element forest [t].

94



1.10.23 Turning the backwards queue into a normal one. Okasaki
notes that the output backwards queue yielded by B can be turned into an
ordinary queue in a function B1(n, a) yielding the same forest as B(n, a) but
in the reversed order. We can view the problem of designing the function B1

as a program transformation problem where we are looking for a recursive
clausal definition of the function B1 given its explicit ‘definition’

B1(n, a) = RevB(n, a) (1)

which should be viewed as the desired property of B1 rather than as a defi-
nition. The clausal definition of B1 can be semi-mechanically obtained from
the clasuses for B when we note that we have a = b↔ Rev(a) = Rev(b). We
accordingly modify the clauses of B to obtain:

Rev B(n, 0) = Rev(0)
Rev B(n, [E]⊕ a) = Rev(E ⊕B(n, a))
Rev B(n, [Nd(x, t, s)]⊕ a) = Rev([Nd(n, t1, s1)]⊕ a1)←

Rev B(n+ 1, a⊕ [t]⊕ [s]) = Rev(a1 ⊕ [t1]⊕ [s1]) .

We now use the obvious properties

Rev(0) = 0 (2)
Rev([a]) = [a] (3)

Rev(a⊕ b) = Rev(b) + Rev(a) (4)

of the list reversal function Rev and obtain:

Rev B(n, 0) = 0
Rev B(n, [E]⊕ a) = Rev B(n, a)⊕ [E]
Rev B(n, [Nd(x, t, s)]⊕ a) = Rev(a1)⊕ [Nd(n, t1, s1)]←

Rev B(n+ 1, a⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ Rev(a1) .

As the final step, we replace the auxiliary result Rev(a1) by a1 and use the
property (1) to get the desired clausal definition of the function B1:

B1(n, 0) = 0
B1(n, [E]⊕ a) = B1(n, a)⊕ [E]
B1(n, [Nd(x, t, s)]⊕ a) = a1 ⊕ [Nd(n, t1, s1)]←

B1(n+ 1, a⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ a1 .

Both input and output queues are now standard where we add at the end
and remove from the front. The new breadth-first numbering function Bf 1

has an explicit definition:

Bf 1(t) = t1 ← B1(1, [t]) = [t1] .

95



1.10.24 Speeding up the en-queuing. We note that our function B1(t)
operates in time O(|t|2s) because of the naive implementation of the en-
queuing operation q ⊕ [x] by concatenation. Okasaki improves this naive
solution by using a fast implementation of the ADT queue. One such im-
plementation represents a queue q = a⊕ Rev(b) as a pair of lists (a, b). The
en-queuing and de-queing functions have the following definitions:

Enq(x, (a, b)) = a, x, b
Deq(0, 0) = 0
Deq(0, b) = x, a, 0← b > 0 ∧ Rev(b) = [x]⊕ a
Deq((x, a), b) = x, a, b .

The reader will note that the de-queuing function yields a pair consisting of
the removed element and the new shortened queue provided that the queue
is not empty. For empty queues the function yields 0.

Instead of modifying B1 for the ADT queue, we transform it into a ternary
function B2(n, a, b) where (a, b) represents the input queue a ⊕ Rev(b) and
B2 yields the pair (b1, a1) representing the output queue b1 ⊕ Rev(a1). In
other words, we are looking for a recursive clausal definition of the function
B2 satisfying:

B2(n, a, b) = b1, a1 ↔ B1(n, a⊕ Rev(b)) = b1 ⊕ Rev(a1) ∧ L(a) = L(a1) .
(1)

Towards that end we rewrite the clauses of B1 in an equivalent homogeneous
form:

B1(n, a) = 0← a = 0
B1(n, a) = b⊕ [E]← a = [E]⊕ a1 ∧B1(n, a1) = b
B1(n, a) = a2 ⊕ [Nd(n, t1, s1)]← a = [Nd(x, t, s)]⊕ a1 ∧

B1(n+ 1, a1 ⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ a2 .

Substituting a0 ⊕ Rev for a yields:

B1(n, a0 ⊕ Rev(b)) = 0← a0 ⊕ Rev(b) = 0 (2)
B1(n, a0 ⊕ Rev(b)) = c⊕ [E]← a0 ⊕ Rev(b) = [E]⊕ a1 ∧B1(n, a1) = c (3)
B1(n, a0 ⊕ Rev(b)) = a2 ⊕ [Nd(n, t1, s1)]← a0 ⊕ Rev(b) = [Nd(x, t, s)]⊕ a1 ∧

B1(n+ 1, a1 ⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ a2 . (4)

Clause (2) can be equivalently written as

B1(n, 0⊕ Rev(0)) = 0⊕ Rev(0)

and then by property (1) as

B2(n, 0, 0) = 0, 0 . (5)

We will now transform the clause (4) under the assumption that a0 > 0,
i.e. a0 = [x]⊕ a for some x and a. We then have

a0 ⊕ Rev(b) = [Nd(x, t, s)]⊕ a1 ↔ x = Nd(x, t, s) ∧ a⊕ Rev(b) = a1

and so we can simplify the clause (4) to

96



B1(n, ([Nd(x, t, s)]⊕ a)⊕ Rev(b)) = a2 ⊕ [Nd(n, t1, s1)]←
B1(n+ 1, a⊕ Rev(b)⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ a2 .

Since
a⊕ Rev(b)⊕ [t]⊕ [s] = a⊕ Rev([s]⊕ [t]⊕ b) ,

we further get

B1(n, ([Nd(x, t, s)]⊕ a)⊕ Rev(b)) = a2 ⊕ [Nd(n, t1, s1)]←
B1(n+ 1, a⊕ Rev([s]⊕ [t]⊕ b)) = [s1]⊕ [t1]⊕ a2 .

We always have a2 = b1 ⊕ Rev(a1) for some b1 and a1 and, since

L(a2)+2 = LB1(n+1, a⊕Rev([s]⊕[t]⊕b)) = L(a⊕Rev([s]⊕[t]⊕b)) = L(a)+L(b)+2 ,

we can also assume that L(a1) = L(a) (and L(b1) = L(b)). The last clause
can be then written as

B1(n, ([Nd(x, t, s)]⊕ a)⊕ Rev(b)) = (b1 ⊕ Rev(a1))⊕ [Nd(n, t1, s1)]←
B1(n+ 1, a⊕ Rev([s]⊕ [t]⊕ b)) = [s1]⊕ [t1]⊕ (b1 ⊕ Rev(a1)) ∧ L(a) = L(a1)

which simplifies to:

B1(n, ([Nd(x, t, s)]⊕ a)⊕ Rev(b)) = b1 ⊕ Rev([Nd(n, t1, s1)]⊕ a1)←
B1(n+ 1, a⊕ Rev([s]⊕ [t]⊕ b)) = ([s1]⊕ [t1]⊕ b1)⊕ Rev(a1) ∧ L(a) = L(a1) .

Using the property (1) we get from this a clause for B2:

B2(n, [Nd(x, t, s)]⊕ a, b) = b1, [Nd(n, t1, s1)]⊕ a1 ←
B2(n+ 1, a, [s]⊕ [t]⊕ b) = [s1]⊕ [t1]⊕ b1, a1 . (6)

By similar transformations we obtain under the assumption a0 > 0 from
the clause (3) the clause

B2(n, [E]⊕ a, b) = b1, [E]⊕ a1 ← B2(n, a, b) = b1, a1 . (7)

We now transform the clauses (3) and (4) under the assumption that
a0 = 0. The clauses simplify to:

B1(n, 0⊕ Rev(b)) = c⊕ [E]← Rev(b) = [E]⊕ a1 ∧B1(n, a1) = c
B1(n, 0⊕ Rev(b)) = a2 ⊕ [Nd(n, t1, s1)]← Rev(b) = [Nd(x, t, s)]⊕ a1 ∧

B1(n+ 1, a1 ⊕ [t]⊕ [s]) = [s1]⊕ [t1]⊕ a2 .

Both clauses have in their antecedents Rev(b) 6= 0 from which we get b 6= 0
and we can collapse both clauses into one ‘trivial’ clause:

B1(n, 0⊕ Rev(b)) = c← b 6= 0 ∧B1(n,Rev(b)) = c .

We substitute c := Rev(b1) to get:

B1(n, 0⊕ Rev(b)) = Rev(b1)← b 6= 0 ∧B1(n,Rev(b)) = Rev(b1) .

We have

L(b) = LRev(b) = LB1(n,Rev(b)) = LRev(b1) = L(b1)

and so we can equivalently write the clause as:

97



B1(n, 0⊕ Rev(b)) = Rev(b1)⊕ Rev(0)← b 6= 0 ∧
B1(n,Rev(b)⊕ Rev(0)) = 0⊕ Rev(b1) ∧ LRev(b) = LRev(b1) .

Using the property (1) we get from this a clause for B2:

B2(n, 0, b) = Rev(b1), 0← b 6= 0 ∧B2(n,Rev(b), 0) = 0, b1 . (8)

The clauses (5), (8), (7), and (6) constitute a clausal definition for the
function B2 which we write with the list notation x, y instead of the identical
sequence notation [x]⊕ y as follows:

B2(n, 0, 0) = 0, 0
B2(n, 0, b) = Rev(b1), 0← b 6= 0 ∧B1(n,Rev(b), 0) = 0, b1
B2(n, (E, a), b) = b1, E, a1 ← B2(n, a, b) = b1, a1

B2(n, (Nd(x, t, s), a), b) = b1,Nd(n, t1, s1), a1 ←
B2(n+ 1, a, s, t, b) = (s1, t1, b1), a1 .

It remains to explicitly define the function Bf 2 numbering one tree as

Bf 2(t) = t1 ← B2(1, (t, 0), 0) = (t1, b), a .

The function Bf 2(s) performs in time O(|s|t) because the second clause
for B2 is taken once for each level of the tree s with the corresponding forest
of children of t as b. This means that the function Rev performs total 2·|s|t
applications and the maximal length.

is probably one the fastest functional algorithms for the breadth 3 times
through.

Concurrency

98



Part I

First-Order Logic and Peano Arithmetic

99





2. First-Order Languages

2.1 Language of First-Order Logic

2.1.1 First order languages. A first-order language L is given by at most
countable sets of function symbols and predicate symols. Every function and
predicate symbol has arity n ≥ 0 which is the number of arguments the sym-
bol expects. We require that there are effective procedures to decide whether
p is an n-ary function or predicate symbol of L.

Expressions in L will be terms and formulas and they will be finite se-
quences of symbols. Expressions will be metamathematical objects in contrast
to mathemathical objects such as natural numbers, real numbers, topological
spaces, etc. The expressions of L will have have no meaning by themselves.
They will be defined in such a way that it will be effectively decidable whether
an expression is correctly formed.

We write τ1 ≡ τ2 to mean that the expressions τ1 and τ2 are identical
sequences of symbols.

In these notes we will deal exclusively with first order languages logic so
from now on we will use the term language to denote a first order language.

2.1.2 Definition of terms of L. The set of terms of a language L is the
smallest set of finite sequences of symbols satisfying:

1. variables v0, v1, v2, . . . are terms,
2. if τ1, . . . , τn are terms and f is an n-ary function symbol of L then also
f(τ1, . . . , τn) is a term called function application.

Nullary function symbols are constant symbols and their applications f(),
which will be abbrevaited to f , are constants.

We will use possibly subscripted symbols x, y, z as syntactic (meta) vari-
ables ranging over variables, symbols f , g as syntactic variables ranging over
function symbols, and τ , ρ as syntactic variables ranging over terms.

Some binary function symbols, such as +, are customarily written in the
infix form τ1 + τ2 as an abbreviation for +(τ1, τ2).

2.1.3 Definition of formulas of L. The set of formulas of a language L
is the smallest set of finite sequences of symbols satisfying:



1. if τ1 and τ2 are terms of L then τ1 = τ2 is a formula called identity,
2. if τ1, . . . , τn are terms and P is an n-ary predicate symbol of L then
P (τ1, . . . , τn) is a formula called predicate application,

3. the symbol >, called the truth symbol, is a formula,
4. the symbol ⊥, called falsehood symbol, is a formula,
5. if φ is a formula so is ¬φ called negation,
6. if φ1 and φ2 are formulas so is (φ1 ∨ φ2), (called disjunction), (φ1 ∧ φ2)

(called conjunction), (φ1 → φ2) (called implication), and (φ1 ↔ φ2)
(called equivalence),

7. if φ is a formula and x a variable then so are ∀xφ (called universal quan-
tification) and ∃xφ (called existential quantification).

Formulas formed by the rules (1) and (2) are atomic formulas. Formulas
formed by the rules (3) though (6) are propositional formulas. Formulas
formed by the rule (7) are quantifier formulas.

The formula φ1 in the implication (φ1 → φ2) is called antecedent and
φ2 consequent. The symbols used in propositional formulas are propositional
connectives. Nullary predicate symbols are propositional constants and their
applications P (), which will be abbreviated to P , are propositional constants.

We use the possibly subscripted symbols φ, ψ as syntactic variables rang-
ing over formulas.

In order to increase the readability of formulas we can drop the topmost
pair of parentheses around a formula. All binary propositional connectives
associate to the right, for instance φ1 → φ2 → φ3 abbreviates φ1 → (φ2 →
φ3). Negations and quantification have larger precedence (bind stronger) than
conjunctions, which have larger precedence than disjunctions, which have
larger precedence than implications and equivalences. We often abbreviate
¬τ1 = τ2 to τ1 6= τ2.

2.1.4 Propositional atoms. Atomic and quantified formulas of L are
called the propositional atoms of L. The metamathematical function FPA(α)
is defined to yield the set of free propositional atoms of α, i.e. propositional
atoms of α outside of quantifiers. The function is defined for formulas α ≡ φ
and sets of formulas α ≡ T to satisfy the identities given in Fig. 2.1.

2.1.5 Extension of languages. The language L1 is an extension of the
language L if every function and predicate symbol of L is a symbol of L1. It
should be clear that every term or formula of L is a term or formula of L1.
Note that every L is an extension of itself.

2.1.6 Metamathematical implication and equivalence. In order to
shorten the metamathematical discursion in English we will use the sym-
bol⇒ in context · · · ⇒ · · · as abbreviation for if · · · then · · · and the symbol
⇔ in context · · · ⇔ · · · as abbreviation for · · · if and only if · · · . Sometimes
we will write the last also as · · · iff · · · . We use the metamathematical sym-

102



FPA(τ1 = τ2) = {τ1 = τ2}
FPA(P (τ1, . . . , τn)) = {P (τ1, . . . , τn)}

FPA(∀xφ) = {∀xφ}
FPA(∃xφ) = {∃xφ}

FPA(>) = ∅
FPA(⊥) = ∅

FPA(¬φ) = FPA(φ)

FPA(φ1 ∨ φ2) = FPA(φ1) ∪ FPA(φ2)

FPA(φ1 ∧ φ2) = FPA(φ1) ∪ FPA(φ2)

FPA(φ1 → φ2) = FPA(φ1) ∪ FPA(φ2)

FPA(φ1 ↔ φ2) = FPA(φ1) ∪ FPA(φ2)

FPA(T ) =
⋃

{FPA(φ) | φ ∈ T} .

Fig. 2.1. Function yielding sets of propositional atoms

bols ⇒ and ⇔ in order to distinguish them from the logical symbols → and
↔ wchich are from the object, i.e. first order, language.

103



104



3. Propositional Logic

3.1 Tautologies

In this section we investigate formulas which are always true only on the
strength of their propositional connectives.

3.1.1 Propositional interpretations. A propositional interpretation I for
L is a subset of propositional atoms of L. I is finite or infinite if the set I is
finite or infinite. The intention is that a propositional atom φ is true in the
propositional interpretation I iff φ ∈ I.

We denote by IT the restriction of I to the free propositional atoms of
the set T : IT = I ∩ FPA(T ).

3.1.2 Satisfaction relation for propositional interpretations. For a
given propositional interpretation I for L and a formula φ we define the
unary relation I satisfies φ, written as I � φ, as shown in Fig. 3.1 where φ,
φ1 and φ2 are arbitrary formulas and ψ are propositional atoms of L:

I � ψ ⇔ ψ ∈ I
I � >
I 2 ⊥
I � ¬φ⇔ I 2 φ

I � φ1 ∨ φ2 ⇔ I � φ1 or I � φ2

I � φ1 ∧ φ2 ⇔ I � φ1 and I � φ2

I � φ1 → φ2 ⇔ I 2 φ1 or I � φ2

I � φ1 ↔ φ2 ⇔ I � φ1 → φ2 and I � φ2 → φ1 .

Fig. 3.1. Propositional satisfaction relation

Note that the propositional atoms obtain meaning directly from I whereas
the meaning of other kinds of propositional formulas is uniquely determined
by the meaning of its subformulas.



We write I � T as an abbreviation for I � φ for all φ ∈ T and say that
T is satisfied in I.

Two (propositional) interpretations I and J for L are (elementarily) T -
equivalent, in writing I ≡T J , if

I � T ⇔ J � T .

I and J are (elementarily) equivalent, in writing I ≡ J , if they are {φ | φ ∈
L}-equivalent, i.e. I � φ⇔ J � φ holds for all formulas φ.

3.1.3 Sequents. Fix a language L. For a finite sequence of formulas Λ: φ1,
. . . , φn we write

∧

Λ as an abbreviation for the conjunction φ1 ∧ · · · ∧ φn if
n ≥ 1 and for > if n = 0. For any propositional interpretation I we clearly
have I �

∧

Λ iff I � φ for all φ ∈ Λ. Note that this holds also for Λ ≡ ∅
because

∧

∅ ≡ > for which I � > holds just as I � φ vacuously holds for all
φ ∈ ∅.

For the same sequence Λ we write
∨

Λ as an abbreviation for the dis-
junction φ1 ∨ · · · ∨ φn if n ≥ 1 and for ⊥ if n = 0. For any propositional
interpretation I we clearly have I �

∨

Λ iff I � φ for some φ ∈ Λ.
For two finite sequences of formulas Λ and Γ we call the formula

∧

Λ →
∨

Γ a sequent. For any propositional interpretation I we clearly have I �
∧

Λ→
∨

Γ iff I 2 φ for some φ ∈ Λ or I � φ for some φ ∈ Γ . Thus
I 2

∧

Λ→
∨

Γ iff I � φ for all φ ∈ Λ and I 2 φ for all φ ∈ Γ . We have
I 2

∧

∅ →
∨

∅ because this stands for I 2 > → ⊥.

3.1.4 Tautologies. A formula φ of L is a tautology, in symbols �p φ, if
I � φ holds for all propositional interpretations I for L.

We say that two formulas φ1 and φ2 are propositionally equivalent if we
have I � φ1 ⇔ I � φ2 for all propositional interpretations I. But this means
that I � φ1 ↔ φ2 holds for all propositional interpretations I and so φ1 ↔ φ2

is a tautology. Note that we then also have �p φ1 iff �p φ2.
Because I � φ1 ∧ φ2 holds iff I � φ1 and I � φ2 hold we have �p φ1 ∧ φ2

iff �p φ1 and �p φ2.

3.1.5 Equivalence lemma.

IT = J T ⇒ I ≡T J .

Proof. Assume IT = J T and for any φ ∈ T prove I � φ ⇔ J � φ by
a straightforward induction on the construction of φ because for every φ ∈
FPA(φ) we have φ ∈ I ⇔ φ ∈ J . ut

3.1.6 Decidability of tautologies. Fix a language L. We call a set S
of formulas of L decidable if we can effectively decide for every formula φ
whether or not φ ∈ S holds. Finite sets S are clearly decidable.

106



For every decidable propositional interpretation I and for every formula
φ of L we can effectively decide whether I � φ holds by simply using the
properties Par. 3.1.2 of propositional truth.

We can effectively decide whether a formula φ is a tautology because the
set FPAφ of all of its free propositional atoms contains finitely many, say n,
atoms. We claim that �p φ holds iff I �p φ holds for all 2n subsets I of
FPA(φ) and the last is clearly effectively decidable. The claim holds because
if φ is a tautology then it is true in all subsets of FPA(φ). On the other
hand, if φ is true in all subsets of FPA(φ) then if I is any propositional
interpretation for L then so is Iφ ⊆ FPA(φ) and we have Iφ � φ and hence
I � φ by Lemma 3.1.5. Thus φ is a tautology.

The just described method of deciding whether φ is a tautology is called
the truth table method because every propositional interpretation I ⊆ FPA(φ)
can be viewed as a row in a table containing t or f according to whether I � φ
holds or not.

3.2 Propositional Tableaux

We now introduce a method of testing for tautologies by propositional tableau
proofs. Tableaux were first used by Beth [2] and refined by R. Smullyan
[24]. We use the signed tableaux of Smullyan but in a positive way which
proves goals rather than refuting them. We will show that tableau proofs
prove exactly the tautologies. We introduce the tableaux because they can
be extended to deal with identity and quantifiers whereas the truth table
method cannot, at least not directly.

3.2.1 Signed formulas. A formula φ of a language L is signed if it is
written in one of two forms: φ or φ∗. The signed formula of the first form is
called assumption and of the second form goal. We will use φ+ as a syntactic
variable ranging over signed formulas. We will denote by ∆ finite nonempty
sequences of signed formulas. Every sequence ∆ of signed formulas can be
associated with a sequent

∧

Λ→
∨

Γ where the sequence Λ contains exactly
the assumptions in ∆ and the sequence Γ contains exactly the goals in ∆
(with the signs ∗ deleted).

3.2.2 Propositional tableaux. Fix a language L. Propositional tableaux
for L are finitely branching trees built by to two kinds of expansion rules. A
unary tableau expansion is of the form

∆1

φ+
1

(1)

where ∆1 is a possibly empty sequence of signed formulas and φ+
1 a signed

formula. A binary tableau expansion rule is of the form

107



∆1

φ+
1 | φ

+
2

(2)

where also φ+
2 is a signed formula. The signed formulas of ∆ are called

premises and the signed formulas φ+
1 and φ+

2 conclusions of the expansion
rules.

Let ∆ be a non-empty sequence of signed formulas and
∧

Λ →
∨

Γ a
sequent associated with ∆. A binary tree π with signed formulas as labels is
a tableau for ∆:

∆

π

if the tree π is either empty or it is obtained by an expansion rule. In the
graphical representation we place the tableau π under the sequence of signed
formulas ∆. The tableau is separated from the sequence by a solid line.

If the tableau π for ∆ is empty then it has the form

∆

If the tableau π for ∆ is obtained by a unary rule (1) then it has the form

∆

φ+
1

π1

where ∆1 ⊆ ∆ and

∆
φ+

1

π1

Note that π1 is a tableau for the sequence ∆,φ+
1 . The unary propositional

rules will be such that

�p (
∧

Λ→
∨

Γ )↔ (
∧

Λ1 →
∨

Γ1) (3)

where the sequent on the right is associated with ∆,φ+
1 .

If the tableau π for ∆ is obtained by a binary rule (2) then it has the
form

∆

φ+
1

π1

φ+
2

π2

where ∆1 ⊆ ∆,

∆
φ+

1

π1

, and

∆
φ+

2

π2

Note that π1 is a tableau for the sequence ∆,φ1 and π2 a tableau for the
sequence ∆,φ2. The binary rules will be such that

�p (
∧

Λ→
∨

Γ )↔ (
∧

Λ1 →
∨

Γ1) ∧ (
∧

Λ2 →
∨

Γ2) (4)

where the two sequents on the right are associated with ∆,φ+
1 and ∆,φ+

2

respectively.

108



3.2.3 Propositional tableau expansion rules. Fix a language L. The
following unary propositional tableau expansion rules are called flatten rules:

φ1 ∧ φ2

φ1
(∧1)

φ1 ∧ φ2

φ2
(∧2)

φ1 ↔ φ2

φ1 → φ2
(↔1)

φ1 ↔ φ2

φ2 → φ1
(↔2)

φ1 → φ2∗
φ1

(→1∗)
φ1 → φ2∗
φ2∗

(→2∗)
φ1 ∨ φ2∗
φ1∗

(∨1∗)
φ1 ∨ φ2∗
φ2∗

(∨2∗) .

The following binary propositional tableau expansion rules are called split
rules:

φ1 ∨ φ2

φ1 | φ2
(∨)

φ1 → φ2

φ2 | φ1∗
(→)

φ1 ∧ φ2∗
φ1∗ | φ2∗

(∧∗)
φ1 ↔ φ2∗

φ1 → φ2∗ | φ2 → φ1∗
(↔∗) .

The following unary propositional tableau expansion rules are called in-
version rules:

¬φ
φ∗

(¬)
¬φ∗
φ

(¬∗) .

Note that we have for each propositional connective two rules, one when the
connective is the premise formula as an assumption and one as a goal.

We will now convince ourselves by the truth table method that, for in-
stance, the rule → satisfies 3.2.2(4) which has the form:

�p ((φ1 → φ2) ∧
∧

Λ→
∨

Γ )↔ (φ2 ∧
∧

Λ→
∨

Γ ) ∧ (
∧

Λ→ φ1 ∨
∨

Γ ) .

Indeed, for every propositional interpretation I we have

I � (φ1 → φ2) ∧
∧

Λ→
∨

Γ

iff I 2 φ1 → φ2 or I �
∧

Λ→
∨

Γ iff (I � φ1 and I 2 φ2) or I �
∧

Λ→
∨

Γ
iff I �

∧

Λ→ φ1 ∨
∨

Γ and I � φ2 ∧
∧

Λ→
∨

Γ iff

I � (φ2 ∧
∧

Λ→
∨

Γ ) ∧ (
∧

Λ→ φ1 ∨
∨

Γ ) .

3.2.4 Proofs with propositional tableaux. Fix a language L. Let ∆ be
a non-empty finite sequence of signed formulas of L, and π a propositional
tableau for ∆.

A branch of the tableau π is a sequence of signed formulas ∆,∆1 where
∆1 is read off some branch of the tree π. We say that the branch is closed
on φ if both φ and φ∗ are in the branch ∆,∆1. The branch is closed if ∆,∆1

contains either the goal >∗, or the assumption ⊥, or the branch is closed on
some φ different from > and ⊥. The tableau π is closed if all of its branches
are closed.

109



We write π: `p [∆] when π is a closed propositional tableau for ∆. We
write `p [∆] if there is a propositional tableau π such that π: `p [∆]. By a
simple induction proof on the structure of π we can show:

π : `p [∆] and ∆ ⊆ ∆1 ⇒ π : `p [∆1]

where by ∆ ⊆ ∆1 we mean φ+ ∈ ∆⇒ φ+ ∈ ∆1 for all φ+.
For a formula φ we say that the tableau π proves φ, in symbols π: `p φ,

if π: `p [φ∗] holds. The same conventions as for sequences ∆ apply also to
formulas φ. In particular, we say that φ is provable if `p φ holds. For a set
of of formulas S we write `p S if `p φ holds for all φ ∈ S.

3.2.5 Lemma (Soundness of propositional tableaux). If
∧

Λ →
∨

Γ
is associated to ∆ then

π: `p [∆]⇒ �p
∧

Λ→
∨

Γ .

Proof. By induction on the structure of π. So assume that the tableau π for
∆ is closed:

∆

π

and perform a case analysis on π. If π is empty then either >∗ ∈ ∆, i.e.
> ∈ Γ , or ⊥ ∈ ∆, i.e. ⊥ ∈ Λ, or else ψ,ψ∗ ∈ ∆, i.e. ψ ∈ Λ and ψ ∈ Γ for
some propositional atom ψ. For any propositional interpretation I we then
have I �

∧

Λ→
∨

Γ and so the sequent is a tautology.
If the first expansion in π is by a unary rule 3.2.2(1) such that ∆1 ⊆ ∆

then we have
∆

φ+
1

π1

i.e.

∆
φ+

1

π1

for some tableau π1 such that π1: `p [∆,φ+
1 ]. Let

∧

Λ1 →
∨

Γ1 be a sequent
associated with ∆,φ+

1 . We get �p
∧

Λ1 →
∨

Γ1 by IH and so �p
∧

Λ→
∨

Γ
by 3.2.2(3).

If the first expansion in π is by a binary rule 3.2.2(2) such that ∆1 ⊆ ∆
then we have

∆

φ+
1

π1

φ+
2

π2

i.e.

∆
φ+

1

π1

and

∆
φ+

2

π2

for some tableaux π1 and π2 such that π1: `p [∆,φ+
1 ] and π2: `p [∆,φ+

2 ].
Let

∧

Λ1 →
∨

Γ1 and
∧

Λ2 →
∨

Γ2 be sequents associated with ∆,φ+
1 and

110



∆,φ+
2 respectively. We get �p

∧

Λ1 →
∨

Γ1 and �p
∧

Λ2 →
∨

Γ2 by two IH’s.
Hence �p

∧

Λ→
∨

Γ by 3.2.2(4). ut

3.2.6 Lemma (Completeness of propositional tableaux). If
∧

Λ →
∨

Γ is associated with ∆ then

�p
∧

Λ→
∨

Γ ⇒ `p [∆] .

Proof. Assume �p
∧

Λ→
∨

Γ and prove `p [∆] by induction on the total
number n of propositional connectives in the formulas of ∆ (not counting
those within quantifiers).

If n = 0 then ∆ consists at most of propositional atoms ⊥ and >. If ⊥ ∈ Λ
or > ∈ Γ then the branch ∆ is closed. If neither of the two cases applies and
the sequences Λ and Γ have no propositional atom in common then we have
a contradiction because I 2

∧

Λ→
∨

Γ for I = {φ | φ ∈ Λ}. Thus ∆ must
be closed on some φ. Hence, in both cases it suffices to take π empty.

If n > 0 then select a signed propositional formula φ+ of ∆ which is not
> or ⊥ and denote by ∆1 the sequence obtained from ∆ by omitting the
selected formula from it. Denote by Λ1 the sequence obtained from Λ by
deleting φ if the selected signed formula is an assumption and the sequence
Λ otherwise and denote by Γ1 the sequence obtained from Γ by deleting φ
if the selected formula is a goal and the sequence Γ otherwise. Thus if the
selected formula is a goal then

∧

Λ1 → φ ∨
∨

Γ1 is a tautology and if the
selected formula is an assumption then φ ∧

∧

Λ1 →
∨

Γ1 is a tautology. We
wish to prove `p [∆] by the case analysis of the signed formula φ+.

If φ+ ≡ ¬φ1∗ ∈ ∆ then, since �p
∧

Λ1 → ¬φ1 ∨
∨

Γ1, we also have
�p φ1 ∧

∧

Λ1 →
∨

Γ1. The associated sequence ∆1, φ1 has n− 1 connectives
and so π1: `p [∆1, φ1] for some π1 by IH. This is shown on the left and the
constructed tableau is shown on the right:

∆1

φ1

π1

⇒
∆

φ1 (¬∗)
π1

The constructed tableau is closed and so `p [∆].
If φ+ ≡ φ1 ∨ φ2∗ ∈ ∆ then, since �p

∧

Λ1 → (φ1 ∨ φ2) ∨
∨

Γ1, we also
have

�p
∧

Λ1 → φ1 ∨ φ2 ∨
∨

Γ1 .

The associated sequence ∆1, φ1∗, φ2∗ has n−1 propositional connectives and
so π1: `p [∆1, φ1∗, φ2∗] for some π1 by IH. This is shown in the following on
the left and the constructed tableau is shown on the right:

111



∆1

φ1∗
φ2∗

π1

⇒

∆

φ1∗ (∨1∗)
φ2∗ (∨2∗)
π1

The constructed tableau is closed and so `p [∆].
If φ+ ≡ φ1 → φ2 ∈ ∆ then, since �p (φ1 → φ2) ∧

∧

Λ1 →
∨

Γ1, we also
have

�p φ2 ∧
∧

Λ1 →
∨

Γ1 and �p
∧

Λ1 → φ1 ∨
∨

Γ1 .

The sequences ∆1, φ2 and ∆1, φ1∗ have n− 1 propositional connectives each
and so π2: `p [∆1, φ2] and π1: `p [∆1, φ1∗] for some π2 and π1 by two IH’s.
The two tableaux are shown on the left and the constructed tableau is shown
on the right:

∆1

φ2

π2

and
∆1

φ1∗
π1

⇒

∆

(→)
φ2

π2

φ1∗
π1

The constructed tableau is closed and so `p [∆]. The remaining cases are
similar. ut

3.2.7 Theorem (Soundness and completeness of propositional tableaux).

`p φ⇔ �p φ .

Proof. We have `p φ iff by definition `p [φ∗] iff by Lemmas 3.2.5 and 3.2.6
�p > → φ iff �p φ. ut

3.2.8 Falsification of open branches in propositional tableaux. A
branch ∆ of a propositional tableau π for φ∗ is propositionally complete if
with every expansion rule with a premise in ∆ the branch contains also at
least one of its conclusions.

If a tableau for φ∗ does not close then it contains an open branch ∆ and
this can be clearly propositionally completed by finitely many expansions
because the conclusions of expansion rules are formulas with a lesser number
of propositional connectives than the premises.

For every propositionally complete and not closed branch ∆ of a tableau
for φ we can construct a propositional interpretation I by collecting all propo-
sitional atoms in assumptions:

I = {ψ | ψ ∈ ∆ and ψ is a propositional atom} .

112



We prove by induction on the number of connectives in ψ that the following
holds:

(ψ ∈ ∆⇒ I � ψ) and (ψ∗ ∈ ∆⇒ I 2 ψ) .

If ψ is a propositional atom then the claim holds directly from the definition
of I. If ψ ≡ ¬ψ1 then if ¬ψ1 ∈ ∆ we have ψ1∗ ∈ ∆ because the branch
is propositionally complete and so I 2 ψ1 by IH, i.e. I � ¬ψ1. The case
¬ψ1∗ ∈ ∆ is similar.

If ψ ≡ ψ1∧ψ2 then if ψ1∧ψ2 ∈ ∆ we have ψ1, ψ2 ∈ ∆ because of saturation
and I � ψ1, I � ψ2 by two IH’s. Hence I � ψ1 ∧ ψ2. If ψ1 ∧ ψ2∗ ∈ ∆ then
one of the subformulas is a goal in ∆, say ψ1∗ ∈ ∆. Thus I 2 ψ1 by IH and
hence I 2 ψ1 ∧ ψ2. The remaining cases for ψ are similar.

The goal φ∗ cannot be a tautology because we have I 2 φ by the just
proved property.

3.3 Admissible Expansion Rules

3.3.1 Admissible expansion rules. We can often considerably shorten a
tableau proof by the use of admissible expansion rules. Admissible rules can
be reduced to the basic expansion rules, which are in the propositional case
given in Par. 3.2.3), and so they do not add any strength to the proof system.
Precisely, the n-ary expansion rule (n ≥ 1)

∆

φ+
1 | · · · | φ

+
n

(A)

is admissible if for all sequences of signed formulas ∆1 s.t. ∆ ⊆ ∆1 and
all tableaux π1, . . . , πn s.t. π1: `p [∆1, φ

+
1 ], . . . , πn: `p [∆1, φ

+
n ] we can

effectively construct a basic tableau π such that π: `p [∆1]. The situation
can be visualized as follows:

...
[∆]

...

(A)

φ+
1

π1

· · · φ+
n

πn

⇒

...
[∆]

...

π

where we have indicated by [∆] that the premises of A are in the branch
above. An application of the admissible rule and the subsequent closure by
tableaux π1, . . . , πn on the left can be effectively replaced by the tableau π.

113



The reader will note that we can permit in the tableau π also expansions
by previously justified admissible rules of inference because they can be al-
ways replaced by basic inferences. After we have demonstrated the effective
reduction of tableaux π1, . . . , πn to the tableau π we may freely use the
admissible rule (A) as if it were a basic rule.

3.3.2 Theorem (Generalized flatten rules). Following generalized flat-
ten rules are admissible in propositional tableaux for any n ≥ 2 and 1 ≤ i ≤ n:

φ1 ∧ · · · ∧ φi ∧ · · · ∧ φn
φi

(G∧i)

φ1 ∨ · · · ∨ φi ∨ · · · ∨ φn∗
φi∗

(G∨i∗) .

Proof. We prove the admissibility of the rule (G∧i) by induction on i; the
admissibility of (G∨i∗) is proved similarly. In the base case when i = 1 there
is nothing to prove as (G∧1) is the basic flatten rule (∧1). For 2 ≤ i+ 1 ≤ n
we consider an expansion by the rule:

...
φ1 ∧ φ2 ∧ · · · ∧ φn

...

φi+1 (G∧i+1)
π

If n = 2 then this is the basic (∧2) rule and we are done. If n > 2 then we
replace the rule (G∧i+1) by the basic rule (∧2) followed by the (G∧i) rule
which is admissible by IH. The new tableau is as follows:

...
φ1 ∧ φ2 ∧ · · · ∧ φn

...

φ2 ∧ · · · ∧ φn (∧2)
φi+1 (G∧i)
π

ut

3.3.3 Theorem (Generalized split rules). The following generalizations
of rules (∨) and (∧∗) are admissible in propositional tableaux for any n ≥ 1:

114



φ1 ∨ · · · ∨ φn
φ1 | · · · | φn

(G∨)

φ1 ∧ · · · ∧ φn∗
φ1∗ | · · · | φn∗

(G∧∗)

Proof. We prove here only (G∧∗) by induction on n. In the base case when
n = 1 there is nothing to prove as (G∧∗) is the basic split rule (∧). In the
inductive case when n+ 1 ≥ 2 we consider an expansion by the rule:

...
φ1 ∧ φ2 ∧ · · · ∧ φn+1∗

...

(G∧∗)
φ1∗
π1

φ2∗
π2

· · · φn+1∗
πn+1

We replace the rule (G∧∗) by (∧∗) followed on the right by an n-ary (G∧∗)
rule which is admissible by IH. The new tableau is as follows:

...
φ1 ∧ φ12 ∧ · · · ∧ φn+1∗

...

(∧∗)
φ1∗

π1

φ2 ∧ · · · ∧ φn+1∗
(G∧∗)

φ2∗
π2

· · · φn+1∗
πn+1

ut

3.3.4 Inversion of expansion rules. Let

φ+

φ+
1 | · · · | φ

+
n

(R)

be an expansion rule with n ≥ 1. The rule R can be an inversion or split
rule as well as an identity or quantifier rule which will be introduced later.
We say that the rule (R) is invertible if for every sequence of signed formulas
∆ such that π : `p [∆,φ+] there are tableaux πi for 1 ≤ i ≤ n such that

115



πi : `p [∆,φ+
i ]. Moreover the rule (R) is not applied with φ+ as a premise,

and the formula φ+ is not used for the closing of a branch, in neither of
tableaux πi. The inversion of the rule R can be visualized as follows:

...
φ+

...

π

⇒

...
φ+

...

(R)

φ+
1

π1

· · · φ+
n

πn

where we can in effect assume that the first expansion in the closed tableau
on the right is by the rule (R) and that the premise φ+ is used only once as
indicated. This also means that the premise φ+ is not used to close a branch.

Propositional flatten rules have the following schematic form:

φ+

φ+
1

(F1)
φ+

φ+
2

(F2) .

We say that the flatten rules (F1) and (F2) are invertible if from π: `p [∆,φ+]
we can form a tableau π1 such that π1: `p [∆,φ+

1 , φ
+
2 ] where the rules (F1)

and (F2) are not used in π1 with φ+ as a premise and neither is the formula
φ+ used for closing of a branch. The inversion can be visualized as follows:

...
φ+

...

π

⇒

...
φ+

...

φ+
1 (F1)
φ+

2 (F2)
π1

where we can in effect assume that the first two expansions in the closed
tableau on the right are by the rules (F1) and (F2) and that the premise φ+

is used only once as indicated. This also means that the premise φ+ is not
used to close a branch.

3.3.5 Inversion theorem. Inversion, split, and flatten rules are invertible
in propositional tableaux.

Proof. The following diagram illustrates the inversion of a (¬) inversion rule:

116



...
¬φ
...

φ∗ (¬)
π

¬φ∗

⇒

...
φ∗
...

π
¬φ∗
φ (¬∗)

The closed tableau on the left shows just two of possibly many uses of the
premise ¬φ. The first one uses the premise in a (¬) rule and the second
one closes the branch with ¬φ∗. The closed tableau on the right shows the
inversion where the first used formula has been removed (because it is now
in the top sequence) and the second one is now used as a premise of a (¬∗)
rule after which the branch closes. The two indicated transformations should
be applied to all uses of the premise ¬φ. The inversion of ¬∗ inversion rules
is similar.

The following diagram shows a closed tableau before the inversion of a
(→) split rule:

...
φ1 → φ2

...

(→)
φ2

π2

φ1∗
π1

φ1 → φ2∗

We have indicated two possible uses of the premise φ1 → φ2. The first use is
in a (→) rule and the second use is in the closure of a branch. We form the
two inverted tableux as follows:

...
φ2

...

π2

φ1 → φ2∗ (→2∗)
φ2∗

...
φ1∗

...

π1

φ1 → φ2∗ (→1∗)
φ1

117



The expansions by the (→) rule have been replaced in the inverted tableau
by tableaux π2 and π1 respectively and the closing formulas φ1 → φ2∗ have
been expanded by the corresponding flatten rules after which the branches
close. The inversion of other split rules is similar.

The following diagram shows a tableau before the inversion of a (∨i∗)
flatten rules:

...
φ1 ∨ φ2∗

...

φ1∗ (∨1∗)

φ2∗ (∨2∗)
π

φ1 ∨ φ2

We have indicated three possible uses of the premise φ1 ∨ φ2∗. The first use
is in a (∨1∗) rule after which there is a use in a (∨2∗) rule and third use is
in the closure of a branch. We form the closed inverted tableau as follows:

...
φ1∗
φ2∗

...

π

φ1 ∨ φ2

(∨)
φ1 φ2

In the inverted tableau the expansions by the (∨i) rules have been removed
and the closing formulas φ1 ∨ φ2 have been expanded by (∨) split rules after
which the branches close. The inversion of other flatten rules is similar. ut

3.3.6 Cut rules. For any formula π the following is a cut rule on φ:

φ | φ∗
(C) .

118



That cut rules are admissible in propositional tableaux, i.e. that

π1: `p [∆,φ] and π2: `p [∆,φ∗]⇒ `p [∆] .

holds can be proved by the following semantic argument. Assume π1: `p [∆,φ]
and π2: `p [∆,φ∗] and let

∧

Λ→
∨

Γ be a sequent associated with ∆. By the
Soundness lemma (3.2.5) we have �p φ ∧

∧

Λ→
∨

Γ and �p
∧

Λ→ φ ∨
∨

Γ .
By the truth table method we can see that also

�p (φ ∧
∧

Λ→
∨

Γ ) ∧ (
∧

Λ→ φ ∨
∨

Γ )→
∧

Λ→
∨

Γ

holds and hence �p
∧

Λ→
∨

Γ . By the Completeness lemma (3.2.6) we then
get `p [∆].

Unfortunately, this argument, which depends on the soundness and com-
pleteness of propositional tableaux, cannot be extended to tableaux with
quantifier rules without first proving the soundness and completeness theo-
rem for such tableaux. Our intention is to reduce the quantificational logic
to the propositional logic and to obtain the soundness and completeness of
quantificational tableaux through the reduction and so the above semantical
argument proving the admissibility of cut rules cannot be used.

We will now prove the admissibility of cuts by a syntactic (proof-theoretic)
argument in a way which extends to the quantificational case.

3.3.7 Lemma (Admissibility of cuts on propositional formulas). If
the cut rules on all propositional atoms in a formula φ are admissible in
propositional tableaux then also the cut rule on φ is admissible.

Proof. Assume that the cuts on the propositional atoms in FPA(φ) are ad-
missible and prove by induction on the structure of φ that the cut on φ is
admissible. We perform the case analysis of φ used in a cut as follows:

∆

(C)
φ φ∗

If φ is a propositional atom then the cut on φ is admissible from the assump-
tion.

If φ ≡ > then the expansion by the cut on > is shown in the following on
the left:

∆

(C)
>
π

>∗
⇒

∆

π

The assumption > is not used for anything in π and so the tableau π for ∆
is closed as shown on the right. The case φ ≡ ⊥ is similar.

119



If φ ≡ ¬φ1 then the expansion by the cut on ¬φ1 is shown in the following
on the left:

∆

(C)
¬φ1

φ1∗ (¬)
π1

¬φ1∗
φ1 (¬∗)
π2

⇒

∆

(C)
φ1

π2

φ1∗
π1

where we may assume without loss of generality that both inversion rules have
been inverted. As a consequence the assumption ¬φ1 is not used for anything
in π1 and the goal ¬φ1∗ is not used in π2. We transform the tableau as shown
on the right where the cut on ¬φ1 has been removed and the inversion rules
replaced by a cut on φ1 which is admissible by IH.

If φ ≡ φ1 ∨ φ2 then the expansion by the cut on φ1 ∨ φ2 is as follows:

∆

(C)
φ1 ∨ φ2

(∨)
φ1

π1

φ2

π2

φ1 ∨ φ2∗
φ1∗ (∨1∗)
φ2∗ (∨2∗)
π3

where we may assume without loss of generality that the (∨) split rule on
the left and the (∨i∗) flatten rules on the right have been inverted. As a
consequence the assumption φ1 ∨ φ2 is not used for anything in π1 and π2

and the goal φ1 ∨φ2∗ is not used in π3. We transform the tableau as follows:

∆

(C)
φ1

π1

φ1∗
(C)

φ2

π2

φ2∗
π3

where the formula φ has been removed and the disjunctive rules replaced by
two cuts on φ1 and φ2 respectively which are admissible by IH. The cases
when the main propositional connective of φ is ∧, →, or ↔ are similar. ut

3.3.8 Lemma (Admissibility of cut rules on propositional atoms).
Cut rules on propositional atoms are admissible in propositional tableaux.

Proof. Consider a closed propositional tableaux with a cut on a propositional
atom φ shown in the following on the left:

120



∆

(C)
φ

π

φ∗

φ

⇒

∆

φ
π

We have shown in the tableau for ∆,φ∗ one of possibly many branches closed
on the pair of propositional atoms φ, φ∗. Because the goal φ∗ cannot be used
in propositional tableaux for anything else we can form a closed tableau for
∆ shown on the right where we perform the indicated transformation for all
branches closed on φ, φ∗. ut

3.3.9 Theorem (Admissibility of cuts). Cut rules are admissible in
propositional tableaux on arbitrary formulas.

Proof. This is a direct consequence of Lemmas 3.3.7 and 3.3.8. ut

3.3.10 Theorem (Lemma rule). If `p φ then the following unary lemma
rule

φ
(L)

is admissible in propositional tableaux, i.e. for any closed propositional tableau
for ∆ such that

∆

φ (L)
π

(1)

we have `p [∆].

Proof. Assume π1: `p φ and that the tableau (1) is closed and form the
following closed tableau witnessing `p [∆]:

∆

(C)
φ

π

φ∗
π1

ut

121



3.4 Tautological Consequence

Important extension of the notion of tautology is the notion of tautological
consequence where we ask whether a formula φ follows from a finite or infinite
set of formulas T by the laws of propositional logic alone.

3.4.1 Tautological consequence. Fix a language L and let T be a set of
formulas from L. We define the relation formula φ is a tautological conse-
quence of T , in symbols T �p φ as follows:

T �p φ⇔ (I � T ⇒ I � φ) for all propositional interpretations I.

From this we can see that for T = ∅ we have ∅ �p φ⇔ �p φ.
Tautological consequence is a generalization of implication where we so

to speak permit infinite many formulas in antecedent. If T is finite then we
have T �p φ ⇔ �p

∧

T → φ by Lemma 3.4.2. If the set T is infinite then
it can contain infinitely many propositional atoms and we cannot replace
infinite propositional interpretations by finite ones as we did in the truth
table method. Thus it seems that that the testing of T �p φ is a hard prob-
lem having to do with quantification over uncountably many propositional
interpretations. Fortunately, this kind of quantification can be replaced by
existential quantification over countably many finite sets of formulas. This is
a consequence of the fundamental theorem 3.4.4.

3.4.2 Semantic deduction lemma. For every finite set S of formulas we
have:

S �p φ⇔ �p
∧

S → φ .

Proof. We have I � S iff I � ψ for all ψ ∈ S iff I �
∧

S. Thus S �p φ iff
I � S ⇒ I �p φ for all I iff I �

∧

S ⇒ I �p φ for all I iff �p
∧

S → φ. ut

3.4.3 Semantic weakening lemma. If S ⊆ T then

S �p φ⇒ T �p φ .

Proof. Assume S �p φ and take any propositional interpretation such that
I � T holds. Since this means I � φ for all φ ∈ T we also have I � S and
thus I � φ from the assumption. ut

3.4.4 Compactness theorem.

T �p φ⇒ S �p φ for a finite S ⊆ T .

122



Proof. Assume T �p φ. T is a set of formulas of a first order language L
which has countably many formulas. Thus the set T is at most countable and
we can write it in a form T =

⋃

i∈N Si where each of the sets Si is finite and
we have S0 = ∅ and Si ⊆ Si+1 (This is trivial if T is finite; otherwise, for
instance, enumerate T and define Si to be the set of the first i formulas in
the enumeration).

We assign by the function W (I) to every propositional interpretation I
one of the finite sets Si by:

W (I) = Si where i is the least such that I � Si ⇒ I � φ.

This is a legal definition because if I � φ then we have I � S0 ⇒ I � φ and
if I 2 φ then we have I 2 T . Thus I 2 ψ for some ψ ∈ T and, since then
ψ ∈ Si for some i, we have I 2 Si for some i and there is a least such i.
Define the set S to satisfy:

S :=
⋃

{W (I) | I is a propositional interpretation.}

We clearly have S ⊆ T . We also have S �p φ because for any propositional
interpretation I such that I � S we have W (I) ⊆ S and so I � W (I). We
then obtain I � φ from the definition of W (I). Thus the theorem will be
proved if we demonstrate by an indirect proof that the set S is finite.

So suppose that S is infinite. We will construct an increasing chain of
propositional interpretations Ii in which the infiniteness of S will be propa-
gated. Enumerate towards that end all propositional atoms of L in an infinite
sequence ψ1, ψ2, ψ3, . . . and define the finite sets of propositional atoms Ai
for i ∈ N by

Ai =
⋃

1≤j≤i

{ψj} .

Note that A0 = ∅. Define an infinite sequence {Ii}i∈N of finite propositional
interpretations Ii to satisfy:

I0 = ∅

Ii+1 =

{

Ii if
⋃

{W (I) | I ∩Ai+1 = Ii} is infinite
Ii ∪ {ψi+1} otherwise.

We clearly have Ii ⊆ Ii+1. Define the sets Ii for i ∈ N to satisfy:

Ii =
⋃

{W (I) | I ∩Ai = Ii}

and prove by induction on i:

Mi ⊆ Ai and Ii is infinite.

In the base case we have I0 = ∅ = A0 and the set

123



I0 =
⋃

{W (I) | I ∩A0 = I0} =
⋃

{W (I) | ∅ = ∅} = S .

is infinite. In the inductive case we have

Ii+1 ⊆ Ii ∪ {ψi+1}
IH
⊆ Ai ∪ {ψi+1} = Ai+1 .

We note that if I ∩Ai = Ii then

I ∩Ai+1 =I ∩ (Ai ∪ {ψi+1}) = (I ∩Ai) ∪ (I ∩ {ψi+1}) =

Ii ∪ (I ∩ {ψi+1}) =

{

Ii if ψi+1 6∈ I
Ii ∪ {ψi+1} if ψi+1 ∈ I

and so

In =
⋃

{W (I) | I ∩Ai = Ii} =
⋃

{W (I) | I ∩Ai+1 = Ii} ∪
⋃

{W (I) | I ∩Ai+1 = Ii ∪ {ψi+1}} .

One of the two sets on the right must be infinite because In is by IH. We
consider two cases. If the first set is infinite then Ii+1 = Ii by definition and
the first set is In+1. If the first set is finite then Ii+1 = Ii ∪ {ψi+1} and so
the second set, which must be infinite, is In+1. Thus in both cases In+1 is an
infinite set.

We construct a propositional interpretation I =
⋃

{Ii | i ∈ N} and we
have W (I) = Sk for the least k such that I � Sk ⇒ I � φ. Let i be the
least number such that FPA(Sk ∪ {φ}) ⊆ Ai and let J be any propositional
interpretation such that J ∩Ai = Ii. We have

J Sk∪{φ} = J ∩ FPA(Sk ∪ {φ}) = J ∩Ai ∩ FPA(Sk ∪ {φ}) =

Ii ∩ FPA(Sk ∪ {φ}) = ISk∪{φ}i

and so J and Ii are Sk∪{φ}-equivalent by the Equivalence lemma (see 3.1.5).
From this we get W (J ) = W (Ii) and hence

Ii =
⋃

{W (J ) | J ∩Ai = Ii} =
⋃

{W (Ii) | J ∩Ai = Ii} = W (Ii)

which is a contradiction because the set W (Ii) is finite (the set is actually
equal to Sk). ut

3.4.5 Corollary (Tautological reduction).

T �p φ⇔ �p
∧

S → φ

for a finite subset S of T .

Proof. From T �p φ we obtain S �p φ for a finite subset S of T by Thm. 3.4.4.
The opposite direction follows from Lemma 3.4.3 and we have S �p φ iff
�p
∧

S → φ by Lemma 3.4.2. ut

124



3.4.6 Remark. The reader familiar with set theory will recognize the con-
struction of the sequence {Ii}iN in the proof of the Compactness theorem as
the construction of an infinite branch of an infinite tree with finitely branch-
ing nodes in the proof of the König’s lemma. The lemma says that in every
finitely branching tree with an infinite number of nodes there is an infinite
branch.

3.4.7 Semidecidability of tautological consequence. Let L be a lan-
guage and T an infinite decidable set of its formulas. We have noted in
Par. 3.4.1 that in order to decide the unary relation φ is a tautological con-
sequence of T , i.e. T �p φ, one would expect to test I � T ⇒ I � φ for
uncountably many propositional interpretations I. By the Compactness the-
orem and Lemma 3.4.3 we however know that it is sufficient to decide whether
S �p φ holds for a finite subset S of T . As there are countably many finite
subsets S of the countable T we have to test by Lemma 3.4.2 countably many
times whether

∧

S → φ is a tautology.
One of the ways to organize the tests is as follows. We encode all formulas

of L into N. Starting from 0 we then successively test for all natural numbers
i whether i is a list such that for every j ∈ i (there are finitely many such
j’s) the number j codes a formula φ (this can be effectively done). If so, then
we test whether φ ∈ T . If this holds for all j ∈ i we can effectively form the
finite set S of all formulas of L coded by i. We then test whether

∧

S → φ
is a tautology. If this is the case we stop the testing and we know that φ is a
tautological consequence of T . If not then we have to continue with the next
number i+1 and if φ is not a tautological consequence then by Lemmas 3.4.3
and 3.4.2 there is no finite S ⊂ T such that

∧

S → φ is a tautology and we
will never discover the fact.

Predicates P (x) such that if there is an x satisfying P we can effectively
find it but we go on searching forever if for all x not P (x) are called semide-
cidable predicates. It can be shown by the methods of recursion theory that
the unary predicate T �p φ is semidecidable and that the above described
method of crude search cannot be improved upon. Later in this text we will
show how to reduce the general questions of logical validity of formulas and
of logical consequence to the questions of tautological consequence from de-
cidable sets. This will mean that the best we can do in first order logic is to
find a proof of a formula from given axioms if there is one. If the formula is
unprovable we might never discover it.

3.5 Tableaux with Axioms

3.5.1 Axiom rules. Fix a language L. We now extend propositional tableaux
so we can prove that φ is a tautological consequence of a decidable set T of
formulas L. For every ψ ∈ T we add a unary axiom rule:

125



ψ
(Ax )

which means that we can extend a branch of a tableau at an arbitrary position
with the assumption ψ. Note that the decidability of T is crucial for this
because we can use the axiom rule only if ψ ∈ T . Without decidability we
would not be able to recognize whether a given tree of signed formulas is a
legal tableau or not.

3.5.2 Proofs with propositional tableaux with axioms. A proposi-
tional tableau π for a sequence of signed formulas ∆ which possibly uses
axiom rules from T is a propositional tableau for ∆ from axioms T . If π is
closed then we assert this by writing π : T `p [∆]. Note that if T = ∅ then we
have π : ∅ `p [∆]⇔ π: `p [∆]. When ∆ ≡ φ∗ then we say that π proposition-
ally proves φ from axioms T and write it as π : T `p φ. We use abbreviations
similar to those discussed in Par. 3.2.4 also for the proofs from axioms.

3.5.3 Theorem (Admissible expansion rules in propositional tableaux
with axioms). All rules proved admissible for propositional tableaux in
Sect. 3.3 are also admissible in propositional tableaux with axioms.

Proof. Inspection of the proofs of admissibility of expansion rules in Sect. 3.3
reveals that the proofs remain correct also for tableaux with axiom rules
because their presence does not affect the proofs of admissibility. ut

3.5.4 Syntactic weakening lemma. If S ⊆ T then

S `p φ⇒ T `p φ .

Proof. Assume π : S `p φ. Every every axiom rule for ψ ∈ S used in π is also
an axiom rule for ψ ∈ T and so π : T `p φ. ut

3.5.5 Theorem on syntactic compactness.

T `p φ⇒ S `p φ for a finite S ⊆ T .

Proof. Assume π : T `p φ and construct the finite set S to consist of all
conclusions ψ of axiom rules for ψ ∈ T used in the tableau π. The same rules
are axiom rules for ψ ∈ S and so π : S `p φ. ut

3.5.6 Deduction theorem. For a finite set of formulas S:

S `p φ⇔ `p
∧

S → φ .

Proof. Let S = {ψ1, . . . , ψn}. In the direction (⇒) assume π : S `p φ, i.e.
π : S `p [φ∗]. If n = 0 then

∧

S ≡ > and we derive `p > → φ as follows:

126



> → φ∗
φ∗ (→2∗)
π

If n > 0 then denote by π1 the tableau formed from π by deleting all expan-
sions by axiom rules. We clearly have π1: `p [φ∗, ψ1, . . . , ψn]. which is shown
in the following on the left:

φ∗
ψ1

...
ψn

π1

⇒

ψ1 ∧ · · · ∧ ψn → φ∗
φ∗ (→2∗)

ψ1 ∧ · · · ∧ ψn (→1∗)
ψ1 (G∧1)
...
ψn (G∧n)
π1

We form the closed tableau on the right which is expanded with the help of
the generalized flatten rules (see Thm. 3.3.2) and so `p

∧

S → φ.
In the direction (⇐) assume π: `p [ψ1 ∧ · · · ∧ ψn → φ∗]. We can assume

by inversion that the first two expansions in π are by (→i∗) flatten rules such
that the goal

∧

S → φ∗ is not used in π1. If n = 0 then the situation is shown
on the left:

> → φ∗
φ∗ (→2∗)
> (→1∗)
π1

⇒
φ∗

π1

and we can form a closed tableau π for φ∗ because the assumption > cannot
be used in π1. If n > 0 then we can assume that the inversion of (→i∗) flatten
rules is followed by by n− 1 inversions of (∧) flatten rules which is shown in
the following on the left:

ψ1 ∧ · · · ∧ ψn → φ∗
φ∗ (→2∗)

ψ1 ∧ · · · ∧ ψn (→1∗)
ψ1 (∧1)

ψ2 ∧ · · · ∧ ψn (∧2∗)
...
ψn (∧2)
π1

⇒

φ∗
ψ1 (Ax )
· · ·
ψn (Ax )
π1

We form the closed tableau on the right which is expanded with the help of
axiom rules from S and in which we have omitted the assumptions ψi∧· · ·∧ψn
for 1 ≤ i < n because they cannot be used in π1. We thus have S `p φ. ut

127



3.5.7 Theorem (Introduction/elimination of axioms).

T `p φ⇔ `p
∧

S → φ

for a finite subset S of T .

Proof. From T `p φ we obtain S `p φ for a finite subset S of T by Thm. 3.5.5.
The opposite direction follows from Lemma 3.5.4 and we have S `p φ iff
`p
∧

S → φ by Thm. 3.5.6. ut

3.5.8 Corollary (Soundness and completeness of propositional tableaux).
For any fromula φ and set of formulas T there is in each direction a finite
subset S of T such that the following holds:

T �p φ

⇑ 3.4.3 ⇓ 3.4.4
S �p φ

⇑⇓ 3.4.2

�p
∧

S → φ ⇐ 3.2.5⇒ 3.2.6

T `p φ
⇑ 3.5.4 ⇓ 3.5.5

S `p φ
⇑⇓ 3.5.6

`p
∧

S → φ ut

3.5.9 Semidecidability of tautological consequence revisited. One of
the consequences of the Corollary 3.5.8 is that we can semidecide the relation
T �p φ by tableaux instead of testing for tautologies as outlined in Par. 3.4.7.
We do this by constructing possibly infinite branches which are axiomatically
complete, i.e. which apply the axiom rules for all axioms from T .

In order to decide the relation T �p φ we enumerate the axioms of T
into a sequence ψ1, ψ2, . . . , and construct a propositional tableau for the
goal φ∗. We select an open propositionally complete branch of it (if any)
and we extend it by an axiom rule by taking ψ1 into assumptions. We then
construct a propositional tableau under the assumption. We select a not
closed propositionally complete branch again (if any) and expand it with the
axiom rule for ψ2. We continue in this way in the hope of closing the branch.
If this happens we apply the same procedure of systematically applying one
axiom after another to the remaining open branches. If all branches close
then T �p φ holds.

Otherwise, if T is finite we stop with at least one open branch ∆ which
is both propositionally and axiomatically complete. The branch is finite. If
T is infinite we will go on extending a branch forever because there is at
least one infinite branch which is open and propositionally and axiomatically
complete.

In both cases there is a propositional interpretation I constructed by
collecting all propositional atoms in the assumptions. We have proved in
Par. 3.2.8 that we have I 2 φ and I � φ1 for every assumption φ1 in the

128



branch. Since the branch contains all axioms T as assumptions we have in
particular I � T . But this means that we have T 2p φ. Note that we can
effectively determine this fact only when T is finite.

129



130



4. Identity Logic

In this chapter we investigate formulas always true on the strength of propo-
sitional logic and of properties of identity.

4.1 Some Syntactic Concepts

4.1.1 Free terms. Free terms of a set of formulas S of a language L are
terms occurring outside of quantifiers in the formulas of S. This is made
precise by a metamathematical function FT (α) defined on terms, formulas,
and sets of formulas to yield the set of free terms of α. The function FT
satisfies:

FT (x) = {x}
FT (f(τ1, . . . , τn)) = {f(τ1, . . . , τn)} ∪ FT (τ1) ∪ . . . ∪ FT (τn)

FT (τ1 = τ2) = FT (τ1) ∪ FT (τ2)
FT (P (τ1, . . . , τn)) = FT (τ1) ∪ . . . ∪ FT (τn)

FT (∀xφ) = ∅
FT (∃xφ) = ∅

FT (>) = ∅
FT (⊥) = ∅

FT (¬φ) = FT (φ)
FT (φ1 ∨ φ2) = FT (φ1) ∪ FT (φ2)
FT (φ1 ∧ φ2) = FT (φ1) ∪ FT (φ2)

FT (φ1 → φ2) = FT (φ1) ∪ FT (φ2)
FT (φ1 ↔ φ2) = FT (φ1) ∪ FT (φ2)

FT (T ) =
⋃

{FT (φ) | φ ∈ T} .

4.2 Quasitautological Consequence

4.2.1 Structures. A structure M for a language L is given by



1. a non-empty set D, called the domain of the structure,
2. for every n-ary function symbol f of L an n-ary function fM over D, i.e.
fM : Dn 7→ D, called the interpretation of f ,

3. for every n-ary predicate symbol P of L a subset PM of Dn called the
interpretation of P .

Here we define D0 = {∅} and identify nullary functions over D with elements
of D. Thus for every constant c of L we have cM ∈ D and for every propo-
sitional constant P of L we have PM ⊆ {∅}. We agree to identify the value
PM = ∅ with falsehood and the value PM = {∅} with truth.

Structures are mathematical objects (triples of sets) whose purpose is to
assign meaning to terms and formulas of L. A structure M is finite if its
domain D is a finite set and infinite otherwise. M is a numeric structure if
its domain is a subset of natural numbers.

4.2.2 Assignments. For a structure M for L with the domain D we call
a function a from N to D assignment in M. The idea is that the assignment
a assigns the value a(i) ∈ D to the variable vi.

4.2.3 Identity interpretations. An identity interpretation I for L is a
triple 〈Q,M, a〉 where Q, called the quantifier set, is a subset of quantifier
formulas of L, M is a structure for L and a is an assignment in M. An
identity I is finite if its structure is finite and numeric if its structure is
numeric.

Identity interpretations uniquely determine the meaning of terms and
formulas as shown in the following two paragraphs.

4.2.4 Denotation of terms. For a given identity interpretation I =
〈Q,M, a〉 for L with D the domain of M we assign to every term τ of L its
denotation, designated as τI , to be the element of D satisfying the following:

vIi = a(i)

f(τ1, . . . , τn)I = fM(τI1 , . . . , τ
I
n ) f is n-ary function symbol of L.

If f is a constant symbol, i.e. a nullary function symbol, then we abbreviate
fM() to fM.

The identity interpretation I is canonical if it is a numeric interpretation
and for every element d in the domain of its structure we have d = τI for
some term τ .

4.2.5 Satisfaction relation for identity interpretations. Let I = 〈Q,M, a〉
be an identity interpretation for L. For every formula φ of L we define the
unary relation I � φ, read as I satisfies φ, to be similar to the satisfac-
tion relation for propositional interpretations (see Par. 3.1.2) when φ is a
propositional formula. If φ is a propositional atom then we define

132



I � ∀xφ⇔ ∀xφ ∈ Q
I � ∃xφ⇔ ∃xφ ∈ Q

I � τ1 = τ2 ⇔ τI1 = τI2

I � P (τ1, . . . , τn)⇔ 〈τI1 , . . . , τIn 〉 ∈ PM .

Here the ‘zero-tuple’ 〈〉 is defined as the empty set ∅. This means that for a
propositional constant P we have I � P iff PM = {∅}. This should explain
why we have identified the set {∅} with the truth.

Assignments in I are used only in atomic formulas which obtain the mean-
ing from the interpretation of function and predicate symbols specified by the
points (2) and (3) in Par. 4.2.1. Specifically, the meaning of identity τ1 = τ2
is determined as the identity of the denotations τI1 = τI2 . The reader will
note that the symbol of identity in the formula τ1 = τ2 is just a symbol
whereas the same symbol in τI1 = τI2 stands for the relation of identity over
the domain of I. The meaning of quantifier formulas is determined from the
quantifier set Q similarly as the meaning of propositional atoms is determined
from propositional interpretations.

4.2.6 Lemma (Reduction to propositional interpretations). To every
identity interpretation I for L there is an equivalent propositional interpre-
tation J .

Proof. Take an identity interpretation I = 〈Q,M, a〉 for L. We construct the
propositional interpretation J as follows:

J = {ψ | I � ψ for propositional atoms ψ} .

We prove the equivalence by induction on the construction of φ. If φ is a
propositional atom then J � φ iff φ ∈ J iff I � φ. If φ ≡ φ1 ∨ φ2 then we
have J � φ1 ∨ φ2 iff J � φ1 or J � φ2 iff, by IH, I � φ1 or I � φ2 iff
I � φ1 ∨ φ2. The remaining cases are similar. ut

4.2.7 Equality axioms. Let L be a first-order language. For all terms τ1,
. . . , τn, ρ1, . . . , ρn the following formulas, designated by Eq , are called equality
axioms for L:

τ1 = τ1 (1)
τ1 = τ2 → τ2 = τ1 (2)

τ1 = τ2 ∧ τ2 = τ3 → τ1 = τ3 (3)

τ1 = ρ1 ∧ · · · ∧ τn = ρn → f(τ1, . . . , τn) = f(ρ1, . . . , ρn)
f is n-ary function symbol, n > 0

(4)

τ1 = ρ1 ∧ · · · ∧ τn = ρn ∧ P (τ1, . . . , τn)→ P (ρ1, . . . , ρn)
P is n-ary predicate symbol, n > 0.

(5)

133



Formulas (1) are axioms of reflexivity, (2) are axioms of symmetry, (3) are
axioms of transitivity, (4) and (5) are axioms of function and predicate sub-
stitution respectively.

We designate by EqT the restriction of equality axioms to the free terms
of a set of formulas T , i.e.:

EqT = {φ | φ ∈ Eq ∧ FT (φ) ⊆ FT (T )} .

4.2.8 Lemma (Expansion of propositional interpretations). To every
set of formulas T of L and every propositional interpretation I for L such
that I � EqT there is a T -equivalent canonical identity interpretation J . J is
finite if the set FT (T ) is finite. Every element of the domain of the structure
of J is denoted by a term of FT (T ) if the last set is not empty.

Proof. Take any T and any propositional interpretation I such that I � EqT .
We wish to define the identity interpretation J = 〈Q,M, a〉. We define the
quantifier set Q as follows:

Q = {ψ | ψ is a quantifier formula and ψ ∈ I .}

We enumerate the set T = FT (T ) by a possibly finite or even empty
sequence:

σ0, σ1, σ2, . . .

Clearly, the sequence has as many elements as is the cardinality of T . We
define the domain D of the structure M with the help of a representant
function r mapping the terms of L to N by

r(τ) = min{i | τ ∈ T ⇒ I � τ = σi} .

This is a legal definition only if the argument set to min is non-empty for
every τ . That this is so can be seen by considering two cases. If τ 6∈ T then
the argument to min is N and so r(τ) = 0. If τ ∈ T then we have τ ≡ σi for
some i and, since the reflexivity axiom τ = σi is in EqT , we have I � τ = σi.
Hence the argument to min contains i. We now define the domain D of J as
the range of the function r:

D = {r(τ) | τ is a term of L} .

We have D ⊆ N and if T = ∅ then D = {0}. Otherwise σ0 ∈ T and
r(σ0) = 0 ∈ D. Note that D has no more elements than T if T 6= ∅ is
finite. We prove

τ1, τ2 ∈ T ⇒ (r(τ1) = r(τ2)⇔ I � τ1 = τ2) . (1)

Assume τ1, τ2 ∈ T . In the direction (⇒) also assume r(τ1) = r(τ2). From this
we get I � τ1 = σi and I � τ2 = σi for some i. Since σi ∈ T , the symmetry
axiom τ2 = σi → σi = τ2 and the transitivity axiom τ1 = σi → σi = τ2 →

134



τ1 = τ2 are in the set EqT . Thus also I � τ1 = τ2 holds. In the direction (⇐)
assume I � τ1 = τ2. We have r(τ1) = i for the least i such that σi ∈ T and
I � τ1 = σi holds. By appropriate symmetry and transitivity axioms in EqT

we obtain I � τ2 = σi. We have r(τ2) = j for the least j ≤ i such that σj ∈ T
and I � τ2 = σj holds. If j < i then by symmetry and transitivity axioms in
EqT we would get I � τ1 = σj contradicting the definition of i. Hence i = j
and so r(τ1) = r(τ2).

We now take any n-ary function symbol f of L and define the interpre-
tation fM : Dn 7→ D of f as follows:

fM(d1, . . . , dn) = r(f(τ1, . . . , τn)) where r(τ1) = d1, . . . , r(τn) = dn.

We must convince ourselves first that this is a legal definition. If n = 0 then
we have fM = r(f). If n > 0 and T = ∅ then, since D = {0}, we always have
r(f(τ1, . . . , τn)) = 0. If n > 0 and T 6= ∅ then, since for every d ∈ D we have
d = r(ρ) for some ρ ∈ T , the definition determines fM(d1, . . . , dn) uniquely
if the following holds:

r(τ1) = r(ρ1) ∧ · · · ∧ r(τn) = r(ρn)→ r(f(τ1, . . . , τn)) = r(f(ρ1, . . . , ρn))

for every τ1, . . . , τn, ρ1, . . . , ρn in T . From the assumptions we obtain
I � τ1 = ρ1, . . . , I � τn = ρn by (1). Since the function substitution axiom
4.2.7(4) is in EqT and I � EqT , we have I � f(τ1, . . . , τn) = f(ρ1, . . . , ρn)
and so r(f(τ1, . . . , τn)) = r(f(ρ1, . . . , ρn)) by (1).

For every n-ary predicate symbol P of L we define its interpretation
PM ⊆ Dn:

PM = {〈r(τ1), . . . , r(τn)〉 | I � P (τ1, . . . , τn) and τ1, . . . , τn ∈ T } .

We prove

ρ1, . . . , ρn ∈ T ⇒ (I � P (ρ1, . . . , ρn)⇔ 〈r(ρ1), . . . , r(ρn)〉 ∈ PM) (2)

by taking any ρ1, . . . , ρn ∈ T . In the direction (⇒) the property follows
from the definition of PM (even when n = 0 because ρ1, . . . , ρn ∈ T holds
vacuously and we then have PM = {〈〉} = {∅}). In the direction (⇐) assume
〈r(ρ1), . . . , r(ρn)〉 ∈ PM. If n = 0 then this means 〈〉 ∈ PM and so I � P .
If n > 0 we have r(τ1) = r(ρ1), . . . , r(τn) = r(ρn) and I � P (τ1, . . . , τn) for
some τ1, . . . , τn ∈ T . We get I � τ1 = ρ1, . . . , I � τn = ρn from (1). Since
the predicate substitution axiom 4.2.7(5) ∈ EqT and I � EqT , we obtain
I � P (ρ1, . . . , ρn).

The structureM is now defined and we define the assignment a : N 7→ D
by a(i) = r(vi). Thus also the identity interpretation J is defined and we
prove:

τ ∈ T ⇒ τJ = r(τ) (3)

135



by induction on the construction of the term τ . So assume τ ∈ T and continue
by the case analysis of τ . If τ ≡ vi then vJi = a(i) = r(vi). If τ ≡ f(τ1, . . . , τn)
then

f(τ1, . . . , τn)J = fM(τJ1 , . . . , τ
J
n ) IH=

fM(r(τ1), . . . , r(τn)) = r(f(τ1, . . . , τn)) .

Note that J is a canonical interpretation because if d ∈ D then d = r(τ) = τJ

for some τ which is one of σi ∈ FT (T ) if the last set is not empty.
The lemma will be proved when we prove for every formula φ ∈ T the

property:

J � φ⇔ I � φ .

So take any φ ∈ T . Note that FT (φ) ⊆ T and proceed by induction on the
construction of φ. If φ is a quantifier formula then we have J � φ iff φ ∈ Q
iff φ ∈ I iff I � φ.

If φ ≡ τ1 = τ2 then we must have T 6= ∅ and so J � τ1 = τ2 iff τJ1 = τJ2
iff, by (3), r(τ1) = r(τ2) iff, by (1), I � τ1 = τ2.

If φ ≡ P (τ1, . . . , τn) then we must have T 6= ∅ and so J � P (τ1, . . . , τn)
iff 〈τJ1 , . . . , τJn 〉 ∈ PN iff, by (3), 〈r(τ1), . . . , r(τn)〉 ∈ PN iff, by (2), I �
P (τ1, . . . , τn).

If φ ≡ φ1 ∨ φ2 then J � φ1 ∨ φ2 iff J � φ1 or J � φ2 iff, by IH, I � φ1

or I � φ2 iff I � φ1 ∨ φ2. The remaining cases are similar. ut

4.2.9 Quasitautological consequence. Fix a language L and let T be
a set of formulas from L. We define the relation φ is a quasitautological
consequence of T , in symbols T �i φ, as follows:

T �i φ⇔ (I � T ⇒ I � φ) for all identity interpretations I.

We write �i φ for ∅ �i φ and such a φ is quasitautology. Note that we have

�i φ⇔ I � φ for all identity interpretations I.

4.2.10 Lemma. �i Eq.

Proof. Take any identity interpretation I = 〈Q,M, a〉 for L. We wish to
prove I � φ for an equality axiom φ. If φ is a predicate substitution ax-
iom 4.2.7(5) then I � φ iff from I � τ1 = ρ1, . . . , I � τn = ρn, and
I � P (τ1, . . . , τn) follows I � P (ρ1, . . . , ρn). If the assumptions are sat-
isfied we have τI1 = ρI1 , . . . , τIn = ρIn, and 〈τI1 , . . . , τIn 〉 ∈ PM and so
〈ρI1 , . . . , ρIn〉 ∈ PM, i.e. J � P (ρ1, . . . , ρn).

The remaining cases are similar. ut

136



4.2.11 Theorem (Quasitautological reduction).

T �i φ⇒ T,EqT∪{φ} �p φ (1)
T �i φ⇔ T,Eq �p φ . (2)

Proof. (1): Assume T �i φ and take any propositional interpretation I such
that I � T ∪ EqT∪{φ} holds. From Lemma 4.2.8 we obtain a T ∪ {φ}-
equivalent identity interpretation J and so J � T . We then get J � φ
from the assumption and I � φ from the equivalence.

(2): The direction (⇒) follows from (1) by weakening. In the direction
(⇐) assume T,Eq �p φ and take any identity interpretation I for L such that
I � T holds. We have I � Eq by Lemma 4.2.10. From Lemma 4.2.6 we obtain
an equivalent propositional interpretation J . We thus have J � T ∪ Eq , we
get J � φ from the assumption, and I � φ from the equivalence. ut

4.2.12 Decidability of quasitautologies. One of the consequences of the
Reduction theorem is that the predicate �i φ of being a quasitautology is
decidable. We namely have

�i φ⇔ �p
∧

Eq{φ} → φ . (1)

First note that the set FT (φ) is finite and so there are only finitely many
equality axioms with free terms from FT (φ) which means that the set Eq{φ}

is finite. We have �i φ iff, by 4.2.11(2), Eq �p φ iff, by Semantic deduction
lemma 3.4.2, �p

∧

Eq{φ} → φ.

4.2.13 Theorem. T �p φ⇒ T �i φ.

Proof. If T �p φ holds then we have T,Eq �p φ by weakening and T �i φ by
4.2.11(2). ut

4.2.14 Theorem. For every set of formulas T of some L and for every
identity interpretation I for L there is a T -equivalent canonical identity in-
terpretation J . Every element of the domain of the structure of J is denoted
by a term of FT (T ) if the last set is not empty.

Proof. For a given identity interpretation I for L we obtain an equivalent
propositional interpretation I1 by Lemma 4.2.6. By Lemma 4.2.10 we have
I � Eq and so I1 � EqT by the equivalence. From Lemma 4.2.8 we obtain a
T -equivalent canonical identity interpretation J such that every element of
the domain of the structure of J is denoted by a term of FT (T ) if the last
set is not empty. ut

4.3 Identity Tableaux

4.3.1 Identity tableau expansion rules. Fix a language L. All expansion
rules for identity tableaux are unary with premises in assumptions. In the

137



following τ , τ1, . . . , τn, ρ1, . . . , ρn are arbitrary terms. Reflexivity, symmetry,
and transitivity rules are in that order:

τ = τ
(Refl)

τ1 = τ2

τ2 = τ1
(Sym)

τ1 = τ2 τ2 = τ3

τ1 = τ3
(Trans)

Function substitution rules are for every n-ary function symbol f of L with
n > 0 as follows:

τ1 = ρ1 · · · τn = ρn

f(τ1, . . . , τn) = f(ρ1, . . . , ρn)
(Fsub)

Predicate substitution rules are for every n-ary predicate symbol P of L with
n > 0 as follows:

τ1 = ρ1 · · · τn = ρn P (τ1, . . . , τn)
P (ρ1, . . . , ρn)

(Psub)

We can see that every identity rule corresponds to exactly one equality axiom.

4.3.2 Proofs with identity tableaux. An identity tableau π for a se-
quence of signed formulas ∆ from axioms in T is called an identity tableau
for ∆ from axioms T . If π is closed then we assert this by writing π : T `i [∆].
When ∆ ≡ φ∗ then we say that π is an identity tableau proving φ from ax-
ioms T and write it as π : T `i φ. We use additional abbreviations similar to
those discussed in Par. 3.2.4.

4.3.3 Theorem (Admissible expansion rules in identity tableaux).
All rules proved admissible for propositional tableaux in Sect. 3.3 are also
admissible in identity tableaux.

Proof. Inspection of the proofs of admissibility of expansion rules in Sect. 3.3
reveals that the proofs remain correct also for identity tableaux, the presence
of identity rules does not affect the proofs.

The only potential problem could be in the admissibility of cuts on propo-
sitional atoms (see Lemma 3.3.8) because we now have identity rules on
propositional atoms τ1 = τ2 in assumptions. Fortunately, the elimination of
cuts on such formulas removes the goals τ1 = τ2∗ which are not affected by
the identity expansion rules. ut

4.3.4 Lemma. `i Eq.

Proof. An axiom of reflexivity 4.2.7(1) has the following proof:

τ = τ∗
τ = τ (Refl)

138



An axiom of predicate substitution 4.2.7(5) has the following proof:

τ1 = ρ1 ∧ · · · ∧ τn = ρn ∧ P (τ1, . . . , τn)→ P (ρ1, . . . , ρn)∗
P (ρ1, . . . , ρn)∗ (→2∗)

τ1 = ρ1 ∧ · · · ∧ τn = ρn ∧ P (τ1, . . . , τn) (→2∗)
τ1 = ρ1 (G∧1)
· · ·

τn = ρn (G∧n)
P (τ1, . . . , τn) (G∧n+1)
P (ρ1, . . . , ρn) (Psub)

Remaining axioms have similar proofs. ut

4.3.5 Lemma (Introduction of identity rules).

π : T,Eq `p [∆]⇒ T `i [∆]

Proof. By induction on the structure of the tableau π. Assume π : T,Eq `p
[∆] and consider the form of π. If π is empty then we trivially have T `i [∆].

If the first expansion in π is by a propositional rule, say (∧∗), then φ1 ∧
φ2∗ ∈ ∆ and π has a form shown in the following on the left:

∆

(∧∗)
φ1∗
π1

φ2∗
π2

⇒

∆

(∧∗)
φ1∗
π′1

φ2∗
π′2

We obtain identity tableaux π′1 and π′2 such that π′1 : T `i [∆,φ1∗] and
π′2 : T `i [∆,φ2∗] by two IH’s and construct the closed identity tableau for ∆
from axioms T shown on the right. The remaining expansions by propositional
rules and by axiom rules from T are similar.

If the first expansion in π is by an axiom rule for φ ∈ Eq then π has a
form shown in the following on the left:

∆

φ (Ax )
π1

⇒

∆

φ (L)

π′1

We obtain an identity tableau π′1 such that π′1 : T `i [∆,φ] by IH, note that
`i φ by Lemma 4.3.4, and construct by a lemma rule the closed identity

tableau for ∆ from axioms T shown on the right. ut

139



4.3.6 Lemma (Elimination of identity rules).

π : T `i [∆]⇒ T,Eq `p [∆] .

Proof. By induction on the structure of the tableau π. Assume π : T `i [∆]
and consider the form of π. If π is empty then we trivially have T `p [∆] and
we obtain T,Eq `p [∆] by weakening.

If the first expansion in π is by a propositional rule, say (→), then φ1 →
φ2 ∈ ∆ and π has a form shown in the following on the left:

∆

(→)
φ2

π2

φ1∗
π1

⇒

∆

(→)
φ2

π′2

φ1∗
π′1

We obtain propositional tableaux π′1 and π′2 such that π′1 : T,Eq `p [∆,φ1∗]
and π′2 : T,Eq `p [∆,φ2] by two IH’s and construct the closed propositional
tableau for ∆ from axioms T,Eq shown on the right. The remaining propo-
sitional and axiom expansions are similar.

If the first expansion in π is by a reflexivity rule then π has a form shown
in the following on the left:

∆

τ = τ (Refl)
π1

⇒

∆

τ = τ (Ax )

π′1

We obtain a propositional tableau π′1 such that π′1 : T,Eq `p [∆, τ = τ ] by
IH and construct the closed propositional tableau for ∆ from axioms T,Eq
shown on the right.

If the first expansion in π is by a function substitution rule then π has a
following form:

∆

f(τ1, . . . , τn) = f(ρ1, . . . , ρn) (Fsub)
π1

where τ1 = ρ1, . . . , τn = ρn ∈ ∆

We obtain a propositional tableau π′1 such that

π′1 : T,Eq `p [∆, f(τ1, . . . , τn) = f(ρ1, . . . , ρn)]

by IH and construct the following closed propositional tableau for ∆ from
axioms T,Eq :

140



∆ s.t. τ1 = ρ1, . . . , τn = ρn ∈ ∆
τ1 = ρ1 ∧ · · · ∧ τn = ρn → f(τ1, . . . , τn) = f(ρ1, . . . , ρn) (Ax )

(→)

f(τ1, . . . , τn) = f(ρ1, . . . , ρn)

π′1

τ1 = ρ1 ∧ · · · ∧ τn = ρn∗ (G∧∗)
τ1 = ρ1∗ · · · τn = ρn∗

The remaining identity expansion rules are similar. ut

4.3.7 Theorem (Introduction/elimination of identity rules).

T `i φ⇔ T,Eq `p φ .

Proof. In the direction (⇒) assume π : T `i φ, i.e π : T `i [φ∗], and obtain
T,Eq `p [φ∗], i.e. T,Eq `p φ, by Lemma 4.3.6.

In the direction (⇐) assume T,Eq `p φ, i.e. T,Eq `p [φ∗], and obtain
T `i [φ∗], i.e. T `i φ, by Lemma 4.3.5. ut

4.3.8 Corollary (Soundness and completeness of identity tableaux).
For any fromula φ and a set of formulas T from L we have

T �i φ

⇑⇓ 4.2.11(2)
T,Eq �p φ ⇔ 3.5.8

T `i φ
⇑⇓ 4.3.7
T,Eq `p φ ut

4.3.9 Decidability of quasitautologies revisited. Property 4.2.12(1) re-
duces the problem of deciding whether a formula φ of some L is quasitau-
tology to the problem of deciding whether the formula

∧

Eq{φ} → φ is a
tautology. This decision procedure can be called the method of associates
because the conjunction of equality axioms

∧

Eq{φ} is an identity associate
of φ. Quantifier associates were introduced by R. Smullyan [24].

Lemma 4.2.6 and property 4.2.11(1) give us another method of deciding
quasitautologies: test J � φ in all finite identity interpretations J for a
finite language consisting of function and predicate symbols in φ. Note that
the quantifier sets Q of such interpretations can be restricted to subsets of
finitely many quantifier formulas among FPA(φ). Also note that there are
only finitely many assignments a to be considered because the only values
which matter are the finitely many values a(i) where vi ∈ FT (φ). The formula
φ is a quasitautology iff J � φ for all such finite identity interpretations J .
Such a test for quasitautologies seems to be much less convenient than the
method of associates. We mention it here because this is the method used by
Boolos and Jeffrey [3] to recognize proofs in their proof calculus for predicate
logic.

141



Identity tableaux offer the most convenient test for quasitautologies. We
call a branch ∆ of an identity tableau identically complete if whenever an
identity rule has its premises ∆1 in ∆ then also its conclusion φ is an as-
sumption in ∆ provided FT (φ) ⊆ FT (∆1). The reader will note that the last
condition can be violated only by function substitution rules whose conclu-
sions can introduce new terms into identity tableaux.

In order to test whether φ is a quasitautology we construct a tableau for
φ∗ and in every open propositionally complete branch we saturate the branch
by the conclusions of finitely many identity rules which can be applied on the
branch and which do not introduce new terms. If all branches close then φ is
a quasitautology by Corollary 4.3.8. If there is an open propositionally and
identically complete branch then we construct a propositional interpretation
I by collecting all propositional atoms in the assumptions of the branch. We
have proved in Par. 3.2.8 that we have I 2 φ and I � ψ for all assumptions
ψ in the branch. Now, the branch is identically complete, and so we must
have I � Eq{φ}. But this means that Eq{φ} 2p φ holds and so we have 2i φ
by 4.2.11(1).

Identity tableaux facilitate also a semidecidable test for quasitautological
consequence from decidable axioms T : T �i φ. This is an extension of the
procedure described in Par. 3.5.9 where we identically complete every open
branch which is propositionally complete just before we add the next axiom
to the assumptions of the branch. By the same reasoning as above we can
show that if there is an open branch which is propositionally, identically, and
axiomatically complete then we have a propositional interpretation I such
that I � T ∪ EqT∪{φ} and I 2 φ. Hence I witnesses T,EqT∪{φ} 2p φ and we
get T 2i φ by 4.2.11(1).

142



5. Quantification Logic

In this section we investigate the notion of logical consequence where a formula
φ follows from a set of axioms T by the laws of logic alone. This means
that φ follows from T because of the properties of propositional connectives,
identitity relation, and quantifiers and without taking into considerations the
extralogical properties of its function and predicate symbols beyond those
which are captured by the axioms T .

5.1 Some Syntactic Concepts

In contrast to the preceding chapters where the variables played no special
role we will need in this chapter to pay the attention to the variables occurring
in formulas of first order languages.

5.1.1 Free variables. Free variables of a set of formulas S of a language L
are variables x occurring in the formulas of S outside of quantifiers ∃x and
∀x. This is made precise by a metamathematical function FV (α) defined on
terms, formulas, and sets of formulas to yield the set of free variables of α.
The function FV satisfies the set identities given in Fig. 5.1.

5.1.2 Sentences. A term τ (formula φ) of some L such that FV (τ) =
∅ (FV (φ) = ∅) is closed and open otherwise. Closed formulas are called
sentences. Sets T of closed formulas are closed. Universal instantiation of a
formula φ is any sentence ∀x1 . . .∀xnφ such that x1, . . . , xn ∈ FV (φ). We
usually denote by ∀φ any universal instantiation of φ.

A variable x is bound in a formula φ if ∃xψ or ∀xψ occurs as a subformula
in φ.

5.1.3 Substitution. If α is a term, formula, or a set of formulas of a lan-
guage L then we will denote by αx[τ ] the application of the ternary meta-
mathematical substitution function which yields term, formula, or set similar
to α but with every free occurrence of the variable x replaced by the term
τ . The substitution function is defined to satisfy the term identities given in
Fig. 5.2.



FV (x) = {x}
FV (f(τ1, . . . , τn)) = FV (τ1) ∪ . . . ∪ FV (τn)

FV (τ1 = τ2) = FT (τ1) ∪ FT (τ2)

FV (P (τ1, . . . , τn)) = FV (τ1) ∪ . . . ∪ FV (τn)

FV (∀xφ) = FV (φ) \ {x}
FV (∃xφ) = FV (φ) \ {x}

FV (>) = ∅
FV (⊥) = ∅

FV (¬φ) = FV (φ)

FV (φ1 ∨ φ2) = FV (φ1) ∪ FV (φ2)

FV (φ1 ∧ φ2) = FV (φ1) ∪ FV (φ2)

FV (φ1 → φ2) = FV (φ1) ∪ FV (φ2)

FV (φ1 ↔ φ2) = FV (φ1) ∪ FV (φ2)

FV (T ) =
⋃

{FV (φ) | φ ∈ T} .

Fig. 5.1. Function yielding sets of free variables

yx[τ ] ≡
{

τ if y ≡ x
y otherwise

f(τ1, . . . , τn)x[τ ] ≡ f(τ1x[τ ], . . . , τnx[τ ])

(τ1 = τ2)x[τ ] ≡ τ1x[τ ] = τ2x[τ ]

P (τ1, . . . , τn)x[τ ] ≡ P (τ1x[τ ], . . . , τnx[τ ])

(∀yφ)x[τ ] ≡
{

∀yφ if y ≡ x
∀yφx[τ ] otherwise

(∃yφ)x[τ ] ≡
{

∃yφ if y ≡ x
∃yφx[τ ] otherwise

>x[τ ] ≡ >
⊥x[τ ] ≡ ⊥
¬φx[τ ] ≡ φx[τ ]

(φ1 ∨ φ2)x[τ ] ≡ φ1x[τ ] ∨ φ2x[τ ]

(φ1 ∧ φ2)x[τ ] ≡ φ1x[τ ] ∧ φ2x[τ ]

(φ1 → φ2)x[τ ] ≡ φ1x[τ ]→ φ2x[τ ]

(φ1 ↔ φ2)x[τ ] ≡ φ1x[τ ]↔ φ2x[τ ]

Tx[τ ] ≡ {φx[τ ] | φ ∈ T} .

Fig. 5.2. Substitution function

144



For reasons discussed in Par. 5.2.11 we will use the the substitution func-
tion αx[τ ] only with terms τ which are free for x in α meaning that no vari-
able occurring in τ becomes bound in the result of the substitution. In other
words, whenever the recursion reaches a quantified formula, say, (∀yφ)x[τ ]
with y 6≡ x we have y /∈ FV (τ). Note that a closed term τ is free for x in any
φ.

We now agree on a convention that whenever we will write αx[τ ] without
explicitly mentioning that τ is free for x in α this restriction will be tacitly
assumed.

5.1.4 Indication of variables. We will often indicate by writing φ[x] that
the variable x is possibly free in φ. When we later write φ[τ ] we are designating
the same formula as φx[τ ].

The method of indication is useful when we indicate more variables at
once: φ[~x]. In such situations we always tacitly assume that the n-tuple of
variables ~x consists of pairwise distinct variables. By writing φ[~τ ] we designate
the same formula as φx1 [τ1] . . .xn [τn].

5.1.5 Cantor’s diagonal pairing function. We will need the well-known
Cantor’s ‘diagonal’ pairing function J defined as

J(x, y) =
(x+ y + 1)·(x+ y)

2
+ x .

It is not hard to see that every natural number z can be uniquely written
as z = J(x, y). Moreover, for any numbers x and y the value J(x, y) can be
efectively computed and also for a given number z the unique numbers x and
y such that z = J(x, y) can be effectively computed.

5.1.6 Witnessing extensions of first-order languages. Let L be a first-
order language. We denote by Lc its witnessing extension by the addition of
Henkin (witnessing) constants ck where k = J(i + 1, j) for some i, j. This
ck is said to be of rank (i + 1). Henkin constants are always chosen as new
constants not occurring in L.

A formula φ of Lc is of rank i if φ is of L and i = 0 or if for some Henkin
constant ck with rank i we have ck ∈ FT (φ) and no Henkin constant of higher
rank is in FT (φ).

We now assign the Henkin constants to the existentially quantified sen-
tences of Lc as follows. We can clearly enumerate the formulas of any language
into a sequence. Moreover, by ommiting certain formulas, we can also enu-
merate for every number i all existentially quantified sentences of Lc of rank
i:

ψi0 ψ
i
1 ψ

i
2 . . . , (1)

i.e. sentences where ψij ≡ ∃xφ for some φ of rank i from Lc. We fix one such
enumeration relatively to every L (and thus also relatively to Lc) and i.

145



The Henkin constant cJ(i+1,j) is said to belong to the sentence ψij .

5.1.7 Quantifier axioms. Fix a language L and consider its witnessing
extension Lc. We call the sentences

φx[τ ]→ ∃xφ (1)
∀xφ→ φx[τ ] (2)

where ∃xφ and ∀xφ are sentences of Lc and τ a closed term of Lc instantiation
axioms.

We call the sentence

∃xφ→ φx[ck] (3)

where ∃xφ is a sentence of Lc and ck the Henkin constant belonging to it the
(Henkin) witnessing axiom for ∃xφ.

We call the sentence

φx[ck]→ ∀xφ (4)

where ∀xφ is a sentence of Lc and ck the Henkin constant belonging to the
sentence ∃x¬φ the (Henkin) counterexample axiom for ∀xφ. Witnessing and
counterexample axioms are together called Henkin axioms. We designate the
witnessing axioms by Ha.

Note that the Henkin axioms for sentences ∃xφ and ∀xφ of rank i do not
need to have ranks i+ 1 because it can happen that x /∈ FV (φ).

The set Qa of quantifier axioms is the set of sentences of Lc consisting of
the instantiation and Henkin axioms.

5.2 Logical Consequence

5.2.1 Interpretations. An interpretation I for L is a pair 〈M, a〉 where
M is a structure for L with domain D and a is an assignment in M.

Denotations τI of terms τ of L are defined exactly as in Par. 4.2.4.
For the definition of the satisfaction relation we will need an operator

taking the assignment a, variable x, and d ∈ D to the assigment designated
by a( dx ) and such that

a( dx )(i) =

{

d if x ≡ vi
a(i) if x 6≡ vi.

For the above interpretation I we designate by I( dx ) the interpretation
〈M, a( dx )〉.

The satisfaction relation I satisfies φ, written as I � φ, is similar to
the satisfaction relation for identity interpretations (see Par. 4.2.5) when φ

146



is an atomic or propositional formula. For quantifier formulas we define the
relation as follows:

I � ∀xφ⇔ I( dx ) � φ for all d ∈ D
I � ∃xφ⇔ I( dx ) � φ for some d ∈ D.

Interpretations I for Lc such that I � Ha are called Henkin interpreta-
tions.

5.2.2 Agreement of interpretations. If S is a set of terms then two
interpretations I = 〈M, a〉 and J = 〈M, b〉 sharing the same structure agree
on S if the assignments a and b agree on S, i.e. if for every variable vi ∈ S
we have a(i) = b(i).

5.2.3 Equivalence lemma. If the interpetations I and J for L agree on

1. FV (τ) then τI = τJ ,
2. FV (T ) then I ≡T J .

Proof. 1) Assume I = 〈M, a〉 and J = 〈M, b〉 and prove the property by
induction on the construction of τ . If τ ≡ vi then vIi = a(i) = b(i) = vJi . If
τ ≡ f(τ1, . . . , τn) then

f(τ1, . . . , τn)I = fM(τI1 , . . . , τ
I
n ) IH= fM(τJ1 , . . . , τ

J
n ) = f(τ1, . . . , τn)J .

2) Take any φ ∈ T and prove

I � φ⇔ J � φ for I and J agreeing on FV (T )

by induction on the construction of φ. If φ ≡ τ1 = τ2 then we have I �
τ1 = τ2 iff τI1 = τI2 iff, by 1), τJ1 = τJ2 iff J � τ1 = τ2. The case when
φ ≡ P (τ1, . . . , τn) is similar.

If φ ≡ ∃xφ1 then I � ∃xφ1 iff I( dx ) � φ1 for some d ∈ D where D is the
domain of the structure shared by I and J iff, by IH, J ( dx ) � φ1 for some
d ∈ D iff J � ∃xφ1. The case when φ ≡ ∀xφ1 is similar.

If φ ≡ ¬φ1 then I � ¬φ1 iff I 2 φ1 iff, by IH, J 2 φ1, iff J � ¬φ1. The
remaining propositional cases for φ are similar.

5.2.4 Substitution lemma. For every interpretation I for L, any terms
ρ1, ρ2, any formula φ, and any term τ free for x in φ we have:

(ρ1x[ρ2])I = ρ
I( ρ

I
2
x

)

1 (1)

I � φx[τ ]⇔ I( τI
x

) � φ . (2)

Proof. Take any interpretation I = 〈M, a〉 and let D be the domain of M.
(1): By induction on the construction of ρ1. If ρ1 ≡ vi then if vi ≡ x we have

147



(xx[ρ2])I = ρI2 = a( ρI2
x

)(i) = x
I( ρ

I
2
x

)

and if vi 6≡ x we have

(vix[ρ2])I = vIi = a( ρI2
x

)(i) = v
I( ρ

I
2
x

)

i .

If ρ1 ≡ f(τ1, . . . , τn) then

(f(τ1, . . . , τn)x[ρ2])I = (f(τ1x[ρ2], . . . , τnx[ρ2]))I =

fM((τ1x[ρ2])I , . . . , (τ1x[ρ2])I) IH=

fM(τ
I( ρ

I
2
x

)

1 , . . . , τ
I( ρ

I
2
x

)

n ) = (f(τ1, . . . , τn))I( ρ
I
2
x

)
.

(2): By induction on the construction of φ. If φ ≡ τ1 = τ2 then we have
I � (τ1 = τ2)x[τ ] iff I � τ1x[τ ] = τ2x[τ ] iff (τ1x[τ ])I = (τ2x[τ ])I iff, by (1),

τ
I( τ

I

x
)

1 = τ
I( τ

I

x
)

2 iff I( τI
x

) � τ1 = τ2.
If φ ≡ P (τ1, . . . , τn) then I � P (τ1, . . . , τn)x[τ ] iff I � P (τ1x[τ ], . . . , τnx[τ ])

iff 〈(τ1x[τ ])I , . . . , (τnx[τ ])I〉 ∈ PM iff, by (1), 〈τ
I( τ

I

x
)

1 , . . . , τ
I( τ

I

x
)

n 〉 ∈ PM iff
I( τI

x
) � P (τ1, . . . , τn).

If φ ≡ ∃yφ1 then if x ≡ y then we have I � (∃yφ1)x[τ ] iff I � ∃yφ1 iff by
Lemma 5.2.3, since I and I( τI

x
) agree on FV (∃yφ1), I( τI

x
) � ∃yφ1.

If x 6≡ y then we have I � (∃yφ1)x[τ ] iff I � ∃yφ1x[τ ] iff I( dy ) � φ1x[τ ]

for some d ∈ D iff by IH, since τ is free for x in φ1, I( dy )( τI( d
y

)

x
) � φ1 for

some d ∈ D iff, by Lemma 5.2.3, since y /∈ FV (τ), I( dy )( τI
x

) � φ1 for some
d ∈ D iff I( τI

x
)( dy ) � φ1 for some d ∈ D iff I( τI

x
) � ∃yφ1. If φ ≡ ∀yφ1 then

the proof is similar.
If φ ≡ φ1 ∨ φ2 then we have I � (φ1 ∨ φ2)x[τ ] iff I � φ1x[τ ] ∨ φ2x[τ ] iff

I � φ1x[τ ] or I � φ2x[τ ] iff by IH, since τ is free for x in φ1, φ2, I( τI
x

) � φ1

or I( τI
x

) � φ2 iff I( τI
x

) � φ1 ∨ φ2. The remaining propositional cases are
similar. ut

5.2.5 Models. Let M be a structure for L with a domain D and φ[~x]
a formula of L with all of its free variables among the indicated ones. By
Lemma 5.2.3 any two assignments in M a and b which coincide on ~x are
such that

〈M, a〉 � φ⇔ 〈M, b〉 � φ

and so for ~d ∈ D we can write M � φ[~d] as an abbreviation for 〈M, a〉 � φ
where a is any assignment such that a(x1) = d1, . . . , a(xn) = dn.

We define M � φ as

M � φ[~d] for all ~d ∈ D .

148



If φ is a sentence then we have M � φ iff 〈M, a〉 � φ for some assignment a
(and equivalently for all assignments a) and in that case we say that M is a
model of φ, or that φ is true in M.

For a set T of formulas of L we write M � T for M � φ for all φ ∈ T .
M is a model of a set T of sentences of L if M � T . T is satisfiable if it is
true in some structure, i.e. if T has a model.

5.2.6 Expansions of structures. Let L1 be an extension of a language L
and let M be a structure for L with a domain D. The structure N for L1 is
an expansion of M if the domain of N is D and the interpretation in N of
every function and predicate symbol from L is the same as in M.

The interpretation J for L1 is an expansion of the interpretation I for
L if the structure of J is an expansion of the structure for I and both
interpretations have the same assignments.

Two interpretations I for L and J for L1 where L1 is an extension of L
are equivalent on T , which we write as I ≡T J , if T is a subset of formulas
of L and I � φ ⇔ J � φ for all φ ∈ T . We write I ≡L J if I and J are
equivalent on the formulas of L.

5.2.7 Expansion theorem. If J for L1 is an expansion of I for L then

τJ = τI for all terms τ of L (1)
J ≡L I . (2)

Proof. Assume that J = 〈N , a〉 with the domain D and I = 〈M, a〉.
(1): By induction on the construction of τ . If τ ≡ vi then vJi = a(i) = vIi .

If τ ≡ f(τ1, . . . , τn) for f in L then

f(τ1, . . . , τn)J = fN (τJ1 , . . . , τ
J
n ) IH= fN (τI1 , . . . , τ

I
n ) =

fM(τI1 , . . . , τ
I
n ) = f(τ1, . . . , τn)I .

(2): The property follows from

φ in L; for all J for L and I for L1 s.t. J expands I ⇒ (J � φ⇔ I � φ)

proved by induction on the construction of φ. If φ ≡ τ1 = τ2 then we have
J � τ1 = τ2 iff τJ1 = τJ2 iff, by (1), τI1 = τI2 iff I � τ1 = τ2. The case when
φ ≡ P (τ1, . . . , τn) is similar.

If φ ≡ ∃xφ1 then J � ∃xφ1 iff J ( dx ) � φ1 for some d ∈ D where D is the
shared domain iff, by IH, I( dx ) � φ1 for some d ∈ D iff I � ∃xφ1. The case
when φ ≡ ∀xφ1 is similar.

If φ ≡ ¬φ1 then J � ¬φ1 iff J 2 φ1 iff, by IH, I 2 φ1, iff I � ¬φ1. The
remaining propositional cases for φ are similar. ut

149



5.2.8 Lemma (Reduction to identity interpretations). To every in-
terpretation I for L there is an equivalent identity interpretation J for L.

Proof. Take any interpretation I = 〈M, a〉 for L. We construct the identity
interpretation J = 〈Q,M, a〉 by defining

Q = {ψ | I � ψ for quantifier formulas ψ} .

Note that the assignment a in I is also an assignment in J because both
interpretations share the structure M. For the same reason we have

τJ = τI (1)

for every term τ of L.
We prove the equivalence of J and I by proving J � φ ⇔ I � φ by

induction on construction of formulas φ of L. If φ is a quantifier formula then
J � φ iff φ ∈ Q iff I � φ. If φ ≡ τ1 = τ2 then J � τ1 = τ2 iff τJ1 = τJ2 iff,
by (1), τI1 = τI2 iff I � τ1 = τ2. If φ ≡ P (τ1, . . . , τn) then J � P (τ1, . . . , τn)
iff 〈τJ1 , . . . , τJn 〉 ∈ PM iff, by (1), 〈τI1 , . . . , τIn 〉 ∈ PM iff I � P (τ1, . . . , τn). If
φ ≡ φ1∨φ2 then we have J � φ1 ∨ φ2 iff J � φ1 or J � φ2 iff, by IH, I � φ1

or I � φ2 iff I � φ1 ∨ φ2. The remaining cases are similar. ut

5.2.9 Logical consequence. Fix a language L and let T be a set of formu-
las from L. We define the relation φ is a logical consequence of T , in symbols
T � φ, as follows:

T � φ⇔ (I � T ⇒ I � φ) for all interpretations I.

We write � φ for ∅ � φ and such a φ is a valid formula. Note that we have

� φ⇔ I � φ for all interpretations I.

If T is closed then we have T � φ iff M � φ for all models of T .
The following lemma asserts that the instantiation axioms are valid and

that Henkin counterexample axioms are logical consequences of Ha. Hence,
Qa is staisfied in every Henkin interpretation.

5.2.10 Lemma.

� φx[τ ]→ ∃xφ τ , φ of any L, τ free for x in φ (1)
� ∀xφ→ φx[τ ] τ , φ of any L, τ free for x in φ (2)

Ha � Qa . (3)

Proof. (1): Take any interpretation I for L with the domain D and any
formula φx[τ ] → ∃xφ satisfying the assumptions. Assume I � φx[τ ] and
obtain I( τI

x
) � φ by Lemma 5.2.4. Since τI ∈ D we get I � ∃xφ.

150



(2): the proof is similar to that of (1).
(3): Take any Henkin interpretation I for Lc with the domain D and any

ψ ∈ Qa. If ψ ∈ Ha we have I � ψ trivially and if ψ is an instantiation
axiom we get the same by (1) or (2) because the term τ is closed and so it
is free for x in φ. If ψ is a counterexample axiom of a form φx[c] → ∀xφ
then ∃x¬φ → ¬φx[c] ∈ Ha and so I � ∃x¬φ→ ¬φx[c]. We now assume
I � φx[c] and obtain I 2 ¬φx[c] and then I 2 ∃x¬φ. But then I( dx ) 2 ¬φ,
i.e. I( dx ) � φ, for all d ∈ D and so I � ∀xφ. ut

5.2.11 Remark. Why did we impose the freeness restriction on substitu-
tions into quantified formulas. We did this because we wish the instantiation
formulas 5.2.10(1) and 5.2.10(2) to be valid.

For instance, consider the formula ∃y y 6= x. We have (∃y y 6= x)x[y] ≡
∃y y 6= y. The formula ∀x∃y y 6= x→ (∃y y 6= x)x[y], i.e. the formula

∀x∃y y 6= x→ ∃y y 6= y

has the form of 5.2.10(2) but the term y is not free for x in ∃y y 6= x. This
violation of the substitution condition prevents the formula from being valid.
This can be seen by noting that I � ∀x∃y y 6= x holds for any interpretation
I with at least two elements in its domain whereas I � ∃y y 6= y is satisfied
for no interpretation I.

5.2.12 Lemma (Henkin expansion). For every interpretation I for L
there is a Henkin expansion J for Lc.

Proof. Take any interpretation I = 〈M, a〉 for L and let D be the domain of
M. We wish to construct the interpretation J = 〈N , a〉 as an expansion of I
satisfying Ha. To that end we define for i ≥ 0 a sequence of interpretations
Ji = 〈Ni, a〉 with the structures Ni for languages Li. We define L0 = L and
Li+1 as the extension of Li with the Henkin constants of rank i + 1. Thus
Li contains all Henkin constants with ranks ≤ i. We define the structures
Ni and thus also the interpretations Ji by induction on i in such a way that
Ji+1 will be an expansion of Ji and for all Henkin constants c of rank i+ 1
belonging to sentences ∃xφ of Li of rank i we will have

Ji+1 � ∃xφ→ φx[c] . (1)

In the base case we set N0 = M and so J0 = I. In the inductive case we
take any Henkin constant c of rank i+ 1. The constant belongs to a sentence
∃xφ of Li which is of rank i and we consider two cases. If Ji � ∃xφ holds
then Ji( dx ) � φ for some d ∈ D and we interpret cNi+1 = d. If Ji 2 ∃xφ then
we interpret cNi+1 = d where d is arbritrary element of D. This ends the
definition of Ni+1. The interpreation Ji+1 is an expansion of Ji and they are
equivalent on the formulas of Li by Lemma 5.2.7. For every Henkin constant c
if rank i+1 we prove (1) by considering the same two cases again. If Ji � ∃xφ

151



holds then we have Ji+1 � ∃xφ and Ji+1( cNi
x

) � φ by the interpretation of c.
We obtain Ji+1 � φx[c] by Lemma 5.2.4. This satisfies (1). If Ji 2 ∃xφ then
we have Ji+1 2 ∃xφ and so (1) holds again.

With the construction of interpretations Ji done we note that whenever
0 ≤ i < j the language Lj is an extension of Li, Jj is an expansion of Ji, and
the interpretations are equivalent on Li by Lemma 5.2.7. Thus Jj satisfies the
axioms of Ha whose Henkin constants have ranks ≤ j. We also have Ji ≡L I.
We now construct the interpretation J = 〈N , a〉 for Lc as an expansion of I
where the structure N is an expansion ofM interpreting Henkin constants of
rank i in the same way as Ji. Thus J ≡L I and, since J is also an expansion
of every Ji and thus J ≡Li Ji by Lemma 5.2.7, we have J � Ha. ut

5.2.13 Lemma (Expansion of identity interpretations). For every L
and every identity interpretation I for Lc such that I � Qa there is a canon-
ical Henkin interpretation J for Lc equivalent to I on the sentences of Lc.

Proof. Take any identity interpretation I for Lc such that I � Qa. Let T
be the set of sentences of Lc. We obtain a T -equivalent canonical identity
interpretation I1 = 〈Q,M, a〉 for a structure M with the domain D and
an assignment a by Lemma 4.2.14. The set FT (T ) is not empty because it
contains at least the Henkin constants and its elements are closed terms.
Thus for every d ∈ D there is a closed term τ ∈ FT (T ) such that τI1 = d.
Since Qa ⊆ T we have I1 � Qa. We construct the interpretation J = 〈M, a〉
which is canonical because

τJ = τI1 (1)

holds. By induction on the structure of formulas φ we prove

φ ∈ T ⇒ (J � φ⇔ I1 � φ) . (2)

Thus assume φ ∈ T and if φ ≡ τ1 = τ2 then we have J � τ1 = τ2 iff τJ1 = τJ2
iff, by (1), τI1

1 = τI1
2 iff I1 � τ1 = τ2.

If φ ≡ P (τ1, . . . , τn) then we have J � P (τ1, . . . , τn) iff 〈τJ1 , . . . , τJn 〉 ∈
PM iff, by (1), 〈τI1

1 , . . . , τI1
n 〉 ∈ PM iff I1 � P (τ1, . . . , τn).

If φ ≡ ∃xφ1 then if J � ∃xφ1 holds we have J ( dx ) � φ1 for some d ∈ D.

There is a closed term τ of Lc such that τJ
(1)
= τI1 = d and so J ( τJ

x
) � φ1

and we obtain J � φ1x[τ ] by Lemma 5.2.4. Because φ1x[τ ] ∈ T we obtain
I1 � φ1x[τ ] by IH and, since φ1x[τ ]→ ∃xφ ∈ Qa, we get I1 � ∃xφ1.

Vice versa, if I1 � ∃xφ1 holds then we have ∃xφ → φ1x[c] ∈ Qa for
the Henkin constant c belonging to ∃xφ. From I1 � ∃xφ→ φ1x[c] we get
I1 � φ1x[c] and then J � φ1x[c] by IH. Hence J ( cJ

x
) � φ1 by Lemma 5.2.4

and so J � ∃xφ1 holds. The case when φ ≡ ∀xφ1 is similar.
If φ ≡ φ1∨φ2 then J � φ1 ∨ φ2 iff J � φ1 or J � φ2 iff, since φ1, φ2 ∈ T ,

we have by IH I1 � φ1 or I1 � φ2 iff I1 � φ1 ∨ φ2. The remaining cases for φ
are similar.

152



We have I ≡T I1 from the construction of I1. From (2) we get I1 ≡T J
and so I ≡T J holds.

The reader will note that the use of Henkin axioms in the inductive proof
of (2) works only when T consists of sentences and so the lemma cannot be
extended to the formulas of L. ut

5.2.14 Theorem. If I is an interpretation for L then there is a canonical
interpretation J for L equivalent to I on the sentences of L.

Proof. For a given interpretation I for L we obtain a Henkin expansion
I1 for Lc by Lemma 5.2.12 and we have I1 ≡L I by Lemma 5.2.7. We
then get I1 � Qa by 5.2.10(3) and obtain an identity interpretation I2 for
Lc equivalent to I1 by Lemma 5.2.8. Since then I2 � Qa holds, we get a
canonical interpretation J for Lc equivalent to I2 on the sentences of Lc by
Lemma 5.2.13. Since the sentences of L are sentences of Lc, the interpretation
I is equivalent to J on the sentences of L. ut

5.2.15 Theorem (Henkin reduction). If φ and T consist of sentences of
L then

T � φ⇔ T,Qa �i φ . (1)

Proof. In the direction (⇒) assume T � φ and take any identity interpre-
tation I for Lc such that I � T ∪Qa. There is an interpretation J for Lc
equivalent to I on the sentences of Lc by Lemma 5.2.13. Since the sentences of
L are sentences of Lc, we have J � T and hence J � φ from the assumption.
But then I � φ by the equivalence.

In the direction (⇐) assume T,Qa �i φ and take any interpretation I
for L such that I � T holds. There is a Henkin expansion I1 for Lc by
Lemma 5.2.12 which is equivalent to I on the formulas of L by Lemma 5.2.7.
Thus I1 � T and we also have I1 � Qa by 5.2.10(3). There is an identity
interpretation J for Lc equivalent to I1 by Lemma 5.2.8. Hence J � T ∪Qa
and we get J � φ from the assumption and I � φ by the equivalence. ut

5.2.16 Theorem. If φ and T consist of sentences of L then

T �i φ⇒ T � φ .

Proof. If T �i φ holds then we have T,Qa �i φ by weakening and T � φ by
Thm. 5.2.15. ut

153



5.2.17 Theorem (Generalization). If T is closed and φ a formula of
some L then

T � φ⇔ T � ∀φ .

Proof. The theorem is proved by a repeated application of an auxiliary as-
sertion

T � φ⇔ T � ∀xφ

which is proved in the direction (→) by assuming T � φ and taking any
interpretation for L with a domain D such that I � T . For any d ∈ D
interpretations I( dx ) and I agree on FV (T ) because T is closed and so I( dx ) �
T by Lemma 5.2.3. Thus I( dx ) � φ from the assumption and so I � ∀xφ.

In the direction (←) we assume T � ∀xφ and take any interpretation for
L such that I � T . Thus I � ∀xφ and, since φx[x] ≡ φ, we obtain I � φ by
5.2.10(2). ut

5.2.18 Theorem (Skolem-Löwenheim). If T is a set of sentences of
some L and φ a formula of L then

1. if T is satisfiable then T has a numerical model,
2. T � φ iff φ is true in all numerical models of T .

Proof. 1) If T is is satisfiable then it has a model M, i.e. M � T . Since T is
a set of sentences we have 〈M, a〉 � T for any assignment a inM. There is a
canonical interpretation J such that J � T by Thm. 5.2.14. Thus J = 〈N , b〉
for a numerical structure N and an assignment b in N . But then N � T .

2) The direction (→) is trivial. In the direction (←) assume T 2 φ. Thus
T has a model M in which M 2 φ, i.e. M � ¬∀φ by Thm. 5.2.17 and so
there is a numerical model N of T,¬∀φ by 1). Thus N is a model of T s.t.
N 2 ∀φ, i.e. N 2 φ. ut

5.2.19 Import of Skolem-Löwenheim’s theorem. This paragraph is
not yet finished. Numeric structures are the most important ones. The next
two parts of this text are devoted to the study of theorems true in the most
important numeric structure: the standard model of Peano Arithmetic.

5.3 Quantification Tableaux

5.3.1 Tableau expansion rules. Fix a language L. All expansion rules for
(quantifier) tableaux are unary. Quantifier instantiation rules are

∀xφ
φx[τ ]

(∀)
∃xφ∗
φx[τ ]∗

(∃∗)

for all formulas φ, variables x, and terms τ free for x in φ. Eigen-variable
rules are

154



∃xφ
φx[y]

(∃)
∀xφ∗
φx[y]∗

(∀∗)

for all formulas φ, variables x, and eigen-variables y free for x in φ.
The reader will note that the instantiation rules corrrespond to the valid

formulas 5.2.10(2)(2) and the eigen-variable rules to Henkin axioms.

5.3.2 Proofs with tableaux. A tableau π for a sequence of signed formulas
∆ from axioms in T is called a tableau for ∆ from axioms T if every eigen-
variable y in π satisfies the eigen-variable condition that it is not free in
any signed formula in the branch above the conclusion of the corresponding
eigen-variable rule and neither it is free in T . If π is closed then we assert
this by writing π : T ` [∆]. The requirement that the eigen-variables be not
free in axioms are not that severe as they might look because our axioms will
be mostly closed.

When ∆ ≡ φ∗ then we say that π is a tableau proving φ from axioms T
and write it as π : T ` φ. We use additional abbreviations similar to those
discussed in Par. 3.2.4.

We first adapt to quantifier tableaux some of the theorems formulated for
propositional tableaux.

5.3.3 Theorem (Admissible rules in tableaux). Generalized flatten
(see Thm. 3.3.2), generalized split (see Thm. 3.3.3), and propositional in-
version (see Thm. 3.3.5) are admissible in any tableaux. Inversion rules for
(∃) and (∀∗):

T ` [∆, ∃xφ]⇒ π : T ` [∆,φx[y]] for a y and π with no (∃) on ∃xφ
T ` [∆, ∀xφ∗]⇒ π : T ` [∆,φx[y]∗] for a y and π with no (∀∗) on ∀xφ∗ .

are admissible in tableaux with closed axioms T .

Proof. Inspection of proofs of admissibility of expansion generalized flatten
and split rules as well as of propositional inversion rules reveals that the proofs
remain correct also for (quantifier) tableaux; the presence of quantifier and
identity rules does not affect the proofs.

We prove just that the inversion of (∃) rule is admissible, the proof of the
inversion of (∀∗) is similar. Consider the following closed tableau

...
∃xφ

...

φx[y] (∃)
π1[y]

φx[z] (∃)
π2[z]

∃xφ∗

155



where we have indicated three out of possibly many uses of the assumption
∃xφ. The first two uses are by (∃) rules with the eigen-variables y and z
and the third use closes the branch. The following closed tableau shows the
inverted rule:

...
φx[w]

...

π1[w] π2[w]
∃xφ∗
φx[w]∗ (∃∗)

where we have chosen a new variable w, removed the two conclusions of (∃)
rules (since they occur above), systematically renamed the variables y and z
to w in the tableaux φ1[y] and φ2[z], and closed the branch containing the
goal ∃xφ∗ with a (∃∗) rule. Note that we can always find a new variable w
because there are only finitely many of them free or bound in the tableau.
This makes w free for x in φ and free for y and z in the quantified formulas
of π1 and π2. Also note that the renaming of variables does not affect any
axiom expansions because they are sentences. ut

5.3.4 Syntactic compactness and deduction theorems.

T ` φ⇒ S ` φ finite S ⊆ T (1)

S ` φ⇔ `
∧

S → φ S finite. (2)

Proof. (1): This is the theorem on syntactic compactness 3.5.5 whose proof
directly lifts up to the general tableaux.

(2): This is the Deduction theorem 3.5.6 whose proof directly lifts up to
the general tableaux. ut

5.3.5 Renaming lemma. If T in L is closed, ∆[~x] is a sequence of formu-
las of L with all free variables among the indicated ones, and the variables in
~y are free for the corresponding variables in ∆ then

π : T ` ∆[~x]⇒ T ` ∆[~y] .

Proof. By induction on the number of expansions in π. If π is empty then
whatever closes ∆[~x] must close ∆[~y]. If the last expansion in π is by a
rule which does not introduce new variables, say (¬∗), then, for a premise
¬φ[~x]∗ ∈ ∆[~x], we show the tableau π on the left:

156



∆[~x]

φ[~x] (¬∗)
π1

⇒

∆[~y]

φ[~y] (¬∗)
π′1

We have π1 : T ` [∆[~x], φ[~x]] and we obtain π′1 : T ` [∆[~y], φ[~y]] for some π′1
by IH. We construct the tableu π′ shown on the right. Note that ¬φ[~y]∗ ∈ ∆[~y]
and thus π′ : T ` ∆[~y].

(¬∗) rules, remaining propositional rules, as well as all identity rules ex-
cept reflexivity, are rules which do not introduce new variables and they
are invariant to systematic renaming of free variables in their premises and
conclusions.

If the first expansion in π is by a rule which may introduce new variables,
say (∃), then, for a premise ∃vφ[v, ~x]∗ ∈ ∆[~x] we show the tableau π on the
left:

∆[~x]

φ[τ [~z, ~x], ~x] (∃)
π1

⇒

∆[~y]

φ[τ [~z, ~y], ~y] (∃)
π′1

We have π1 : T ` [∆[~x], φ[τ [~z, ~x], ~x]] an we obtain π′1 : T ` [∆[~y], φ[τ [~z, ~y], ~y]]
for some π′1 by IH. We construct the tableau π′ shown on the right. Note
that ∃vφ[v, ~y]∗ ∈ ∆[~y] and thus π′ : T ` [∆[~y]].

(∃) rules, remaining quantifier rules, axiom rules, as well as reflexivity
rules, may introduce new variables into tableaux. All but the axiom rules
are invariant to systematic renaming of free variables in their premises and
conclusions. We have assumed that the axioms in T are closed which makes
the axiom rules invariant to renaming too. ut

5.3.6 Lemma (Admissibility of cuts on propositional formulas). If
the cut rules on all propositional atoms in a formula φ are admissible in
(quantifier) tableaux then also the cut rule on φ is admissible.

Proof. Inspection of the proof of the similar Lemma 3.3.7 for propositional
tableaux reveals that the lemma holds also for tableaux (with identity and
quantifier rules). ut

5.3.7 Theorem (Admissibility of cuts). Cut rules on arbitrary formulas
are admissible in tableaux with closed axioms.

Proof. For the duration of this proof we call a tableau π : T ` [∆] normal if

1. the axioms T are sentences,
2. free variables in the formulas of ∆ and π are disjoint with all bound

variables used in ∆ and π,
3. all new variables introduced into π by the reflexivity, instantiation, and

eigen-variable rules are pairwise distinct.

157



We prove

if π is a normal closed tableau from T for ∆ with a cut on the formula
φ as the first and only expansion by a cut in π then there is a tableau
π′ such that π′ : T ` [∆]

by induction on the number of propositional connectives and quantifiers in
the cut formula φ. The tableau π can be visualized as follows

∆

(C)
φ φ∗

(1)

If φ is an atomic formula then the cut on φ is admissible by the same argument
as in Lemma 3.3.8 (taking into account the comment on cuts on identity
formulas in Thm. 4.3.3).

If φ is a propositional formula then cuts on all propositional atoms in φ
are admissible by IH and so the cut on φ is admissible by Lemma 5.3.6.

If φ ≡ ∀xφ1 then (1) looks as follows:

∆

(C)
∀xφ1

φ1x[τ ] (∀)
π1

∀xφ1∗

∀xφ1∗
φ1x[y]∗ (∀∗)
π2[y]

where we may assume without loss of generality that the (∀∗) rule on the
right has been inverted. Thus the goal ∀xφ1∗ is not used for anything in the
tableau π2[y]. We have also indicated on the left one of possibly many uses
of the assumption ∀xφ1 in an (∀) rule and in the closing of a branch. We
transform π into π′ by modifying the tableau under the assumption ∀xφ1:

∆

(C)

φ1x[τ ]
π1

φ1x[τ ]∗
π2[τ ]

∀xφ1∗
φ1x[z]∗ (∀∗)
π2[z]

where we replace every use of a (∀) rule with the conclusion φ1x[τ ] by a cut on
this formula. The branch leading to the goal φ1x[τ ]∗ is closed by the tableau

158



π2[τ ] obtained from π2[y] by substituting for the eigen-variable y the term
τ . The substitution cannot affect axiom expansions in π2[y] because they are
closed by 1). Furthermore, no variable free in τ is bound anywhere in π2[y]
by 2) and so all substitutions are free. Finally, no eigen-variable condition
on any eigen-variable w in pi2[τ ] is violated because w cannot be introduced
into the branch leading to φ1x[τ ]∗ by 3).

We also apply a (∀∗) rule with new eigen-variables z everywhere where the
assumption ∀xφ1 was used for closing. We restore the normality of π′ if needed
by renaming with new variables all variables introduced in the possibly many
copies of π2[y]. The tableau π′ clearly does not use the assumption ∀xφ1 and
the cuts on all formulas φ1x[τ ] are admissible by IH. Hence π′ : T ` [∆]
holds.

The case when φ ≡ ∃xφ1 is proved similarly.
In order to finish the proof we must show how to convert the tableau

(1) into a normal tableau. The tableau consists of two branches such that
π1[~x] : T ` [∆[~x], φ[~x]] and π2[~x] : T ` [∆[~x], φ[~x]∗]. We have indicated all free
variables in ∆ and φ. The condition 1) is satisfied by the assumption of the
theorem that T is closed. We satisfy the conditions 2) and 3) by choosing new
variables ~y and systematically renaming to new variables the free variables
introduced into π1 and π2. In this way we obtain π′1[~y] : T ` [∆[~y], φ[~y]],
π′2[~y] : T ` [∆[~y], φ[~y]∗] for some π′1 and π′2 by Lemma 5.3.5. The tableau

∆[~y]

(C)
φ

π′1[~y] :
φ∗
π′2[~y]

is normal, its cut is admissible, and we obtain π′ : T ` ∆[~y] for a cut-free π′.
We now apply Lemma 5.3.5 again to get T ` ∆[~x]. ut

5.3.8 Theorem (Admissibility of the generalization rule). If T is
closed and φ a formula of some L then

T ` φ⇔ T ` ∀φ .

Proof. The theorem is proved by a repeated application of an auxiliary as-
sertion

T ` φ⇔ T ` ∀xφ

which is proved in the direction (→) by assuming π1 : T ` φ for some π1 and
constructing the tableau π′:

∀xφ ∗
φ (∀∗)
π1

159



for the eigen-variable x where we note that φx[x] ≡ φ. Thus π′ : T ` ∀xφ.
In the direction (←) we assume π : T ` ∀φ. The tableau can be presented

by (∀)∗ inversion for some w as follows:

∀xφ ∗
φx[w] (∀∗)
π1

We have π1 : T ` φx[w] from which we obtain T ` φ by Lemma 5.3.5 because
φx[x] ≡ φ. ut

5.3.9 Lemma. Ha ` Qa .

Proof. Take any ψ ∈ Q and consider four cases. If ψ is an existential in-
stantiation axiom φx[τ ] → ∃xφ then we can prove it even without Henkin
axioms:

φx[τ ]→ ∃xφ ∗
φx[τ ] (→1∗)
∃xφ∗ (→2∗)
φx[τ ]∗ (∃∗)

If ψ is an universal instantiation axiom ∀xφ→ φx[τ ] then the proof is similar.
If ψ is a witnessing axiom ∃xφ → φx[c] then we construct the following

one expansion tableau:

∃xφ→ φx[c] ∗
∃xφ→ φx[c] (Ax)

If ψ is a counterexample axiom φx[c] → ∀xφ then the Henkin constant is
shared with the witnessing axiom: ∃x¬φ → ¬φx[c]. We prove ψ with a new
eigen-variable z as follows:

φx[c]→ ∀xφ∗
∃x¬φ→ ¬φx[c] (Ax)

(→)

¬φx[c]
φx[c]∗ (¬)
φx[c] (→1∗)

∃x¬φ∗
∀xφ∗ (→2∗)
φx[z]∗ (∀∗)
¬φx[z]∗ (∃∗)
φx[z] (¬∗)

160



5.3.10 Theorem (Elimination of Henkin witnessing axioms). If T
and φ consist of sentences of a language L and Lc is its witnessing extension
then

T,Ha ` φ⇒ T ` φ .

Proof. Assume π : T,Ha ` φ for closed T and φ. We have π : T,Ha1 ` φ for
a finite subset Ha1 of Ha by 5.3.4(1). The theorem follows from the following
assertion:

if π : T,Ha1 ` φ for a finite subset Ha1 of Ha then T ` φ.

which is proved by induction on the size of Ha1. If Ha1 = ∅ there is nothing to
prove. Otherwise select from Ha1 a witnessing axiom ψ0 ≡ ∃ψ → ψx[c] with
the Henkin variable of maximal rank and denote by Ha2 the set of remaining
axioms. We may assume without loss of generality that π has the following
form

φ ∗
∃ψ → ψx[c] (Ax)

(→)

ψx[c]
π1

∃xψ∗
π2

where neither π1 nor π2 contain expansions by the axiom ψ0. This is because
we can delete all expansions by the axiom ψ0 from π and put it as the first
expansion in π. The inversion of ψ0 can only affect eigen-variable rules but
the condition that no eigen-variable occurs free in ψ0, which is a sentence
anyway, assures that the inversion is always possible. We can also invert the
(→) expansion for ψ0. We construct a tableau π′ for φ as follows:

φ ∗

(C)
∃xψ
ψx[z] (∃)
π′1

∃xψ∗

π2

where we have replaced the expansion by ψ0 by an admissible cut on the
formula ∃xψ. Its right branch is closed by π2 and the left branch is expanded
by the eigen-variable rule with a new variable z after which the branch is
closed with the tableau π′1 obtained from π1 by replacing everywhere the
constant c by z. The crucial fact is that the Henkin constant c occurs neither
in T nor in φ because these are in the language L. Thus the axioms from T
and the subformulas of φ occurring in π1 are not affected by the replacement.
Since c is of maximal rank in Ha1, it occurs neither in Ha2 nor in ∃xψ. Thus
neither the axioms from Ha2 used in π1 are affected by the replacement. We
have π′ : T,Ha2 ` φ from which we obtain T ` φ by IH. ut

161



5.3.11 Lemma (Elimination of quantifier rules). If T and ∆ consist
of sentences of a language L and Lc is its witnessing extension then

π : T ` [∆]⇒ T,Qa `i [∆] .

Proof. By induction on the number of expansions in the tableau π. Assume
π : T ` [∆] with closed T , ∆ and consider the form of π. If π is empty then
we trivially have T `i [∆] and we obtain T,Qa `i [∆] by weakening.

If the first expansion in π is by a propositional rule, say (→), then we
have a closed φ1 → φ2 ∈ ∆ and π has the form shown in the following on the
left:

∆

(→)
φ2

π2

φ1∗
π1

⇒

∆

(→)
φ2

π′2

φ1∗
π′1

Since φ1, φ2 are closed, we obtain identity tableaux π′1 and π′2 such that
π′1 : T,Qa `i [∆,φ1∗] and π′2 : T,Qa `i [∆,φ2] by two IH’s and construct
the closed identity tableau for ∆ from axioms T,Qa shown on the right. The
remaining propositional, axiom, and all identity expansions except reflexivity
are similar. This is because neither of the mentioned expansions introduces
new free variables (recall axioms in T are closed). The exception is the re-
flexivity rule shown on the left:

∆

τ = τ (Refl)
π1

⇒
∆

τ1 = τ1 (Refl)
π2

⇒

∆

τ1 = τ1 (Refl)

π′2

If the term τ is not closed then we substitute for its free variables some
Henkin constant whereby we obtain a closed term τ1. We perform the same
substitutions in the formulas of π1 whereby we obtain a tableau π2. Note that
the substitutions do not affect the structure of π1 because T and ∆ are closed.
The new tableau π′ for ∆ with the same number of expansions as π is shown
above in the middle. We have π′ : T ` [∆] and also π2 : T ` [∆, τ1 = τ2].
We apply IH to the last tableau and obtain an identity tableau π′2 s.t. π′2 :
T,Qa `i [∆, τ1 = τ2], We then construct the closed identity tableau π′′ for ∆
from axioms T,Qa shown on the right.

If the first expansion in π is by quantifier instantiation rule, say (∃∗), then
we have a closed ∃xφ∗ ∈ ∆ and π has the following form:

∆

φx[τ ]∗ (∃∗)
π1

162



If the term τ contains free variables then we substitute for them, similarly
as in the preceding case, some Henkin constant and we perform the same
substitutions in the tableau π1 whereby we obtain a closed term τ1 and a
tableau π2 s.t. π2 : T ` [∆,φx[τ1]∗]. We then obtain an identity tableau π′2
such that π′2 : T,Qa `i [∆,φx[τ1]∗] by IH and construct the following closed
identity tableau for ∆ from axioms T,Qa as follws:

∆

φx[τ1]→ ∃xφ (Ax )
(→)

∃xφ φx[τ1]∗
π′2

If the first expansion in π is by an eigen-variable rule, say (∃), then we have
a closed ∃xφ ∈ ∆ and π has the following form:

∆

φx[y] (∃)
π1[y]

Note that the eigen-variable y cannot freely occur in T or in ∆ because both
are closed. Let c be the Henkin constant belonging to ∃xφ. We substitute c for
y in φx[y] and π1[y] whereby we obtain a tableau π1[c] such that π1[c] : T `
[∆,φx[c]]. Since φx[c] is closed, we obtain an identity tableau π′1 such that
π′1 : T,Qa ` [∆,φx[c]] by IH and we construct the closed identity tableau π′

for ∆ from axioms T,Qa as follows:

∆

∃xφ→ φx[c] (Ax )
(→)

φx[c]

π′1

∃xφ∗

The remaining quantifier expansion rules are similar. ut

5.3.12 Theorem (Introduction/elimination of quantifier rules). If T
and φ consist of sentences of a language L and Lc is its witnessing extension
then

T ` φ⇔ T,Qa `i φ .

Proof. In the direction (⇒) assume π : T ` φ, i.e. π : T ` [φ∗], and apply
Lemma 5.3.11 to get T,Qa `i [φ∗], i.e. T,Qa `i φ. In the direction (⇐)
assume π : T,Qa `i φ which is shown in the following on the left

163



φ∗

ψ (Ax)
π1

⇒

φ∗

(C)
ψ
π1

ψ∗
π2

where we have indicated just one out of possibly many (or none) expansions
by the axiom rule with ψ ∈ Qa. We construct a new tableau π′ shown on the
right where we replace every such expansion by a cut on ψ whose right branch
is closed by the tableau π2 obtained by Lemma 5.3.9 to satisfy π2 : Ha ` ψ.
Cuts are admissible by Lemma 5.3.7 and so π′ : T,Ha ` φ from which we
obtain T ` φ by Thm. 5.3.10. ut

5.3.13 Theorem (Soundness and completeness of tableaux). If T of
some L is closed and φ is a formula of L then

T � φ⇔ T ` φ . (1)

If also φ is a sentence then Fig. 5.3 shows the complete semantic and syntactic
reductions.

T � φ

m (Henkin reduction: 5.2.15)

T,Qa �i ψ

m (Quasitautological reduction: 4.2.11)

T,Qa,Eq �p φ

m (Tautological reduction: 3.4.5)

�p ψ1 ∧ · · · ∧ ψn → φ

for some ψ1, . . . , ψn ∈ T ∪Qa ∪ Eq

T ` φ

m (Intro/elim of q-rules: 5.3.12)

T,Qa `i φ

m (Intro/elim of i-rules: 4.3.7)

T,Qa,Eq `p φ

m (Intro/elim of axioms: 3.5.7)

`p ψ1 ∧ · · · ∧ ψn → φ

for some ψ1, . . . , ψn ∈ T ∪Qa ∪ Eq

(a)

⇐⇒

(b)

⇐⇒

(c)

⇐⇒

(d)

⇐⇒

(a): Soundness and completeness of tableaux: 5.3.13

(b): Soundness and completeness of identity tableaux: 4.3.8

(c): Soundness and completeness of propositional tableaux: 3.5.8

(d): Soundness and completeness of propositional tableaux without axioms: 3.2.7

Fig. 5.3. Soundness and completeness of tableaux for closed T and φ.

164



Proof. When φ is a sentence then we have T � φ iff, by Thm. 5.2.15, T,Qa �i
φ iff, by Corollary 4.3.8, T,Qa `i φ iff, by Thm. 5.3.12, T ` φ. This is shown
in Fig. 5.3.

If φ is a formula then we have T � φ iff, by Thm. 5.2.17, T � ∀φ for a
universal closure ∀φ of φ iff, by the just proved special case, T ` ∀φ iff, by
Thm. 5.3.8, T ` φ. ut

5.3.14 Semidecidability of validity. This paragraph is not yet finished.
We can find a proof if valid. If not we may search forever for an counterex-
ample. This is the best, but the proof of it requires a knowledge of the theory
of computability.

165



166



6. First-order Theories

A first-order theory in L, or simply theory in L, is a set T of sentences of
the first-order language L. Theorems of T are formulas φ provable from T :
T ` φ.

6.1 Theorems of Predicate Calculus

For every language L the theorems of the empty theory ∅ in L are called
theorems of predicate calculus.

6.1.1 Tableau vs. informal proofs. This paragraph is not finished. It will
deal with proofs proofs of basic theorems of predicate calculus formally and
informally. The theorems deal with quantifiers, prenex operations, instantia-
tions (substitution), etc.

We now prove two rules of Leibnitz which are a generalization of function
Fsub and predicate Psub substitution rules to arbitrary terms and formulas.

6.1.2 Theorem (Rules of Leibnitz). For a term σ[x1, . . . , xn] and a for-
mula φ[x1, . . . , xn] with of a language L and with the free variables among
the indicated ones the following are admissible rules of inference:

τ1 = ρ1 . . . τn = ρn

σ[τ1, . . . , τn] = σ[ρ1, . . . , ρn]
(L1)

τ1 = ρ1 . . . τn = ρn φ[τ1, . . . , τn]
φ[ρ1, . . . , ρn]

(L2)

Proof. (L1): An application of the rule is shown on the left:

[~τ = ~ρ]
...

σ[τ1, . . . , τn] = σ[ρ1, . . . , ρn] (L1)
π

⇒

[~τ = ~ρ]
...

π′

where we have indicated by [~τ = ~ρ] the premises τ1 = ρ1, . . . , τn = ρn.
We wish to find a closed tableau π′ shown on the right by induction on the
structure of the term σ.



If σ ≡ y where y is not among the indicated variables then the conclusion
of (L1) is y = y and we start π′ with a reflexivity rule:

[~τ = ~ρ]
...

y = y (Refl)
π

If σ ≡ xi where 1 ≤ i ≤ n then the conclusion of (L1) is τi = ρi and we
can omit it altogether because it is already among the premises. Thus π′ ≡ π:

[~τ = ~ρ]
...

π

If σ ≡ f(σ1, . . . , σm) then we construct π′ by applying (L1) m-times to
the terms σi because this is admissible by IH and then by using a function
substitution rule for f :

[~τ = ~ρ]
...

σ1[~τ ] = σ1[~ρ] (L1)
...

σm[~τ ] = σm[~ρ] (L1)
f(σ1[~τ ], . . . , σm[~τ ]) = f(σ1[~ρ], . . . , σm[~ρ]) (Fsub)

π

(L2): An application of the rule is shown on the left:

[~τ = ~ρ]
...

φ[τ1, . . . , τn]

φ[ρ1, . . . , ρn] (L2)
π

⇒

[~τ = ~ρ]
...

φ[τ1, . . . , τn]

π′

We wish to find a closed tableau π′ shown on the right by induction on the
number of propositional connectives and quantifiers in the formula φ.

If φ ≡ > or φ ≡ ⊥ then both φ[~τ ] and φ[~ρ] are identical and we can omit
the conclusion altogether by setting π′ ≡ π as in the case σ ≡ xi of (L1).

If φ ≡ P (σ1, . . . , σm) then we construct π′ similarly as in the case σ ≡
R(σ1, . . . , σm) of (L1) and use a predicate substitution rule for P .

168



If φ ≡ σ1 = σ2 then we construct π′ by applying (L1) to terms σ1 and σ2

and then by using the rules of identity as shown:

[~τ = ~ρ]
...

σ1[~τ ] = σ2[~τ ]

σ2[~τ ] = σ2[~ρ] (L1)
σ1[~τ ] = σ2[~ρ] (Trans)
σ1[~τ ] = σ1[~ρ] (L1)
σ1[~ρ] = σ1[~τ ] (Sym)
σ1[~ρ] = σ2[~ρ] (Trans)

π

If φ ≡ ¬φ1 then we may assume that π starts with an inversion of (¬)-rule
applied to ¬φ1[~ρ] as shown in the following on the left:

[~τ = ~ρ]
...

¬φ1[~τ ]

¬φ1[~ρ] (L2)
φ1[~ρ]∗ (¬)
π1

⇒

[~τ = ~ρ]
...

¬φ1[~τ ]

(C)

φ1[~ρ]
ρ1 = τ1 (Sym)

...
ρn = τn (Sym)
φ1[~τ ] (L2)
φ1[~τ ]∗ (¬)

φ1[~ρ]∗

π1

We construct π′ as shown on the right by introducing a cut on φ1[~ρ] and on
the assumption side by applying IH to φ[~ρ] to obtain φ[~τ ] after inserting n
symmetry rules. The branch is then closed by applying (¬) to ¬φ1[~τ ] in the
premises.

If φ ≡ φ1 ∨ φ2 then we may assume that π starts with an inversion of
(∨)-rule applied to φ1[~ρ] ∨ φ2[~ρ] as shown in the following on the left:

[~τ = ~ρ]
...

φ1[~τ ] ∨ φ2[~τ ]

φ1[~ρ] ∨ φ2[~ρ] (L2)
(∨)

φ1[~ρ]
π1

φ2[~ρ]
π2

⇒

[~τ = ~ρ]
...

φ1[~τ ] ∨ φ2[~τ ]

(∨)

φ1[~τ ]
φ1[~ρ] (L2)
π1

φ2[~τ ]
φ2[~ρ] (L2)
π2

169



We construct π′ as shown on the right by applying (∨)-rule to the assumption
φ1[~τ ] ∨ φ2[~τ ] and then by applying (L2) on both sides by IH.

If φ ≡ ∃yφ1[y, ~x] then we may assume that π starts with an inversion
of (∃)-rule with an eigen-variable z applied to ∃yφ1[y, ~ρ] as shown in the
following on the left:

[~τ = ~ρ]
...

∃yφ1[y, ~τ ]

∃yφ1[y, ~ρ] (L2)
φ1[z, ~ρ] (∃)
π1

⇒

[~τ = ~ρ]
...

∃yφ1[y, ~τ ]

φ1[z, ~τ ] (∃)
φ1[z, ~ρ] (L2)
π1

We construct π′ as shown on the right by applying the (∃)-rule with an
eigen-variable z to the premise ∃yφ1[y, ~τ ] and then by using (L2) by IH.

If φ ≡ ∀yφ1[y, ~x] then in the tableau π shown in the following on the left
we show just one of possibly many expansions of a (∀)-rule applied to the
assumption ∀yφ1[y, ~ρ]. We also show a possible closure of a branch in π by
this assumption.

[~τ = ~ρ]
...

∀yφ1[y, ~τ ]

∀yφ1[y, ~ρ] (L2)

φ1[σ, ~ρ] (∀)
π1

∀yφ1[y, ~ρ]∗

⇒

[~τ = ~ρ]
...

∀yφ1[y, ~τ ]

φ1[σ, ~τ ] (∀)
φ1[σ, ~ρ] (L2)

π1

∀yφ1[y, ~ρ]∗
φ1[z, ~ρ]∗ (∀∗)
φ1[z, ~τ ] (∀)
φ1[z, ~ρ] (L2)

We construct π′ as shown on the right by reconstructing all branches similar
to the shown ones as follows. In the branch on the left we instantiate the
premise ∀yφ1[y, ~τ ] with y := σ and then apply (L2) by IH. In the branch on
the right we apply the eigen-variable to ∀yφ1[y, ~ρ]∗ with a new eigen-variable
z. We then instantiate the premise ∀yφ1[y, ~τ ] with y := z and then close the
branch by applying (L2) by IH.

The remaining propositional cases for φ are dealt with similarly. ut

6.1.3 Theorems of Leibnitz. For any terms σ[x1, . . . , xn] and formulas
φ[x1, . . . , xn] we obtain as an immediate consequence of rules of Leibnitz:

` τ1 = ρ1 ∧ . . . ∧ τn = ρn → σ[τ1, . . . , τn] = σ[ρ1, . . . , ρn] (1)
` τ1 = ρ1 ∧ . . . ∧ τn = ρn ∧ φ[τ1, . . . , τn]→ φ[ρ1, . . . , ρn] . (2)

170



6.1.4 Identity theorem. If the variable x is possibly free in a formula φ[x]
and does not occur in a term τ then

` ∃x(x = τ ∧ φ[x])↔ φ[τ ] (1)
` ∀x(x = τ → φ[x])↔ φ[τ ] . (2)

(1): In the direction (→) assume x = τ and φ[x] for some x. We obtain
φ[τ ] by the theorem of Leibnitz 6.1.3(2). In the direction (←) assume φ[τ ].
Since τ = τ , we get ∃x(x = τ ∧ φ[x]) by setting x := τ .

(2): This is similar.

6.1.5 Equivalence theorem. This paragraph is not yet finished. If a for-
mula φ contains an occurrence of a formula ψ[~x]:

ψ ≡ . . . ψ[~x] . . .

where we have indicated that all bound variables of φ in whose scope lies
the occurrence of ψ are among ~x. If the formula φ1 is obtained from φ by
replacing this occurrence of ψ by a formula ψ1. then

` ∀~x(ψ ↔ ψ1) ∧ φ→ φ1 . (1)

Note that we have as an immediate consequence by the Generalization rule
5.3.8:

` ψ ↔ ψ1 ⇒ ` φ↔ φ1 (2)

6.1.6 Variant theorem. We say that a formula φ1 is a variant of φ if φ1

differs from φ only in the names of its bound variables. More precisely, if φ1

is obtained from φ by a sequence of replacements of its subformulas ∃xψ[x]
or ∀xψ[x] by the corresponding subformulas ∃yψ[y] or ∀xψ[y] for a variable
y not free in ψ.

If φ1 is a variant of φ we have

` φ↔ φ1 . (1)

Thus follows from the following properties by 6.1.5(2):

` ∃xψ[x]↔ ∃yψ[y] (2)
` ∀xψ[x]↔ ∀yψ[y] . (3)

(2): In the direction (→) assume ψ[x] for some x and obtain ∃yφ[x] by
setting y := x. The direction (←) is similar.

(3): In the direction (→) assume ∀xψ[x] and take any y. We get φ[y] by
instantiating the assumption with x := y. The direction (←) is similar.

171



6.2 Extensions of Theories

6.2.1 Theories. A theory T in L is a set of sentences of some first-order
language L. We call L the language of T and designate it by LT .

Sentences of T are called axioms of the theory T . A theory is open if its
axioms are universal closures of quantifier-free formulas, i.e. if every axiom
has a form ∀~xφ with φ a formula without quantifiers.

A formula φ of LT is a theorem of T if T ` φ. Axioms φ ∈ T are trivially
theorems of T .

6.2.2 Lemma. If T , T1, S are theories in L and φ a formula of L then

S ` T and T, T1 ` φ⇒ S, T1 ` φ .

Proof. Assume S ` T and π : T, T1 ` φ where π is shown in the following on
the left:

φ∗

ψ (Ax )
π1

⇒

φ∗

(C)
ψ
π1

ψ∗
π2

with one of possibly many expansions by an axiom ψ ∈ T . We construct the
tableau π′ shown on the right by replacing every such expansion by a cut
on ψ whose right branch is closed by a tableau π2 such that π2 : S ` ψ. We
assume that the eigen-variables of π2 were systematically renamed so they do
not occur freely in the branch above ψ∗. We clearly have π′ : S, T1 ` φ. ut

6.2.3 Consistency of theories. A theory T is consistent if T 6` ⊥. Be-
cause ⊥ → φ is a tautology, every formula φ is a theorem of an inconsistent
theory. An inconsistent theory is thus worthless and so the consistency is
the minimal requirement on theories. Because the consistence is defined by
provability it is a syntactic concept. The consistency of open theories is syn-
tactically characterized by the theorem of Hilbert-Ackermann Thm. 6.2.4 and
the consistency of all theories is semantically characterized in Thm. 6.2.5.

If the reader finds the proof of the first characterization theorem trivial he
should bear in mind that our tableau system has a subformula property where
the proofs proceed without any detours such as the formulas introduced by
the cut rules. Hilbert [9] (see also Shoenfield [23]) used a formal system based
on modus ponens which is a form of cut. The theorem becomes non-trivial
in cut-based proof systems. The difficulty of its proof is comparable to that
of the proof of our non-trivial theorem on the admissibility of cuts.

172



6.2.4 Theorem (Hilbert-Ackermann). An open theory is inconsistent iff
`i
∧

S → ⊥ for a finite set S of instances of its axioms.

Proof. Let T be an open theory. If T is inconsistent then we have π : T ` ⊥ for
some basic tableau π. The only quantifier rules in π are (∀)-rules instantiating
the axioms of T . We remove from π all formulas of a form ∀φ, which can be
only axioms from T and its instantiations, whereby we obtain a tableau π1

s.t. π1 : S `i ⊥ where S is a finite sets of all quantifier-free instances of
axioms in T . We then get `i

∧

S → ⊥ by the Deduction theorem 5.3.4.
Vice versa, if `i

∧

S → ⊥ then π : S `i ⊥ by Thm. 5.3.4 and we can
insert into π in front of every application of an axiom φ ∈ S the appropriate
axiom ∀φ ∈ T followed by instantiations by (∀)-rules leading to S whereby
we obtain T ` ⊥. ut

6.2.5 Theorem. A theory is consistent iff it has a model.

Proof. We have T ` ⊥ iff T � ⊥, i.e. a theory T is consistent iff T 2 ⊥ by
the Completeness theorem 5.3.13. If T has no model, i.e. if M 2 T for all
structures M for LT , then T � ⊥ and so T is inconsistent. Vice versa, if T
is inconsistent, i.e. if T � ⊥, then take any structure M for LT . We have
M 2 ⊥ and so M 2 T . Hence T has no model. ut

6.2.6 Extensions of theories. A theory S is an extension of a theory T if
LS is an extension of LT and every theorem of T is a theorem of S, i.e.

T ` φ⇒ S ` φ for all formulas φ of LT .

Note that T is an extension of itself. Also S is an extension of T iff LS extends
LT and S ` T by Lemma 6.2.2 but this does not imply that the axioms of T
are among those of S, i.e. S ⊆ T .

Let S be an extension of T and K a set of formulas of LT . We say that T
and S are equivalent on K if S ` K ⇒ T ` K. We designate this by writing
T ≡K S. If K consists of all formulas of LT we write T ≡LT S.

Note that if T and S are equivalent on K as above then, since T ` K ⇒
S ` K because S extends T , a formula of K is a theorem of S iff it is a
theorem of T .

The theories T and S are equivalent if S extends T and T extends S. Note
that we then have LT = LS and T ≡LT S which we write simply as T ≡ S.

The following theorem characterizes the situation when we can consis-
tently extend a theory T by adding a single axiom without extending the
language. We can, namely, add the axiom iff its negation is unprovable in T .

6.2.7 Theorem. Let T be a theory and φ a sentence of LT . The extended
theory T, φ is consistent iff T 6` ¬φ.

Proof. If T ` ¬φ then, since T, φ ` φ, we have T ` ⊥. Vice versa, if T, φ ` ⊥
then T ` φ→ ⊥ by the Deduction theorem and so T ` ¬φ. ut

173



6.2.8 Conservative extensions. Not all extensions are interesting. Unin-
teresting extensions are extensions turning consistent theories into inconsis-
tent ones.

For instance, take a formalized theory of natural numbers which we will
study in a form of so called Peano arithmetic, shortly PA, in the second part
of this text. The square root of 2 is not a natural number (not even a rational
one as was already known to Greeks). An attempt to extend PA with a new
constant symbol

√
2 and a new axiom 2 =

√
2·
√

2 yields an extension PA1 of
PA because we trivially have PA1 ` PA. Unfortunately PA1 is inconsistent
whereas PA is consistent. This is because we trivially have PA1 ` 2 =

√
2·
√

2
but PA ` ∀x 2 6= x·x, hence PA1 ` ∀x 2 6= x·x, and so PA1 ` 2 6=

√
2·
√

2.
Because φ ∧ ¬φ→ ⊥ is a tautology we then get PA1 ` ⊥.

This leads us to extensions S of T which are equivalent with T on LT ,
i.e. such that T ≡LT S. Such extensions are called conservative extensions
because they do not add any new theorems in the language of T . Specifically
if T is consistent then ⊥, which is in LT , is not a theorem of T and we cannot
have S ` ⊥. Hence also S is consistent.

In order to prove that the extension S of T is conservative, which is more
simply put as S is conservative over T , it suffices to prove that whenever
S ` φ where φ is a formula of LT then also T ` φ. Note that the converse
holds because S extends T and so every theorem of T is a theorem of S. By
the Generalization rule 5.3.8 it suffices to prove the above for the sentences
φ of L.

Note that the extension of T to T, φ when T 6` ¬φ is not in general
conservative because the extended theory proves φ which can be undecidable
in T , i.e. neither φ nor ¬φ are provable in T .

6.3 Extensions by Explicitly Defined Predicates

Mathematicians often introduce new predicates as abbreviations for larger
formulas. They do it in order to increase the readability of their theorems and
to shorten their proofs. A typical example is the introduction of the predicate
x < y into a theory T which contains the binary function of addition and the
constant 1. Formulas of a form τ1 < τ2 can be viewed as abbreviations for
formulas

∃z(τ1 + (z + 1) = τ2)

where the variable z is new. One can then proceed to prove properties of <,
say the transitivity:

T ` x < y ∧ y < z → x < z ,

always keeping on mind that this is just an abbreviation for a larger and less
readable theorem

174



T ` ∃a(x+ 1 + (a+ 1) = y) ∧ ∃b(y + (b+ 1) = z)→ ∃c(x+ (c+ 1) = z) .

The problem with this approach is that when one wants to prove a metathe-
oretical, theorem on provability in T , which often happens in logic but rarely
in mathematics, one has to eliminate all abbreviations. A cleaner approach
from a logical point of view is the extension of LT with a new binary pred-
icate symbol < and the addition to T of a new axiom for < which is any
universal closure of:

x < y ↔ ∃z(x+ (z + 1) = y) .

We then wish to know that the extended theory S is conservative over T , i.e.
that it does not add any power to T beyond notational convenience. One can
actually prove more than this by defining a translation φ? into LT of every
formula φ of LS such that we have

S ` φ⇔ T ` φ? .

6.3.1 Extensions by explicitly defined predicates. Let T be a theory,
φ[~x] a formula of LT with the free variables among the indicated ones, and
P a new n-ary predicate symbol (n ≥ 0). Consider the formula

P (~x)↔ φ[~x] (1)

which is in the extension LT + P of LT . Designate by S the theory T, ∀(1)
whose language is the extension of LT with the symbol P and whose axioms
are T plus any universal closure of (1) which is called the defining axiom for
P .

We trivially have S ` T and so S is an extension of T which we call
extension by explicitly defined predicate. The term ‘explicit’ refers to the fact
that the defining axiom is not ‘recursive’, i.e. that P is not applied in φ.
This is obviously so because φ is in a language which does not contain the
predicate symbol P . We then have

S ` P (~x)↔ φ[~x] (2)

by Thm. 5.3.8 because S trivially proves its axiom ∀(1).

6.3.2 Translation function. Let S be the extended theory T, ∀6.3.1(1).
For every formula ψ of LS we designate by ψ? any formula of LT obtained
from ψ by replacing in it every application P (~τ) by a formula φ′[~τ ] where φ′

is a variant of φ such that the substitution of ~τ in φ′ is free for ~x. We call
any such formula ψ? a translation of ψ.

6.3.3 Translation lemma. If S is the extended theory T, ∀6.3.1(1) and ψ
a formula of LS then we have

S ` ψ ↔ ψ∗ . (1)

175



Proof. It is clearly sufficient to show

S ` P (~τ)↔ φ′[~τ ] (2)

where ~τ are terms of LT (and thus of LS) and φ′ a variant of φ because we
can then repeatedly apply the Equivalence theorem (6.1.5) to the theorem of
S: ψ ↔ ψ until we eliminate all applications of P on the right.

We prove (2) by working in S where we have P (~x) ↔ φ′[~x] from the
defining axiom of P by the Variant theorem (6.1.6). From this we get the
property by instantiating ~x := ~τ . ut

6.3.4 Theorem. The extension S = T, ∀(P (~x) ↔ φ[~x]) of T by the ex-
plicitly defined predicate P is conservative and for any formula ψ of LT we
have

S ` ψ ⇔ T ` ψ? . (1)

Proof. Assume S ` ψ for a formula ψ of LT . Then T ` ψ? by 6.3.3(2) and,
since ψ? ≡ ψ, we have T ` ψ. This proves the conservation. Property (1) is
proved in the direction (←) by assuming T ` ψ?. We have S ` ψ?, since S
extends T , and so S ` ψ by Lemma 6.3.3.

In the direction (→) Property (1) follows from an auxiliary property

π : S ` [∆]⇒ T ` [∆?]

where ∆ is a sequence of formulas of LS and ∆? is the sequence of formulas
of LT obtained by translating the corresponding formulas of ∆. The auxiliary
property is proved by induction on the structure of π. If π is empty then ∆
is closed. This happens if >∗ ∈ ∆ but then >∗ ≡ >?∗ ∈ ∆?, or ⊥ ∈ ∆ but
then ⊥ ≡ ⊥? ∈ ∆?, or φ, φ∗ ∈ ∆ but then φ?, φ?∗ ∈ ∆?. In any case ∆? is
closed and we even have ` [∆?].

If the first expansion in π is by a propositional rule, say (→), then π has
the form shown in the following on the left:

φ1 → φ2 ∈ ∆

(→)
φ2

π2

φ1∗
π1

⇒

φ?1 → φ?2 ∈ ∆?

(→)
φ?2

π′2

φ?1∗
π′1

Since (φ1 → φ2)? ≡ φ?1 → φ?2, we obtain identity tableaux π′1 and π′2 such
that π′1 : T ` [∆?, φ?1∗] and π′2 : T ` [∆?, φ?2] by two IH’s from π1 : S `
[∆,φ1∗] and π′2 : S ` [∆,φ2]. We then construct the closed tableau for ∆?

from axioms T shown on the right. The remaining propositional, quantifier,
identity expansions except by predicate substitution rule applied to P are

176



similar. This is because the translation is recursively applied, for instance,
(ψx[τ ]→ ∃xψ)? ≡ ψ?x[τ ]→ ∃xψ?.

If the first expansion in π is by a predicate substitution rule applied to P
then π looks as follows:

∆ τ1 = ρ1, . . . , τn = ρn, P (τ1, . . . , τn) ∈ ∆
P (ρ1, . . . , ρn) (Psub)

π1

We have (τi = ρi)? ≡ τi = ρi, P (τ1, . . . , τn)? ≡ φ′[τ1, . . . , τn], and P (ρ1, . . . , ρn)? ≡
φ′[ρ1, . . . , ρn] for a variant φ′[~x] of φ[~x] where we may assume that the
bound variables of φ′ are such that both substitutions are free for ~x. For
π1 : S ` [∆,P (ρ1, . . . , ρn)] we obtain π′1 : T ` [∆?, φ′[ρ1, . . . , ρn]] by IH. We
have

π2 : ` [τ1 = ρ1, . . . , τn = ρn, φ
′[τ1, . . . , τn], φ′[ρ1, . . . , ρn]∗]

for some π2 by a rule of Leibnitz. We then construct the following closed
tableau for ∆? from axioms T :

∆? τ1 = ρ1, . . . , τn = ρn, φ
′[τ1, . . . , τn] ∈ ∆?

(C)

φ′[ρ1, . . . , ρn]

π′1

φ′[ρ1, . . . , ρn]∗
π2

If the first expansion in π is by an axiom rule for ψ ∈ T then, since ψ? ≡ ψ,
we construct π′ : T ` [∆?] similarly as for the propositional cases above. If
the axiom is the defining axiom for P then π looks as follows:

∆

∀~x(P (~x)↔ φ[~x]) (Ax )
π1

We have
(∀~x(P (~x)↔ φ[~x]))? ≡ ∀~x(φ[~x]↔ φ[~x])

and for π1 : S ` [∆, ∀~x(P (~x)↔ φ[~x])] we obtain π′1 : T ` [∆?,∀~x(φ[~x]↔ φ[~x])]
by IH. We clearly have π2 : ` ∀~x(φ[~x]↔ φ[~x]) for some π2. We then construct
the following closed tableau for ∆? from axioms T :

∆?

(C)

∀~x(φ[~x]↔ φ[~x])

π′1

∀~x(φ[~x]↔ φ[~x])∗
π2

ut

177



6.4 Skolem Extensions

6.4.1 Skolem axioms. Suppose that T is a theory whose language does not
contain the n-ary function symbol f (n ≥ 0). Further suppose that φ[~x, y] is
a formula of LT with the free variables among the n+ 1 indicated ones. The
sentence

∀~x(∃yφ[~x, y]→ φ[~x, f(~x)]) (1)

is called the Skolem axiom for φ and f . The reader will note that in view of
prenex theorems of predicate calculus we could have equivalently written the
sentence (1) also as a universal closure of

φ[~x, y]→ φ[~x, f(~x)] . (2)

Extension of T to S by the addition of the function symbol f to its
language and of the Skolem axiom (1) to its axioms is a Skolem extension
of T . We will prove in this section that S is conservative over T both by
semantic and finitary proofs. For that we use until the end of this section the
abbreviation

φ1[~x, y] ≡ ∃yφ[~x, y]→ φ[~x, y])

and call the formulas

∀xi . . .∀xnφ1[τ1, . . . , τi−1, xi, . . . , xn, τ1, . . . , f(τi−1, xi, . . . , xn)] (3)

where 1 ≤ i ≤ n partial instances of the Skolem axiom and formulas
φ1[~τ , f(~τ)] full instances.

Terms of the form f(~τ) are called f-terms and function substitution ex-
pansion rules for f are called f-substitution rules. If the conclusion of an
f -substitution rule is f(~τ) = f(~τ) then the rule is called trivial. Trivial f -
substitution rules are not needed because their conclusions f(~τ) = f(~τ) can
be obtained also by reflexivity rules.

We will need below the following notation. We designate by Lt the wit-
nessing extension of LT , by Ls the witnessing extension of LS . A formula of
LS is free for f if it does not contain any f -terms whose arguments contain a
bound occurrence of a variable. We denote by Hs all Henkin witnessing and
counterexample axioms for LS which are free for f , and by Ht all Henkin
witnessing and counterexample axioms for LT . We designate by Sks the set
of of full instances of the Skolem axiom: φ1[~τ , f(~τ)] where ~τ are closed terms
of Ls.

6.4.2 Semantic proof of conservativity of Skolem extensions. Skolem
axioms 6.4.1(1) are a generalization of Henkin witnessing axioms where the
term f(~τ) acts as a witness for the formula ∃yφ[~τ , y]. If f is a constant, i.e.
if n = 0, then the Skolem axiom is

178



∃yφ[y]→ φ[f ] (1)

and it looks like the Henkin witnessing axiom for ∃yφ[y] except that the
constant symbol f is not fixed as it is for Henkin constants. The reader
will note that the theorem on the elimination of Henkin witnessing axioms
(5.3.10) asserts that the extension of any theory T in L to the theory T,Ha
in Lc is conservative.

We will now prove that Skolem extensions are conservative. When the
new function symbol f is a constant then this follows Thm. 5.3.10. Indeed, if
π : T, (1) ` ψ for a sentence ψ of LT then π′ : T,Ha ` ψ where π′ is formed by
systematically replacing in π the constant symbol f by the Henkin constant
c belonging to ∃yφ[y]. We then obtain T ` ψ by Thm. 5.3.10.

The above proof is called finitary in mathematical logic. For our pur-
poses it suffices to say that finitary proofs are such when one manipulates
by constructive means tableaux which are syntactic objects. Finitary proofs
are considered more convincing than the semantic arguments by means of
models. As it happens, the extension Thm. 6.4.5 of the above finitary proof
to the case when n > 0, which is the main result of this section, is extremely
non-trivial. On the other hand, the semantic proof is almost trivial.

The semantic proof that the theory S from Par. 6.4.1 is conservative
over T is by assuming S `1 ψ for a sentence ψ of LT . We have S � ψ by
Thm. 5.3.13 and it suffices to prove T � ψ. So letM for LT be a model of T
with a domain D such that d0 ∈ D. We expand M to a structure N for LS
by defining

fN (d1, . . . , dn) =

{

d if for some d ∈ D we have M � φ[d1, . . . , dn, d]
d0 otherwise.

We have M � ψ1 iff N � ψ1 for all sentences ψ1 of LT by Thm. 5.2.7.
Hence N � T and we can easily prove N � ∀6.4.1(1). Thus N � ψ from the
assumption and then M � φ, since ψ is a sentence of LT .

6.4.3 Invariance of tableau rules under replacement of f-terms. Let
the theories T and S be as in Par. 6.4.1. For the finitary proof of conservativity
of S over T we need to investigate the effect of systematic replacements of f -
terms by another terms in tableaux π : T,Sks, Hs ` ψ where ψ is a sentence
of LT . We assume that the tableau π, which is in the language Ls, consists
of sentences only. This means that there are no eigen-variable rules in π. We
will see from the proof of Lemma 6.4.4 that π might contain, in addition to
the basic expansion rules, also cut rules applied to identities τ1 = τ2 and
applications of Leibnitz rules in the following form:

τ1 = ρ1 . . . τn = ρn φ1[~τ , ~σ]
φ1[~τ , ~σ]

(L2) .

The f -terms can be introduced into π by axioms Hs and Sks, by quantifier
instantiation, cut, reflexivity, and by f -substitution rules.

179



Quantifier instantiation rules are invariant under the replacement of f -
terms by other terms unless arguments of f -terms contain bound variables,
i.e. they are not free fro f . For instance, take the partial instance

∀xnφ1[τ1, . . . , τn−1, xn, f(τ1, . . . , τn−1, xn)]

of the Skolem axiom 6.4.1(1). If it used as a premise to a (∀)-instantiation rule
with the conclusion φ1[τ1, . . . , τn−1, xn, f(τ1, . . . , τn−1, τn)] then the replace-
ment of the closed term f(τ1, . . . , τn−1, τn) by a different term invalidates the
rule. Note that an replacement of an f -term occurring, say, in τn−1 does not
destroy the character of the rule because the same change is done in both the
premise and in the conclusion. The reader will note that the tableau π can
apply only invariant quantifier instantiation rules.

An f -substitution rule with the conclusion f(~τ) = f(~ρ) is not invariant
under the replacement of the f -terms f(~τ) and f(~ρ). It is, however, invariant
under the replacement of an f -term anywhere in the arguments ~τ and ~ρ.

An axiom φ1[~τ , f(~τ)] from Sks is not invariant under the replacement of
f(~τ) but it is invariant under the replacement of any other f -terms applied
in ~τ .

An axiom ∃xψ1[x]→ ψ1[c1] or ψ2[c2]→ ∀xψ2[x] from Hs is not invariant
under the replacement of an f term even though it is free for f . If, how-
ever, the replacement is deep in the sense that it also systematically modifies
the Henking constants c1 and c2 the invariance can be restored. In order
to explain this we recall that the Henkin constant cj of rank i + 1 from Ls
belongs to the sentence ∃xψ3[x] which is at the j-th in the enumeration of ex-
istential sentences 5.1.6(1) of Ls of rank i. We can thus visualize the Henkin
constant cj written with symbolic index: c∃xψ3[x]. The deep replacement of
an f -term in a Henkin witnessing ∃xψ1[x]→ ψ1[c∃xψ1[x]] or counterexample
ψ2[c∃x¬ψ2[x]]→ ∀xψ2[x] axiom means that we replace the f -term also in the
symbolic indices of Henkin constants. Note that the symbolic indices ∃xψ1[x]
and ∃x¬ψ2[x] may again contain Henkin constants (of lower rank) and we
must perform the deep replacement also in them. After the deep replacement
we look up the symbolic indices in the corresponding enumerations 5.1.6(1)
and replace them by ordinary indices. It should be clear that the deep re-
placement changes an axiom from Hs into an axiom from Hs and so its use
in the tableau π can be visualized to be invariant under the deep replacement
of f -terms.

All other expansion rules, including the cut and Leibnitz rules in the
above form, are invariant under systematic replacements of f -terms by dif-
ferent terms. Since a Henkin constant can be replaced by another Henkin
constant without invalidating any rules except possibly those in Hs, the deep
replacement of f -terms in π may invalidate at most the f -substitution rules
and the axioms from Sks.

6.4.4 Lemma (Elimination of f-substitution rules). If for a sentence
ψ of LT as described in Par. 6.4.1 we have π : T,Sks, Hs ` ψ where π

180



consists of sentences only and its expansion rules, except the axioms Sk s and
f-substitution rules, are invariant under the deep replacement of f-terms then
there is a similar tableau π0 such that π0 : T,Sks, Hs ` ψ but π0 does not
apply non-trivial f-substitution rules.

Proof. Take any π satisfying the assumption os the lemma. We determine
the weight of tableaux with f -terms those occurring in π as follows. We order
all distinct f -terms occurring in the tableau π into a finite sequence

σ1 σ2 . . . σk

ordered by the non-decreasing number of applications of the symbol f . The
weight of the f -term τi is i. Note that the f -terms with higher weight cannot
occur as subterms of f -terms with lesser weight.

A conclusion σi = σj of a non-trivial f -substitution rule is assigned the
weight k·max(i, j) + min(i, j). The weight of a tableau with all f -terms some
σi is the maximum of weights of its non-trivial conclusions of f -substitution
rules.

The lemma is proved by induction on the weight of π. If there are at most
trivial f -substitution rules in π then we set π0 ≡ π and we are done. Note
that this includes the case when n = 0 because then there are no f -rules.

If the weight of π is m > 0 then we select all non-trivial conclusions
f(~τ) = f(~ρ) and f(~ρ) = f(~τ) of f -substitution rules with the weight m.
We may assume without loss of generality that the weight of f(~τ) is higher
than the weight of f(~ρ). We intend to eliminate such rules, and thereby
decrease the weight of π, by turning the f -substitution rules into trivial ones
by deep replacing all occurrences of terms f(~τ) by the term f(~ρ). As such
a replacement may invalidate some f -substitution rules and axioms Sks we
have to proceed with caution. We construct the tableau π′ : T,Sks, Hs ` ψ
with weight < m as:

ψ∗

(C)
ρ1 = τ1

(C)
ρ2 = τ2

...
(C)

ρn = τn
πn+1

ρn = τn∗
πn

ρ2 = τ2∗

π2

ρ1 = τ1∗

π1

where we will now determine the subtableaux π1, . . . , πn, and πn+1.
The tableau π can be visualized as follows:

181



[~τ = ~ρ]

f(~τ) = f(~ρ) (Fsub)
πa

[~ρ = ~τ ]

f(~ρ) = f(~τ) (Fsub)
πb

(1)

where we have indicated two typical conclusions of the f -substitution rules
with the weight m. The notation [~τ = ~ρ] is just an indication that the n-
assumptions τ1 = ρ1, . . . , τn = ρn occur somewhere along the branch. For any
i s.t. 1 ≤ i ≤ n we form the tableau πi from π by the following replacements:

ψ∗
...

ρi = τi∗
...

[~τ = ~ρ]

ρi = τi (Sym)

[~ρ = ~τ ]

The reader will note that the tableau πi is in the tableau π′ at the end of the
branch with the goal ρi = τi∗. In the transformation on the right the branch
thus closes against the assumption ρi = τi which is among the ones indicated
by [~ρ = ~τ ]. In the transformation on the left we apply the symmetry rule to
the assumption τi = ρi which is among the ones indicated by [~τ = ~ρ]. The
conclusion ρi = τi of the symmetry rule thus closes the branch against the
goal ρi = τi∗. We apply the shown transformation to all topmost conclusions
in π of the f -substitution rule with the weight m. This means that the tableau
πi is without such rules and it has a weight < m.

For the construction of the tableau πn+1 we can visualize the tableau π
as follows:

182



[~τ = ~ρ′]

f(~τ) = f(~ρ′) (Fsub)
πa

[ ~ρ′′ = ~τ ]

f( ~ρ′′) = f(~τ) (Fsub)
πb

φ1[~τ , f(~τ)] (Ax )

πc

(2)

where we have not shown the conclusions of f -substitution rules with the
weight m as visualized in 6.4.4(1). We have instead shown two typical con-
clusions of non-trivial f -substitution rules containing f(~τ) and which are with
lesser weights. We have also application φ1[~τ , f(~τ)] of an axiom from Sks.

We now perform the deep replacement in the above copy of π of all f -
terms f(~τ) by the f -terms f(~ρ). The replacement turns all conclusions of
f -substitution rules with weights m into conclusions of rules of reflexivity
but it invalidates the conclusions of f -substitution rules similar to the two
shown. It also invalidates the axiom rule from Sks The tableau-like tree after
the replacement looks as shown in Fig. 6.1 where we have shown that the tree
after a correction will be located in the tableau π′ at the position of πn+1.

ψ∗
ρ1 = τ1

...
ρn = τn

[~τ = ~ρ′]

f(~ρ) = f(~ρ′) (?)

πa

[ ~ρ′′ = ~τ ]

f( ~ρ′′) = f(~ρ) (?)

πb

φ1[~τ, f(~ρ)] (?)

πc

Fig. 6.1. Tableau-like figure after the deep replacement f(~τ) := f(~ρ)

Note that the additional terms shown in the figure are not affected by
the replacement because the f -term f(~τ) cannot occur in them. Hovewever,
there can be f -terms in the tableau π with higher weights than f(~τ) and
which can contain the last term as subterms. Since there are no non-trivial
f -substitution rules for those higher weight f -terms in π, the replacement
does not invalidate any of the rules containing the higher weight f -terms
although the terms themselves change.

183



ψ∗
ρ1 = τ1

...
ρn = τn

[~τ = ~ρ′]

ρ1 = ρ′1 (Trans)

...
ρn = ρ′n (Trans)

f(~ρ) = f( ~ρ′n) (Fsub)

πa

[ ~ρ′′ = ~τ ]

τ1 = ρ1 (Sym)

ρ′′1 = ρ1 (Trans)

...
τn = ρn (Sym)

ρ′′n = ρn (Trans)

f( ~ρ′′) = f(~ρ) (Fsub)

πb

φ1[~ρ, f(~ρ)] (Ax)

φ1[~τ, f(~ρ)] (L2)

πc

Fig. 6.2. Corrected tableau πn+1

We now correct the tableau-like tree in Fig. 6.1 whereby we obtain the
tableau πn+1 shown in Fig. 6.2. The branch above the tableau πa is corrected
by the insertion of n conclusions ρi = ρ′i of transitivity rules after which the
formula f(~ρ) = f(~ρ′) is a conclusion of an f -substitution rule with weight
< m. The branch above the tableau πb is corrected by the insertion of conclu-
sions of symmetry rules τi = ρi followed by conclusions of transitivity rules
ρ′′i = ρi. This is repeated n-times after which the formula f( ~ρ′′) = f(~ρ) is a
conclusion of an f -substitution rule with a weight < m. The branch above
the tableau πc is corrected by an axiom φ1[~ρ, f(~ρ)] from Sks. We then use an
admissible Leibnitz rule (L2) to introduce the conclusion φ1[~τ , f(~ρ)].

We perform the just described corrections for all conclusions similar to
typical conclusions visualized in (2). The tableau πn+1 has a weight < m and
so does the tableau π′. We now apply the induction hypothesis to π′ whereby
we obtain a tableau π0 s.t. π0 : T,Sks, Hs ` ψ without any non-trivial f -
substitution rules. ut

6.4.5 Theorem. Skolem extensions are conservative.

Proof. Let S be a Skolem extension of T as in Par. 6.4.1 and assume π : S ` ψ
for a basic tableau π and a formula ψ of LT . Because of the Generalization
rule 5.3.8 we may assume without loss of generality that ψ is a sentence.
We now replace in π all free variables other than eigen-variables by arbitrary

184



Henkin constants from LS whereby we obtain a closed tableau π1 for ψ which
is in the language Ls. Note that variables other than eigen-variables can be
introduced into π only by quantifier instantiation and reflexivity rules.

The next transformation is the elimination of all eigen-variable rules from
π1. The elimination is similar as in the proof of the Lemma 5.3.11 on the
elimination of quantifier rules except that we do not eliminate the quantifier
instantiation rules. Since the premises of all eigen-variable rules in π1 are
free for f , the introduced Henkin witnessing and counterexample axioms are
from Hs and so we obtain a tableau π2 consisting of sentences and such that
π2 : S,Hs ` ψ.

We now delete from π2 all partial instances of the Skolem axiom 6.4.1(1)
whereby we obtain a tableau π3 such that π3 : T,Sks, Hs ` ψ. The tableau
satisfies the assumptions of Lemma 6.4.4 and we obtain from it a similar
tableau π4 : T,Sks, Hs ` ψ which is without non-trivial f -substitution rules.

We intend to eliminate from π4 the applications of axioms from Sks:

φ1[~τ , f(~τ)] ≡ ∃yφ[~τ , y]→ φ[~τ , f(~τ)] .

by deeply replacing the closed term f(~τ) by the Henkin constant c belonging
to the sentence ∃yφ[~τ , y]. This constant can be written with symbolic index
as c∃yφ[~τ,y] and the deep replacement turns the above axiom to a Henkin
witnessing axiom from Hs:

∃yφ[~τ , y]→ φ[~τ , c∃xφ[~τ,x]] .

Toward that end we deeply replace all f -terms f(~ρ) in π4 by the Henkin
constants c∃yφ[~ρ,y] whereby we obtain a tableau π5. The order of elimination
of f -terms is immaterial because it leads to identical results but it is crucial
that we perform the replacements not only in the formulas of π4 but also
in the indices of all Henking constants occurring in π4. It should be clear
that the elimination of f -terms turns the full instances of Skolem axioms
into Henkin witnessing axioms from Has and does not change the character
of any other rules in π4. Specifically, Henkin witnessing axioms are turned
into Henkin witnessing axioms without f -terms.

There are no f -terms in the sentences of π5, nor in the indices of its
Henkin constants and we have π5 : T,Hs ` ψ. We now take every Henkin
constant occurring in π5 and write in the symbolic form c∃xψ0[x] where also
the Henkin constants in ψ0 are with symbolic indices and also the Henkin
constants in these symbolic indices are such . . . . We change the symbolic
indices back to the numerical form by looking up the existential sentences
in the appropriate enumerations 5.1.6(1) but this time for the language Lt.
The look up is done first for the formulas of the lowest rank and then for the
formulas with the next higher ranks, . . . . We thus obtain a tableau π6 such
that π6 : T,Ht ` ψ.

We eliminate next the Henkin counterexample axioms from π6 just as
it was done in the proof of the theorem on the Introduction/elimination of

185



quantifier rules 5.3.12. We, namely, take any counterexample axiom in π6:

ψ∗

ψ0[c]→ ∀xψ0[x] (Ax)

π′

and replace it by a cut:

ψ∗

(C)

ψ0[c]→ ∀xψ0[x]

π′
ψ0[c]→ ∀xψ0[x]∗

π′′

whose right branch is closed by the tableau π′′ obtained by Lemma 5.3.9 to
satisfy π′′ : Ha ` ψ0[c]→ ∀xψ0[x]. We denote by Ha the Henkin witnessing
axioms for LT . We thus obtain a tableau π7 such that π7 : T,Ha ` ψ to
which we apply the Theorem on the conservativity of Henkin witnessing
axioms 5.3.10 and obtain T ` ψ. ut

6.4.6 Skolemization and Herbrand’s theorem. One of the uses of
Skolem axioms is to eliminate, by a process called Skolemization, quanti-
fiers from formulas at the price of introducing Skolem functions. Since we
will not need this in the further development, we just illustrate the process
with an example.

In order to eliminate the quantifiers from a sentence we bring it to a prenex
form, say, ∃x∀y∃z∀wφ[x, y, z, w] where the formula φ is quantifier free. We
consider the following Skolem axioms:

∀x(∃y∀z∃w¬φ[x, y, z, w]→ ∀z∃w¬φ[x, f(x), z, w])
∀x∀z(∃w¬φ[x, f(x), z, w]→ ¬φ[x, f(x), z, g(x, z)])

for new function symbols f and g. It is not hard to see that we have

` ∀x∀z¬φ[x, f(x), z, g(x, z)]→ ∀x∃y∀z∃w¬φ[x, y, z, w] (1)

in the predicate calculus. For the proof of converse we need the two Skolem
axioms and we have

T ` ∀x∃y∀z∃w¬φ[x, y, z, w]→ ∀x∀z¬φ[x, f(x), z, g(x, z)] (2)

186



in the theory T consisting of the two Skolem axioms.
The celebrated theorem of Herbrand asserts

� ∃x∀y∃z∀wφ[x, y, z, w]⇔
�i φ[τ1, f(τ1), ρ1, g(τ1, ρ1)] ∨ . . . ∨ φ[τn, f(τn), ρn, g(τn, ρn)]
for some n ≥ 1 and terms τ1, ρ1, . . . , τn, ρn.

We first show

` ∃x∀y∃z∀wφ[x, y, z, w]⇔ ` ∃x∃zφ[x, f(x), z, g(x, z)] (3)

where the sentence ∃x∃zφ[x, f(x), z, g(x, z)] is called a Herbrand normal form
of the sentence ∃x∀y∃z∀wφ[x, y, z, w].

(3): In the direction ⇒ we assume ` ∃x∀y∃z∀wφ[x, y, z, w]. Thus `
¬∀x∃y∀z∃w¬φ[x, y, z, w] and we get ` ¬∀x∀z¬φ[x, f(x), z, g(x, z)] by (1),
i.e. ` ∃x∃zφ[x, f(x), z, g(x, z)].

In the direction ⇐ we assume ` ∃x∃zφ[x, f(x), z, g(x, z)] and get T `
¬∀x∀z¬φ[x, f(x), z, g(x, z)]. We then have T ` ¬∀x∃y∀z∃w¬φ[x, y, z, w] by
(2). We then get ` ¬∀x∃y∀z∃w¬φ[x, y, z, w] by the conservativity of T and
hence ` ∃x∀y∃z∀wφ[x, y, z, w].

We show next

` ∃x∃zφ[x, f(x), z, g(x, z)]⇔
`i φ[τ1, f(τ1), ρ1, g(τ1, ρ1)] ∨ . . . ∨ φ[τn, f(τn), ρn, g(τn, ρn)]
for some n ≥ 1 and terms τ1, ρ1, . . . , τn, ρn. (4)

In the direction (⇒) we assume π : ` ∃x∃zφ[x, f(x), z, g(x, z)]. We re-
move from the tableau π all conclusions ∃zφ[τ, f(τ), z, g(τ, z)]∗ of (∃∗)-
instantiation rules applied to ∃x∃zφ[x, f(x), z, g(x, z)]∗ and then remove
also all conclusions φ[τ, f(τ), ρ, g(τ, ρ)]∗ of (∃∗)-instantiation rules applied
to ∃zφ[τ, f(τ), z, g(τ, z)]∗ whereby we obtain a tableau π1 such that

π1 : ` [φ[τ1, f(τ1), ρ1, g(τ1, ρ1)]∗, . . . , φ[τn, f(τn), ρn, g(τn, ρn)]∗]

where the shown n formulas are all conclusions removed in the second step.
Form this we clearly get

π2 : ` φ[τ1, f(τ1), ρ1, g(τ1, ρ1)] ∨ . . . ∨ φ[τn, f(τn), ρn, g(τn, ρn)]

for a tableau π2 obtained from π1 by n generalized flatten rules (G∨i∗).
Since the tableau π2 cannot apply any quantifier rules, it must be an identity
tableau.

In the direction (⇐) we assume the right-hand-side of (4). We clearly have

` φ[τi, f(τi), ρi, g(τi, ρi)]→ ∃x∃zφ[x, f(x), z, g(x, z)]

for all 1 ≤ i ≤ n from which we get the left-hand-side.
The above instance of the Herbrand’s theorem now follows by combining

the results (3) and (4) and by using soundness and completeness theorems
for both quantifier and identity tableaux.

187



6.5 Extensions by Contextually Defined Functions

We can extend theories by explicit definitions of functions: f(~x) = τ [~x].
That this is conservative can be then proved similarly as the conservativity
of explicit definitions of predicates. In contrast to such definitions of pred-
icates, explicitly defined functions do not fully use the power of first-order
logic because the terms τ do not posses the full expressiveness of formulas.
Contextually defined functions utilize the full power of formulas.

As an example consider a formal theory of arithmetic which has multi-
plication, addition, and constant 1. We have seen in Sect. 6.3 how to extend
such a theory by explicit definition of the predicate <. We can further define
the binary predicate x ≤ y ↔ x < y ∨ x = y and the unary square function
x2 = x·x by explicit definitions. Let us call such a theory T . We can extend T
to S by extending its language with the unary function symbol [

√
·] intended

to denote the whole part of square root. We can find a formula of LT equiva-
lent to the formula [

√
x] = y applying the square root function in the context

of an atomic formula. We can use the formula in the contextual definition:

[
√
x] = y ↔ y2 ≤ x ∧ x < (y + 1)2

This definition can be justified if we can prove in T that to every individual
there will exactly one square root. This amounts to proving the following:

T ` ∃y(y2 ≤ x ∧ x < (y + 1)2)

T ` y2
1 ≤ x ∧ x < (y1 + 1)2 ∧ y2

2 ≤ x ∧ x < (y2 + 1)2 → y1 = y2 .

We can then translate every formula of LS into an equivalent formula of LT
where every application of [

√
τ ] used in a context of an atomic formula φ[z]

as φ[[
√
τ ]] is translated to the formula on the right for which S proves:

S ` φ[[
√
τ ]]↔ ∃z(z2 ≤ τ ∧ τ < (z + 1)2 ↔ φ[z]) .

6.5.1 Extensions by contextually defined functions. Let T be a the-
ory, φ[~x, y] a formula of LT with the free variables among the indicated ones,
and f a new n-ary function symbol (n ≥ 0). If T proves the existence:

T ` ∃y φ[~x, y] (1)

and the uniqueness

T ` φ[~x, y1] ∧ φ[~x, y2]→ y1 = y2 (2)

conditions then we can extend T to S by adding to LT the function symbol
f and to the axioms of T any closure of

f(~x) = y ↔ φ[~x, y] (3)

188



as the defining axiom for f . Because S = T, ∀(3) we trivially have S ` T
and so S extends T . We call this kind of extension extension by contextually
defined function. The term ‘contextual’ refers to the fact that although we
are not able to find a term ρ of LT identical to f(~x), we have a formula φ[~τ , ρ]
of LT equivalent to an application of f in the context of an atomic formula
f(~τ) = ρ for all terms ~τ , ρ of LT . Note that f cannot be applied in φ which
is of L and so contextual definitions are not recursive. We have

S ` f(~x) = y ↔ φ[~x, y] (4)

by Thm. 5.3.8 because S trivially proves its axiom ∀(3).

6.5.2 Translation function. Let S be the extended theory T, ∀6.5.1(3).
For every atomic formula ψ of LS we define by induction on the number k of
applications of f in ψ a formula ψ? of LT called a translation of ψ. If k = 0
then we set ψ? ≡ ψ. Otherwise we have ψ ≡ ψ1[f(~τ)] for some terms ~τ of LT
and a formula ψ1[z] of LS with < k applications of f . We then set

ψ∗ ≡ ∃z(φ′[~τ , z] ∧ ψ1[z]?) (1)

where φ′ is a variant of φ with the bound variables different from z and those
free in ~τ . Note that ψ1[z]? is a formula of LT by IH and so is the formula ψ?.
We extend the translation function to all formulas ψ of LS by designating by
ψ? any formula obtained from ψ by replacing any of its atomic formulas ψ1

by formulas ψ?1 .

6.5.3 Translation lemma. If S is the extended theory T, ∀6.5.1(3) and ψ
a formula of LS then we have

S ` ψ ↔ ψ∗ . (1)

Proof. We first prove (1) for atomic ψ by metainduction on the number of
applications of f in ψ. If there are none then the property is a tautology
because ψ? ≡ ψ. Otherwise, using the notation of Par. 6.5.2 we have ψ ≡
ψ1[f(~τ)] and ψ? ≡ 6.5.2(1) for some terms ~τ of LT and a formula ψ1[z] of
LS with < k applications of f . Working in S we obtain f(~τ) = z ↔ φ′[~τ , z]
by the Variant theorem (6.1.6) from an instantiation of the defining axiom
for f . Hence ∃z(f(~τ) = z∧ψ1[z]?)↔ ψ? by the Equivalence theorem (6.1.5).
We have ψ[z] ↔ ψ1[z]? by IH and so ∃z(f(~τ) = z ∧ ψ1[z]) ↔ ψ?. Thus
ψ1[f(~τ)]↔ ψ? by Identity theorem (6.1.4). ut

6.5.4 Theorem. The extension S = T, ∀(f(~x) = y ↔ φ[~x, y]) of T by the
contextually defined function f is conservative and for any formula ψ of LT
we have

S ` ψ ⇔ T ` ψ? . (1)

189



Proof. Designate by T2 the Skolem extension of T with a closure of

∃yφ[~x, y]→ φ[~x, f(~x)] . (2)

T2 is conservative over T by Thm. 6.4.5 and LS = LT2 . If we succeed in
proving

S ≡ T2 (3)

then for any ψ of LT such that S ` ψ we will have T2 ` ψ by (3) and T ` ψ
because T2 is conservative over T .

(3): In order to prove that S extends T2 it suffices to derive (2) in S.
So working in S we instantiate its defining axiom for f with y := f(~x) and
obtain φ[~x, f(~x)]. from which (2) trivially follows.

That T2 extends S follows from a proof in T2 of f(~x) = y ↔ φ[~x, y]. In
the direction (→) it suffices to prove φ[~x, f(~x)]. Since T2 proves the existence
condition 6.5.1(1) because it extends T and also the instance (2) of its Skolem
axiom, we obtain φ[~x, f(~x)]. In the direction (←) and working in T2 we assume
φ[~x, y] from which we get ∃yφ[~x, y] and then φ[~x, f(~x)] from (2). We then get
f(~x) = y from the uniqueness condition 6.5.1(2) which holds in T2.

(1): In the direction (→) assume S ` ψ. We have S ` ψ? by Lemma 6.5.3
and, since φ? is of LT , we obtain T ` ψ? because S is conservative over T .
In the direction (←) assume T ` ψ?. Since S extends T , we have S ` ψ? and
so S ` ψ by Lemma 6.5.3. ut

6.6 Extensions by Definitions

Extensions of theories T to S by explicit definitions of predicates and by
contextual definition of functions have the important property that any model
of T is uniquely expanded to a model of S. This, and the property that the
theorems of S can be translated to the theorems of T and back, are crucial
to our treatment of formal arithmetic in the Part II of this text.

6.6.1 Extensions by definitions. Let T be a theory and T1 its conserva-
tive extension either by explicit definition of a predicate P or by contextual
definition of a function f . Let S be a theory in the same language as LT1 .
We say that S is an extension by definition of T if S and T1 are equivalent.
This can be visualized as

S ` ψ1 ⇔ T, ψ ` ψ1 for any formula ψ1 of LS (1)

where ψ is the defining axiom of T1, i.e a universal closure of either P (~x)↔
φ[~x] or f(~x) = y ↔ φ[~x, y] for a suitable formula φ of LT .

A theory S is an extension by definitions of a theory T if S is obtained
by a finite number of extensions by definition of T , i.e. if there is a number
n and theories T0, T1, . . . , Tn such that T = T0, Ti+1 is an extension by
definition of Ti for every i < n, and S = Tn.

190



6.6.2 Theorem (Extensions by definitions). If the theory S is an ex-
tension by definitions of a theory T then S is conservative over T , every
model of T has a unique expansion to the model of S, and there is an effec-
tive translation function taking formulas ψ of LS to formulas ψ? of LT such
that for every formula ψ of LS we have

S ` ψ ↔ ψ? (1)
S ` ψ ⇔ T ` ψ? . (2)

Proof. By induction on the number k of extensions by definition of T to
obtain S. If k = 0 then S = T and there is nothing to prove. If k > 0
then S is an extension by definition of a theory T1 which is obtained by
k− 1 extensions by definition from T . By IH there is an effective translation
function taking formulas ψ of LT1 to formulas ψ?1 of LT such that

T1 ` ψ ↔ ψ?1 (3)
T1 ` ψ ⇔ T ` ψ?1 . (4)

Since S is an extension by definition of T1, there is a defining axiom ψ1

of LS such that S ≡ T1,∀ψ1. Depending on whether the new symbol of S is
a predicate symbol P or a function symbol f , there is by Translation Lemma
6.3.3 or 6.5.3 an effective translation function, which takes formulas ψ of LS
to formulas ψ?2 of LT1 , and such that

T1,∀ψ1 ` ψ ↔ ψ?2 . (5)

We also have

T1,∀ψ1 ` ψ ⇔ T1 ` ψ?2 (6)

by Theorem 6.3.4 or 6.5.4.
We define the translation function taking formulas ψ of LS to formulas

ψ? of LT as ψ? ≡ (ψ?2)?1 . The translation function is clearly effective.
(1): We work in the theory T1,∀ψ1 and take any formula ψ of LS . We

have ψ iff ψ?2 by (5) iff, since T1,∀ψ1 is an extension of T1, (ψ?2)?1 , i.e. ψ?,
by (3). We have just proved T1,∀ψ1 ` ψ ↔ ψ?. Thus also (1) because S is
equivalent to T1,∀ψ1.

(2): Take any formula ψ of LS . We have S ` ψ iff, by the equivalence,
T1,∀ψ1 ` ψ iff, by (6), T1 ` ψ?2 iff, by (4), T ` (ψ?2)?1 iff T ` ψ?.

We now prove that S is conservative over T . So we take any formula ψ
of LT and assume S ` ψ. We have T ` ψ? by (2) and, since ψ? ≡ ψ, also
T ` ψ.

Now suppose that a structure M for LT with a domain D is a model
of T : M � T . There is a unique expansion M1 of M which is a model of

191



T1 by IH. We expand M1 to the structure N for LS by choosing a suitable
interpretation of the new symbol P or f . For any such interpretation we will
have N � S iff, by the completeness and by S ≡ T1,∀ψ1, N � T1,∀ψ1 iff,
since N � T1 by Thm. 5.2.7, N � ∀ψ.

We now consider two cases. If ψ ≡ P (~x) ↔ φ[~x] then N � ∀ψ iff N �
∀~x(P (~x)↔ φ[~x]) iff for all ~d ∈ D

PN (~d)⇔ N � P (~x)[~d]⇔ N � φ[~d] 5.2.7⇔ M1 � φ[~d]

which means that the unique interpretation PN (~d) ⇔ M1 � φ[~d] is both
sufficient and necessary for N to be a model of S.

If ψ ≡ f(~x) = y ↔ φ[~x, y] then for all ~d ∈ D there is a k ∈ d such that
M1 � φ[~d, k] by the existence condition and this k is unique because for any
k1 we have

M1 � φ[~d, k] and M1 � φ[~d, k1]⇒ k = k1

by the uniqueness condition. We haveN � ∀ψ iffN � ∀~x∀y(f(~x) = y ↔ φ[~x, y])
iff for all ~d, k ∈ D

fN (~d) = k ⇔ N � (f(~x) = y)[~d, k]⇔ N � φ[~d, k] 5.2.7⇔ M1 � φ[~d, k] .

But this means that interpreting fN for ~d ∈ D as the unique k ∈ D such
that M1 � φ[~d, k] is both sufficient and necessary for N to be a model of
S. ut

6.6.3 Theorem (Implicit definition of functions). For any theory T
and any formula φ[~x, y] of LT with the free variables among the n+1 indicated
ones and satisfying the existence and uniqueness conditions the extension of
LT with a new n-ary function symbol f and of T with a new axiom:

∀~xφ[~x, f(~x)]

is an extension by definition.

Proof. Designate by S the extended theory. It is sufficient to prove that S is
equivalent to the extension T1 of T by the contextual definition ∀~x∀y(f(~x) =
y ↔ φ[~x, y]) because T1 is an extension by definition of T . By instantiating
the defining axiom of T1 with y := f(~x) and generalizing we obtain T1 `
∀~xφ[~x, f(~x)] and so T1 extends S.

In order to demonstrate that S extends T1 it suffices to show S `
f(~x) = y ↔ φ[~x, y]. Working in S we assume in the direction (→) f(~x) = y.
We then obtain φ[~x, y] because φ[~x, f(~x)] follows from the new axiom of S. In
the direction (←) we assume φ[~x, y] and, since φ[~x, f(~x)], we obtain f(~x) = y
by the uniqueness condition which is provable in S because S extends T . ut

192



6.6.4 Theorem (Explicit definition of functions). For any theory T
and any term τ [~x] of LT with the free variables among the n indicated ones
the extension of LT with a new n-ary function symbol f and of T with a new
axiom:

∀~x f(~x) = τ [~x]

is an extension by definition.

Proof. Designate by S the extended theory. We first show that T proves
the existence and uniqueness conditions for the formula φ[~x, y] ≡ f(~x) =
τ [~x] The existence condition ∃y y = τ [~x] follows from τ [~x] = τ [~x]. For the
uniqueness condition assume y1 = τ [~x] and y2 = τ [~x] and obtain y1 = y2 by
the properties of identity. We now use Thm. 6.6.3 to extend by definition T
to S with the new axiom ∀~x f(~x) = τ [~x]. ut

193



194



7. Peano Arithmetic

7.1 Basic Theorems in PA

In this section we introduce and prove basic theorems of the formal system
of arithmetic called Peano arithmetic.

7.1.1 Language of Peano arithmetic. The language LPA of Peano arith-
metic consists of the constant 0, the unary function symbol x′, and of two
binary function symbols x+y and x·y. Both + and · associate to the left and
· has greater precedence than +.

We will abbreviate 0′ as 1 but only in this section.

7.1.2 Axioms of Peano arithmetic. The axioms of Peano arithmetic con-
sist of universal closures of the following six formulas:

P̀A 0 6= x′ (1)

P̀A x′ = y′ → x = y (2)

P̀A 0 + y = y (3)

P̀A x′ + y = (x+ y)′ (4)

P̀A 0·y = y (5)

P̀A x′·y = x·y + y (6)

and for every formula φ[x] of LPA and an indicated variable x a universal
closure of the induction axiom Ixφ[x]:

P̀A φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[x] . (7)

The induction formula φ[x] can contain, in addition to the induction variable
x, zero or more free variables as parameters.

We use the symbol P̀A φ of provability in PA as an abbreviation for PA `
φ.

7.1.3 The standard model N of PA. The standard model N of Peano
arithmetic is the structure for LPA whose domain is the set of natural numbers
N and the interpretations 0N , ′N , +N , and ·N of the function symbols of



LPA are in that order the number 0, the successor function S(x) = x+ 1, the
addition, and multiplication functions. We leave to the reader the obvious
demonstration that N satisfies the six axioms 7.1.2(1) through 7.1.2(6).

We now prove that also the induction axioms 7.1.2(7) are satisfied in
N . So take any formula φ[x, ~y] of LPA with all its free variables among the
indicated ones. We wish to show N � ∀x∀~yIxφ[x, ~y]. For that we take any
~d ≡ d1, . . . , dn ∈ N and it clearly suffices to show N � ∀xφ[x, ~d]. So assume on
the contrary that N 2 [m, ~d] for some m ∈ N. Furthermore, assume that m is
the least such number. We thus have the base case assumptionN � φ[0, ~d], the
inductive assumption: N � ∀x(φ[x, ~d]→ φ[x, ~d]), and N 2 φ[m, ~d]. Consider
now two cases. If m = 0 then we get a contradiction with the base case
assumption. If m > 0 then we have N � φ[m− 1, ~d] by the minimality
of m and we get a contradiction N � φ[(m− 1) + 1, ~d] from the inductive
assumption.

7.1.4 Informal reasoning by induction. Induction axioms of PA can be
used anywhere in the proofs in PA. The typical situation is that we use an
axiom Ixφ[x] in an instantiation x := τ :

φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[τ ]

under certain assumptions ψ1, . . . , ψk. The informal use of this axiom is to
derive the formula φ[τ ] by considering two cases.

In the base case we prove φ[0] under the above assumptions.
In the inductive case we prove φ[x′] for a new eigen-variable x under the

same assumptions ψ1, . . . , ψk to which we add inductive hypothesis φ[x],
shortly IH, as an additional assumption.

Both cases taken together then prove φ[τ ] from Ixφ[τ ] by modus ponens.

7.1.5 Case analysis on 0 and positive numbers. The base case analysis
is on 0 and on positive numbers:

P̀A x = 0 ∨ ∃y x = y′ (1)

which is proved by induction on x. In the base case there is nothing to prove.
In the inductive case we get ∃y x′ = y′ from x′ = x′.

7.1.6 Successor versus addition. We have

P̀A 1 + x = x′ (1)

because
1 + x = 0′ + x

7.1.2(4)
= (0 + x)′

7.1.2(3)
= x′ .

196



7.1.7 Nullpoints of addition. We have the following property of addition:

P̀A x+ y = 0↔ x = 0 ∧ y = 0 (1)

In the direction (→) assume x+ y = 0 and consider two cases by 7.1.5(1). If

x = 0 then we have 0 = 0 + y
7.1.2(3)

= 0. The case x = x′1 for some x1 cannot

hold because it leads to a contradiction: 0 = x′1 +y
7.1.2(4)

= (x+y)′ by 7.1.2(1).
In the direction (←) the property is a direct consequence of 7.1.2(3).

7.1.8 Addition is commutative. In order to prove that + commutes

P̀A x+ y = y + x (1)

we need two lemmas

P̀A x+ 0 = x (2)

P̀A x+ y′ = x′ + y. (3)

(2) is proved by induction on x. In the base case we have 0 + 0
7.1.2(3)

= 0 and
in the inductive case:

x′ + 0
7.1.2(4)

= (x+ 0)′ IH= x′ .

(3) is proved by induction on x. In the base case we have

0 + y′
7.1.2(3)

= y′
7.1.2(3)

= (0 + y)′
7.1.2(4)

= 0′ + y .

In the inductive case we have

x′ + y′
7.1.2(4)

= (x+ y′)′ IH= (x′ + y)′
7.1.2(4)

= x′′ + y .

We now prove (1) by induction on x. In the base case we have

0 + y
7.1.2(3)

= y
(2)
= y + 0 .

In the inductive case we have

x′ + y
7.1.2(4)

= (x+ y)′ IH= (y + x)′
7.1.2(4)

= y′ + x
(3)
= y + x′ .

From now on we will not explicitly indicate the uses of the two axioms of
addition 7.1.2(3)(4).

7.1.9 Addition is associative. That the addition is associative

P̀A (x+ y) + z = x+ (y + z) (1)

is proved by induction on x. In the base case we have:

(0 + y) + z = y + z = 0 + (y + z) .

In the inductive case we have:

(x′ + y) + z = (x+ y)′ + z = ((x+ y) + z)′ IH= (x+ (y + z))′ = x′ + (y + z) .

197



7.1.10 Cancellation rules for addition. Cancellation rules for the addi-
tion are:

P̀A z + x = z + y → x = y (1)

P̀A x+ z = y + z → x = y . (2)

(1) is proved by induction on z. In the base case we have

0 + x = 0 + y ⇒ x = y .

In the inductive case we have

z′ + x = z′ + y ⇒ (z + x)′ = (z + y)′
7.1.2(2)⇒ z + x = z + y

IH⇒ x = y .

(2) is proved as follows:

x+ z = y + z
7.1.8(1)⇒ z + x = z + y

(1)⇒ x = y .

From now on we will not explicitly indicate the properties of addition proved
until now.

7.1.11 Multiplication by 0 and 1. We have

P̀A x·0 = 0 (1)

P̀A x·1 = 1 . (2)

(1) is proved by induction on x. In the base case we have 0·0 7.1.2(5)
= 0. In the

inductive case we have:

x′·0 7.1.2(6)
= x·0 + 0 = x·0 IH= 0 .

(2) is proved by induction on x. In the base case we have 0·1 7.1.2(5)
= 0. In the

inductive case we have

x′·1 7.1.2(6)
= x·1 + 1 = 1 + x·1 IH= 1 + x = x+ 1 = x′ .

7.1.12 Units of multiplication. Multiplication has the following property

P̀A x·y = 1↔ x = 1 ∧ y = 1 . (1)

Indeed, in the direction (→) we assume x·y = 1 and consider three cases for

x. The case x = 0 leads to the contradiction 0′ = 1 = 0·y 7.1.2(5)
= 0. If x = 1

then we have

1 = 1·y = 0′·y 7.1.2(6)
= 0·y + y

7.1.2(5)
= 0 + y = y .

198



The case x = x′′1 for some x1 cannot happen, This is shown by considering
two cases for y. The case y = 0 leads to a contradiction

0′ = 1 = x′′1 ·0
7.1.11(1)

= 0 .

Also the second case y = y′1 for some y1 leads to a contradiction:

0′ = 1 = x′′1 ·y′1
7.1.2(6)

= x′1·y′1 + y′1
7.1.2(6)

= x1·y′1 + y′1 + y′1 = (x1·y′1 + y1 + y1)′′ .

The direction (←) follows from the following

1·1 = 0′·1 7.1.2(6)
= 0·1 + 1

7.1.2(5)
= 0 + 1 = 1 .

7.1.13 Multiplication distributes over addition. The distributive prop-
erty of the multiplication:

P̀A z·(x+ y) = z·x+ z·y (1)

is proved by induction on z. In the base case we have

0·(x+ y)
7.1.2(5)

= 0 = 0 + 0
7.1.2(5)

= 0·x+ 0·y .

In the inductive case we have

z′·(x+ y)
7.1.2(6)

= z·(x+ y) + (x+ y) IH= (z·x+ z·y) + (x+ y) =

z·x+ (z·y + (x+ y)) = z·x+ (z·y + (y + x)) = z·x+ ((z·y + y) + x)
7.1.2(6)

=

z·x+ (z′·y + x) = z·x+ (x+ z′·y) = (z·x+ x) + z′·y 7.1.2(6)
= z′·x+ z′·y .

From now on we will not explicitly indicate the uses of the two axioms of
multiplication 7.1.2(5)(6).

7.1.14 Multiplication is commutative. That the multiplication com-
mutes:

P̀A x·y = y·x (1)

is proved by induction on x. In the base case we have

0·y = 0
7.1.11(1)

= y·0 .

In the inductive case we have

x′·y = x·y + y
7.1.11(2)

= x·y + y·1 IH= y·x+ y·1 7.1.11(1)
= y·(x+ 1) = y·x′ .

199



7.1.15 Multiplication is associative. The proof that the multiplication
is associative:

P̀A (x·y)·z = x·(y·z) (1)

is by induction on x. In the base case we have

(0·y)·z = 0·z = 0 = 0·(y·z) .

In the inductive case we have

(x′·y)·z = (x·y + y)·z 7.1.14(1)
= z·(x·y + y)

7.1.11(1)
= z·(x·y) + z·y 7.1.14(1)

=

(x·y)·z + y·z IH= x·(y·z) + y·z = x′·(y·z) .

7.1.16 Cancellation rules for multiplication. Cancellation rules for the
multiplication are:

P̀A z 6= 0 ∧ z·x = z·y → x = y (1)

P̀A z 6= 0 ∧ x·z = y·z → x = y . (2)

(1) follows by the commutativity of multiplication from (2) which is proved
by assuming z = z′1 for some z1 and continuing by induction on x with the
induction formula ∀y(x·z′1 = y·z′1 → x = y). In the base case we take any y,
assume 0·z′1 = y·z′1, and consider two cases. If y = 0 then we have x = 0 = y
trivially. The case y = y′1 for some y1 leads to a contradiction:

0 = 0·z′1 = y′1·z′1 = y·z′1 + z′1 = (y1·z′1 + z1)′ .

In the inductive case we take any y, assume x′·z′1 = y·z′1, and consider two
cases again. If y = 0 then the assumption is shown contradictory similarly as
above. If y = y′1 then we have

x·z′1 + z′1 = x′·z′1 = y′1·z′1 = y1·z′1 + z′1

and so x·z′1 = y1·z′1. We obtain x = y1 by IH and so we get x′ = y′1.
From now on we will not explicitly refer to the properties of multiplication

proved until now.

7.2 Extensions of PA

We study in this section the effect of extensions by definitions of PA on the
axioms of induction.

7.2.1 Proper extensions of PA. We are interested in proper extensions T
of PA which prove all induction axioms of T , i.e. T ` Ixφ[x] for all fromulas
φ of LT .

Clearly, the basic theory PA is proper. The following theorem asserts that
extensions by definitions yield proper theories from proper ones.

200



7.2.2 Theorem. If S is an extension by definitions of a proper extension
T of PA then also S is proper.

Proof. Take the induction axiom Ixφ[x]:

φ[0] ∧ ∀x(φ[x]→ φ[x′])→ φ[x]

for an arbitrary formula φ of LS . We use the Theorem on Extensions by defi-
nitions 6.6.2 and translate away the predicate or function symbols introduced
into S. The translation (Ixφ[x])? of Ixφ[x] is the following formula of LT :

φ?[0] ∧ ∀x(φ?[x]→ φ?[x′])→ φ?[x] .

We thus have (Ixφ[x])? ≡ Ixφ
?[x] and, since φ∗ is a formula of the proper

extension T , we have T ` (Ixφ[x])?. Hence S ` Ixφ[x] by 6.6.2(2). ut

7.2.3 Peano arithmetic in wider sense. In order to escape the irritating
references to extensions of extensions of PA we will relativize our terminology.
We will designate by PA not only the basic theory of Peano arithmetic, i.e.
the six axioms for the function symbols of PA and infinitely many induction
axioms, but also the current extension of Peano arithmetic. We will also
designate by LPA the language of the current extension of PA. Thus both
the language and the axioms of PA will be relative notions depending on the
context where the symbols LPA and PA are used. It will be always possible
to determine the meaning of both symbols.

Only in situations where we will be introducing new schemas of exten-
sion of PA such as minimalization (see Par. 7.4.3), primitive recursion (see
Sect. 8.2), or course of values recursion with measure (see Sect. 8.4) we will
temporary revert to designating the extensions of PA by symbols T , S, etc.

We will also have to be specific about concrete extensions of PA when
we will be introducing new induction schemas such as complete induction
(see Thm. 7.3.8), the least number principle (see Par. 7.3.10), or measure
induction (see Par. 8.4.5). The new induction schemas will be reduced to
the induction axioms Ixφ of PA. All extensions of PA in this text will be
extensions by definitions, which are proper extensions. As a consequence, the
new induction principles will be always provable in the extensions.

We will also use the expression standard model of PA in the relativized
sense to designate the unique expansion of the standard model N of PA to
the model of the current extension of PA. The uniqueness of expansion is
guaranteed by Thm. 6.6.2.

We will be using the symbol of provability P̀A φ in the relativized sense
as T ` φ where T is the current extension of PA. We will also use the symbol
P̀Ax φ with the meaning of P̀A φ when we will wish to emphasize that the
formula φ is the defining axiom of the new extension of PA.

201



7.3 Introduction of Basic Predicates into PA

We define in PA the four relations of comparison and prove their basic prop-
erties.

7.3.1 Comparison predicates. We introduce into PA the binary compar-
ison predicates <, ≤, >, and ≥ by explicit definitions:

P̀Ax x < y ↔ ∃z x+ z′ = y (1)

P̀Ax x ≤ y ↔ x < y ∨ x = y (2)

P̀Ax x > y ↔ y < x (3)

P̀Ax x ≥ y ↔ y ≤ x . (4)

The relation ≤ has the following property:

P̀A x ≤ y ↔ ∃z x+ z = y . (5)

Indeed, in the direction (→) assume x ≤ y and consider two cases by the
definition (2). If x < y then we have x + z′ = y from the definition and so
∃z x+ z = y holds. If x = y then we have x+ 0 = y and ∃z x+ z = y holds
again.

In the direction (←) assume x+ z = y for some z and consider two cases
for z. If z = 0 we have x = x + 0 = y. If z = z′1 for some z1 then we have
x + z′1 = y and so x < y holds from the definition. In either case we have
x ≤ y from the definition.

7.3.2 The relation < is a linear order. The relation < (and also >) is
a linear order because we have

P̀A ¬x < x (1)

P̀A x < y ∧ y < z → x < z (2)

P̀A x < y ∨ x = y ∨ y < x . (3)

The properties are called in that order irreflexivity, transitivity, and linearity.
Irreflexivity is proved by induction on x. In the base case we have: 0+z′ =

(0+z)′ 6= 0 and so ¬∃z 0+z′ = 0 from which we get ¬0 < 0 from definition. In
the inductive case we derive a contradiction by assuming x′ < x′ as follows.
We have x′ + z′ = x′ for some z from the definition and from (x + z′)′ =
x′ + z′ = x′ we obtain x+ z′ = x from which we get x < x contradicting IH.

Transitivity is proved by assuming x < y and y < z from which we get
x + a′ = y and y + b′ = z for some a and b from the definitions. Hence,
x+(a+ b′)′ = x+a′+ b′ = y+ b′ = z, i.e. ∃c x+ c′ = z and so we have x < z.

For the linearity we need an auxiliary property

P̀A 0 < x′ (4)

202



which follows from 0 +x′ = x′ by existential instantiation and the definition.
Linearity is proved by induction on x. In the base case we wish to prove

0 < y ∨ 0 = y ∨ y < 0 for which we consider two cases. If y = 0 the property

holds trivially. If y = y′1 for some y1 then we have 0
(4)
< y′1 = y. In the inductive

case we wish to prove x′ < y∨x′ = y∨y < x′. From the inductive hypothesis
(3) we consider three cases. If x < y then we have x′ + z = x + z′ = y for
some z from the definition and so x′ ≤ y by 7.3.1(5). From this we get x′ < y
or x′ = y from the definition.

If x = y we have y + 0′ = x + 0′ = x′ + 0 = x′ and so y < x′ from the
definition.

Finally, if y < x we have y+ z′ = x for some z from the definition and so
y + z′′ = (y + z′)′ = x′ from which we get y < x′ from the definition.

7.3.3 Trichotomy and dichotomy laws. The laws of trichotomy and di-
chotomy are in that order the following formulas:

P̀A x < y ∨ x = y ∨ x > y (1)

P̀A x ≤ y ∨ x > y . (2)

The laws are typically used for case analysis and they directly follow from
the linearity 7.3.2(3) of < by the definitions.

7.3.4 Ordering properties of relation ≤. The predicate ≤ constitutes
a (total) ordering relation which is reflexive, transitive, antisymmetric, and
linear. This is expressed in that order as follows:

P̀A x ≤ x (1)

P̀A x ≤ y ∧ y ≤ z → x ≤ z (2)

P̀A x ≤ y ∧ y ≤ x→ x = y (3)

P̀A x ≤ y ∨ y ≤ y . (4)

Property (1) follows directly from the definition. Property (2) follows from
the transitivity of <.

(3): If x ≤ y, y ≤ x, and x 6= y hold then we obtain x < y and y < x from
the definitions. From this we get x < x by transitivity which contradicts the
irreflexivity of <.

Property (4) is a direct consequence of linearity 7.3.2(3) of <.

7.3.5 Additional properties of comparisons. We have the following ad-
ditional properties of the comparison relations:

P̀A x 6< 0 (1)

P̀A 0 ≤ x (2)

P̀A x < x′ (3)

P̀A x < y ↔ x′ ≤ y . (4)

203



(1) Assume on the contrary x < 0. We then have x+ z′ = 0 for some z from
the definition and we get the contradiction z′ = 0 by 7.1.7(1).

(2) is a direct consequence of (1) and 7.3.3(2).
(3): We have x + 0′ = (x + 0)′ = x′ and so ∃z x + z = x′ holds. We now

get x < x′ from the definition.
For (4) we have x < y iff x + z′ = y for some z iff x′ + z = y for some z

iff x′ ≤ y by 7.3.1(5).

7.3.6 Monotonicity of addition and multiplication. Addition and mul-
tiplication are monotone:

P̀A x < y ↔ z + x < z + y (1)

P̀A x < y ↔ x+ z < y + z (2)

P̀A z > 0→ x < y ↔ z·x < z·y (3)

P̀A z > 0→ x < y ↔ x·z < y·z . (4)

(1): We have x < y iff x+ u′ = y for some u iff, by 7.1.10(1) and properties
of identity, z+ (x+ u′) = z+ y for some u iff (z+ x) + u′ = z+ y for some u
iff z + x < z + y.

Property (2) follows from (1) by commutativity of addition.
(3): In the direction (→) assume z = z′1 and x + u′ = y for some z1 and

u. We have

z′1·y = z′1·(x+ u′) = z′1·x+ z′1·u′ = z′1·x+ (z1·u′ + u′) = z′1·x+ (z1·u′ + u)′

and so z′1·x < z′1·y holds by definition.
In the direction (←) assume z = z′1 and prove

∀y(z′1·x < z′1·y → x < y)

by induction on x. In the base case take any y and assume z′1·0 < z′1·y. We
then have 0 < z′1·y. If it were the case that y = 0 we would get a contradiction
0 < z′1·0 = 0 with 7.3.2(1). Hence y = y′1 for some y1 and we have 0 < y by
7.3.2(4).

In the inductive case take any y and assume z′1·x′ < z′1·y. If it were the
case that y = 0 we would get a contradiction z′1·x′ < z′1·0 = 0 with 7.3.5(1).
Hence y = y′1 for some y1 and we have

x·z′1 + z′1 = x′·z′1 = z′1·x′ < z′1·y′1 = y′1·z′1 = y1·z′1 + z′1 .

We now obtain x·z′1 < y1·z′1 by (2) and x < y1 by IH. Hence x′ = x + 1
(2)
<

y1 + 1 = y′1.
Property (4) follows from (3) by the commutativity of multiplication.

204



7.3.7 Complete induction. Let T be a proper extension of PA containing
the predicate <, φ[x] a formula of LT with the indicated variable x free and
with possibly additional parameters, and y a new variable. The formula of
complete induction on x for φ[x] is the following one:

∀x(∀y(y < x→ φ[y])→ φ[x])→ φ[x] . (1)

7.3.8 Theorem. Every proper extension T of PA containing the predicate
< proves the schema of complete induction 7.3.7(1).

Proof. We prove 7.3.7(1) in T from an auxiliary property

T ` ∀x(∀y(y < x→ φ[y])→ φ[x])→ ∀y(y < x→ φ[y])

which is proved by assuming the formula expressing that φ is progressive:

∀x(∀y(y < x→ φ[y])→ φ[x]) (1)

and proving

∀y(y < x→ φ[y]) (2)

by induction on x. In the base case there is nothing to prove. In the inductive
case we take any y s.t. y < x′ and consider two cases by dichotomy. If y < x
we obtain φ[y] from IH: (2). If y ≥ x then we have y = x and note that IH,
i.e. (2), is the antecedent of (1) from which we obtain φ[x], i.e. φ[y].

We obtain T ` 7.3.7(1) from the auxiliary property by instantiating its
consequent with x := x′ and y := x. ut

7.3.9 The least number principle. Let T be a proper extension of PA
containing the predicate <, φ[x] a formula of LT with the indicated variable
x free and with possibly additional parameters, and y a new variable. The
formula of the least number principle for φ is the following one:

∃xφ[x]→ ∃x(φ[x] ∧ ∀y(y < x→ ¬φ[y])) . (1)

The least number principle says that if the property φ[x] holds for some x
then it holds for the least such x.

7.3.10 Theorem. Every proper extension T of PA containing the predicate
< proves the schema of the least number principle 7.3.9(1).

Proof. We prove 7.3.9(1) in T from the complete induction for ¬φ:

T ` ∀x(∀y(y < x→ ¬φ[y])→ ¬φ[x])→ ¬φ[x]

which is a theorem of T by Thm. 7.3.8. Its converse is

φ[x]→ ∃x(∀y(y < x→ ¬φ[y]) ∧ φ[x])

and 7.3.9(1) logically follows by quantifier operations. ut

205



7.4 Introduction of Basic Functions into PA

We will extend PA by some basic functions such as division, introduce exten-
sions by minimalization, and prove that they are extensions by definition.

7.4.1 Small constants. We have used 1 as abbreviation for the term 0′ in
Sect. 7.1. We now introduce the symbols 1, 2, 3, and 4 into PA as constants
by explicit definitions:

P̀A 1 = 0′ (1)

P̀A 2 = 1′ (2)

P̀A 3 = 2′ (3)

P̀A 4 = 3′ . (4)

7.4.2 Extensions by minimalization. Let T be a proper extension of PA
containing the predicate < and φ[~x, y] a formula of LT with all free variables
among the indicated ones where ~x contains n ≥ 0 variables. If T proves the
existence condition:

T ` ∃yφ[~x, y] (1)

then the extension of T to S with the n-ary function symbol f and the
defining axiom a universal closure of

φ[~x, f(~x)] ∧ ∀y(y < f(~x)→ ¬φ[~x, y]) . (2)

is called extension by minimalization.
We will use a more suggestive notation as an abbreviation for the above

defining axiom:

f(~x) = µy[φ[~x, y]] . (3)

The idea is that the function f defined by this definition yields for every
~x the minimal y such that φ[~x, y] holds because on accord of the existence
condition ∃yφ[~x, y] there is at least one such y.

The defining axiom clearly implies S ` φ[~x, f(~x)] and

S ` y < f(~x)→ ¬φ[~x, y] ,

which is equivalent to
S ` φ[~x, y]→ f(~x) ≤ y

whenever T contains the predicate ≤.

206



7.4.3 Theorem. If T is a proper extension of PA containing the predicate
< then an extension of T by minimalization is an extension by definition.

Proof. Let S be the extension of T by minimalization as in Par. 7.4.2 and S1

an extension of T with f implicitly defined by ψ[~x, f(~x)] for the formula

ψ[~x, y] ≡ φ[~x, y] ∧ ∀z(z < y → ¬φ[~x, z]) .

Since ψ[~x, f(~x)] and 7.4.2(2) are variants, S will be an extension by definition
of T by Thm. 6.6.3 provided T proves the existence and uniqueness conditions
for ψ. We note that the existence condition ∃yψ[~x, y] is the consequent of the
instance of the least number principle

T ` ∃yφ[~x, y]→ ∃y(φ[~x, y] ∧ ∀z(z < y → ¬φ[~x, z])) ,

which is provable in T by Thm. 7.3.10. We thus get ∃yψ[~x, y] in T from
7.4.2(1).

For the proof of the uniqueness condition we work in T , assume ψ[~x, y1],
ψ[~x, y2], and consider three cases. If y1 < y2 then we obtain ¬φ[~x, y1] from
ψ[~x, y2] which contradicts φ[~x, y1] implied by ψ[~x, y1]. If y1 > y2 we derive a
contradiction similarly. Thus it must be the case that y1 = y2. ut

7.4.4 Modified subtraction. We wish to extend Peano arithmetic with a
binary modified subtraction function x .− y with the basic properties

P̀A y ≤ x→ x = y + (x .− y) . (1)

P̀A y > x→ x .− y = 0 . (2)

The modified subtraction function is introduced by minimalization

P̀Ax x .− y = µz[y ≤ x→ x = y + z] (3)

with the existence condition

P̀A ∃z(y ≤ x→ x = y + z) ,

which is equivalent to y ≤ x→ ∃z x = y + z, holding by 7.3.1(5).
The defining axiom for .− directly implies Property (1) and

P̀A z < x .− y → ¬(y ≤ x→ x = y + z) . (4)

From this we obtain 0 < x .− y → y ≤ x, which is equivalent to (2) by
dichotomy and 7.3.5(1).

7.4.5 Maximum. The maximum function max(x, y) with the basic prop-
erties

207



P̀A x ≤ max(x, y) (1)

P̀A y ≤ max(x, y) (2)

P̀A x = max(x, y) ∨ y = max(x, y) (3)

is introduced into PA by minimalization

P̀Ax max(x, y) = µz[x ≤ z ∧ y ≤ z] (4)

whose existence condition

P̀A ∃z(x ≤ z ∧ y ≤ z)

is proved by case analysis. If x ≤ y then we take z := y. If x > y then we
take z := x.

The defining axiom for the maximum function directly implies Properties
(1) and (2) as well as

P̀A x ≤ z ∧ y ≤ z → max(x, y) ≤ z .

Property (3) is proved from the last by case analysis. If x ≤ y then for z := y
we get max(x, y) ≤ y and we obtain max(x, y) = y from (2) by antisymmetry.
If x > y then for z := x we get max(x, y) ≤ x and we obtain max(x, y) ≤ y
similarly.

7.4.6 The square function. We introduce the unary function x2 yielding
the square of x into PA by explicit definition:

P̀Ax x
2 = x·x . (1)

7.4.7 Whole part of square root. We wish to introduce into PA the
function [

√
x] yielding the whole part of the square root of x which satisfies

P̀A [
√
x]2 ≤ x < ([

√
x] + 1)2 . (1)

The function is defined by minimalization:

P̀Ax [
√
x] = µy[x < (y + 1)2] (2)

whose existence condition

P̀A ∃y x < (y + 1)2

holds for y := x because

x = x·1 ≤ x·(x+ 1) < (x+ 1)·(x+ 1) = (x+ 1)2 .

The defining axiom for [
√
x] implies

208



P̀A x < ([
√
x] + 1)2 (3)

P̀A y < [
√
x]→ (y + 1)2 ≤ x . (4)

From (3) we can see that for the proof of (1) it suffices to show [
√
x]2 ≤ x.

For that we consider two cases. If [
√
x] = 0 then we have 02 = 0 ≤ x. If

[
√
x] = y′ for some y then, since y < [

√
x], we obtain [

√
x]2 = (y + 1)2 ≤ x

from (4).

7.4.8 Integer division and remainder. We wish to introduce into PA
integer division x÷y and remainder x mod y functions satisfying the following

P̀A y > 0→ x = x÷ y·y + x mod y ∧ x mod y < y (1)

P̀A y > 0 ∧ x = q·y + r ∧ r < y → q = x÷ y ∧ r = x mod y (2)

P̀A x÷ 0 = 0 (3)

P̀A x mod 0 = 0 . (4)

We claim that the functions can be introduced by minimalization:

P̀Ax x÷ y = µq[y > 0→ x < (q + 1)·y] (5)

P̀Ax x mod y = µz[y > 0→ z = x .−x÷ y·y] (6)

The existence condition for the division function (5) is

P̀A ∃q(0 < y → x < (q + 1)·y) .

This holds because if y = 0 then set q := 0 and if y > 0 then set q := x
because we have

x = x·1 ≤ x·y < (x+ 1)·y .

The defining axiom for ÷ implies:

P̀A y > 0→ x < (x÷ y + 1)·y (7)

P̀A q < x÷ y → (q + 1)·y ≤ x (8)

P̀A y = 0→ x÷ y ≤ q (9)

The existence condition for the remainder function (6) is equivalent to
P̀A y > 0→ ∃z z = x .−x÷ y·y and it is proved trivially. The defining axiom
for mod implies

P̀A y > 0→ x mod y = x .−x÷ y·y (10)

P̀A z = x .−x÷ y·y → x mod y ≤ z (11)

P̀A y = 0→ x mod y ≤ z . (12)

For the proof of Property (1) we assume y > 0 and prove an auxiliary
property

209



P̀A x÷ y·y ≤ x (13)

by considering two cases. If x÷ y = 0 then we have

x÷ y·y = 0·y = 0 ≤ x .

If x÷ y = q′ for some q then, since q < x÷ y, we obtain

x÷ y·y = (q + 1)·y
(8)

≤ x .

We then have

x÷ y·y + x mod y
(10)
= x÷ y·y + (x .−x÷ y·y)

(13),7.4.4(1)
= x

(7)
<

(x÷ y + 1)·y = x÷ y·y + y .

Note that x mod y < y holds by 7.3.6(1).
Property (2) is proved by assuming y > 0, x = q·y + r with r < y, and

considering three cases by trichotomy. If x÷y < q then we have q = x÷y+z′

for some z. We then obtain

x÷ y·y + x mod y
(1)
= x = q·y + r = x÷ y·y + z′·y + r

and hence x mod y = z′·y + r by 7.3.6(1). Thus x mod y = y + z·y + r from
which we have x mod y ≥ y which contradicts x mod y < y.

If q < x ÷ y then we have x ÷ y = q + z′ for some z. We then similarly
obtain

q·y + r = x
(1)
= x÷ y·y + x mod y = q·y + z′·y + x mod y

from which we get r = z′·y + x mod y = y + z·y + x mod y and thus r ≥ y
which contradicts r < y.

Thus the third case x÷ y = q must obtain and, since then

q·y + r = x
(1)
= x÷ y·y + x mod y = q·y + x mod y ,

we get r = x mod y by 7.3.6(1).
(3): Take y := 0 and q := 0 in (9) and obtain x÷ 0 ≤ 0, i.e. x÷ 0 = 0.
(4): Take y := 0 and z := 0 in (12) and obtain x mod 0 ≤ 0, i.e. x mod 0 =

0.

7.5 The Lattice of Divisibility

7.5.1 Divisibility predicate. The binary divisibility predicate x | y, read
as x divides y is defined in PA by an explicit definition:

210



P̀Ax x | y ↔ ∃z y = z·x . (1)

The predicate of divisibility is a relation of partial order (similar to ≤ but
without the linearity 7.3.4(4)) which satisfies the reflexivity, transitivity, and
antisymmetry. The partial order is with the least element 1 and the greatest
element 0:

P̀A x | x (2)

P̀A x | y ∧ y | z → x | z (3)

P̀A x | y ∧ y | x→ x = y (4)

P̀A 1 | x (5)

P̀A x | 0 . (6)

(2): We have x = 0 + x = 0·x+ x = 0′·x and so ∃z x = z·x.
(3): Assume x | y and y | z, i.e. y = a·x and z = b·y for some a and b.

Then z = b·y = b·a·x and so for u := b·a we have ∃u z = u·x.
(4): Assume x | y and y | x, i.e. y = a·x and x = b·y for some a and b.

Then x = b·y = b·a·x. We consider two cases. If x = 0 then also y = a·0 = 0.
If x > 0 then, since x = b·a·x+ 0 and x = 1·x+ 0, we obtain b·a = x÷ x = 1
by 7.4.8(2). But then a = 1 and b = 1 by 7.1.12(1) and so x = y.

(5): We have x = x·1 and so ∃z x = z·1.
(6): We have 0 = 0·x and so ∃z 0 = z·x.

7.5.2 Additional properties of divisibility. The relation between the
divisibility predicate and the remainder function is given by the following
property:

P̀A y 6= 0→ y | x↔ x mod y = 0 . (1)

Indeed, assume y > 0. In the direction (→) also assume y | x, i.e. x = z·y =
z·y+ 0 for some z. We get x mod y = 0 by 7.4.8(2). In the direction (←) also
assume x mod y = 0. We then have

x
7.4.8(1)

= x÷ y·y + x mod y = x÷ y·y

and for z := x÷ y we have ∃z x = z·y. We also have

P̀A x 6= 0 ∧ y | x→ y ≤ x (2)

because if x > 0 and x = z·y for some z then it must be the case that z > 0.
If it were the case that x < y then we would have z·x < z·y = x = 1·x and
hence z < 1 by the monotonicity of multiplication.

We will need the following property:

P̀A a+ b = c ∧ x | a ∧ x | c→ x | b (3)

211



which is proved by assuming its antecedent and considering two cases. If
x = 0 then from x | a and x | c we get a = b = 0 and hence b = 0 from which
we have x | b by 7.5.1(6).

If x > 0 then for some a1 and c1 we have a1·x = a ≤ c = c1·x and so
a1 ≤ c1, i.e. a1 + u = c1 for some u. We then get

a+ u·x = a1·x+ u·x = (a1 + u)·x = c1·x = c .

Thus b = u·x, i.e. x | b.

7.5.3 The lattice of divisibility. A set with a partial order where for
every two elements x and y exists their least upper bound x ∪ y (called the
join of x and y) and their greatest lower bound x ∩ y (called the meet of x
and y) is a lattice. The partial order on natural numbers given by the relation
of divisibility x | y forms a lattice where the join x ∪ y is the least common
multiple of x and y and the meet x ∩ y is the greatest common divisor of x
and y. We wish to introduce the operations into PA to satisfy:

P̀A x | x ∪ y ∧ y | x ∪ y (1)

P̀A x | z ∧ y | z → x ∪ y | z (2)

P̀A x ∩ y | x ∧ x ∩ y | y (3)

P̀A z | x ∧ z | y → z | x ∩ y . (4)

We claim that the least common multiple x ∪ y can be introduced by mini-
malization:

P̀Ax x ∪ y = µz[x = 0 ∨ y = 0 ∨ z > 0 ∧ x | z ∧ y | z] (5)

whose existence condition

P̀A ∃z(x = 0 ∨ y = 0 ∨ z > 0 ∧ x | z ∧ y | z)

is proved by taking any x, y and considering two cases. If x = 0 or y = 0
then it suffices to take z := 0. If x > 0 and y > 0 then also x·y > 0 and,
since x | x·y and y | x·y, it suffices to take z := x·y. The defining axiom for
∪ implies

P̀A x > 0 ∧ y > 0→ x ∪ y > 0 ∧ x | x ∪ y ∧ y | x ∪ y (6)

P̀A x = 0 ∨ y = 0→ x ∪ y ≤ z (7)

P̀A z > 0 ∧ x | z ∧ y | z → x ∪ y ≤ z . (8)

We prove (1) by taking any x, y and considering two cases. If x = 0 or y = 0
then we have x ∪ y = 0 from (7) by taking z := 0 and the property holds on
account of 7.5.1(6). If x > 0 and y > 0 then (1) follows from (6).

We prove (2) by taking any x, y and considering two cases. If x = 0 or
y = 0 then if x | z and y | z we obtain z = 0 and thus x ∪ y | z by 7.5.1(6).

212



If x > 0 and y > 0 then we prove (2) by complete induction on z. Assume
x | z, y | z and consider two cases. If z = 0 then also x ∪ y | z by 7.5.1(6). If
z > 0 then we have

0
(6)
< x ∪ y

(8)

≤ z

and so (x ∪ y) + u = z for some u. Since x | x ∪ y, we obtain x | u by
7.5.2(3). We get y | u similarly and, since u < z, we obtain x ∪ y | u by IH,
i.e u = a·(x ∪ y) for some a. From this, since

z = (x ∪ y) + u = (x ∪ y) + a·(x ∪ y) = (1 + a)·(x ∪ y) ,

we get x ∪ y | z.
We claim that the greatest common divisor x ∩ y can be introduced by

minimalization:

P̀Ax x ∩ y = µz[z | x ∧ z | y ∧ ∀u(u | x ∧ u | y → u | z)] (9)

whose existence condition is implied by

P̀A ∀y∃z(z | x ∧ z | y ∧ ∀u(u | x ∧ u | y → u | z))

which is proved by complete induction on x. We take any y and consider two
cases. If x = 0 then it clearly suffices to take z := y. If x > 0 then, since
x > y mod x, we use IH with y := x to obtain a z s.t. z | y mod x, z | x, and

∀u(u | y mod x ∧ u | x→ u | z) . (10)

We have x = a·z and y mod x = b·z for some a and b. We claim that

z | x ∧ z | y ∧ ∀u(u | x ∧ u | y → u | z)

holds for the same z. For that we note

y
7.4.8(1)

= y ÷ x·x+ y mod x = y ÷ x·a·z + b·z = (y ÷ x·a+ b)·z

and so z | y. Now take any u and assume u | x and u | y. Since y =
y÷x·x+y mod x, we see that u | y mod x by 7.5.2(3). We now get u | z from
(10).

Properties (3) and (4) are a direct consequence of the defining axiom for
x ∩ y.

7.5.4 Joins and meets versus the partial order. In every lattice we
have x ∪ y = x iff y ≤ x iff x ∩ y = y. This has the following form in the
lattice of divisibility:

P̀A x ∪ y = x↔ y | x (1)

P̀A x ∩ y = y ↔ y | x (2)

213



and the proof is solely by using the four properties 7.5.3(3) through 7.5.3(4)
of ∪ and ∩ as well as the fact that | is a partial order satisfying 7.5.1(2)
through 7.5.1(4).

(1): In the direction (→) assume x ∪ y = x and get y | x ∪ y = x from
7.5.3(1). In the direction (←) assume y | x. Since x | x by 7.5.1(2) we get
x ∪ y | x by 7.5.3(2). We have x | x ∪ y by 7.5.3(1) and so x ∪ y = x by
7.5.1(4).

Property (2) is proved similarly.

7.5.5 The lattice of divisibility is atomic. An element p of a lattice is
an atom if the only element strictly less than p is the least element of the
lattice. The divisibility lattice has 1 as the least element and so the predicate
Prime(p) is explicitly introduced to hold exactly of its atoms:

P̀Ax Prime(p)↔ p 6= 1 ∧ ∀x(x | p→ x = 1 ∨ x = p) (1)

Thus p is an atom of the divisibility lattice iff it is a prime number. For
2 = 1′ = 0′′ we have

P̀A ¬Prime(0) (2)

P̀A Prime(2) . (3)

(2): We have 2 | 0 by 7.5.1(6) and 1 6= 2 6= 0.
(3): We have 2 6= 1 and if x | 2 then x ≤ 2 by 7.5.2(2). Since 0 - 2 we can

have at most 1 | 2 or 2 | 2.
A lattice with the least element is atomic if to every non-minimal element

x which is not an atom there is an atom p less than x. The divisibility lattice
is atomic because we have:

P̀A x 6= 1→ ∃p(Prime(p) ∧ p | x) . (4)

This is proved by complete induction on x. We consider three cases for x.
If x = 0 then it suffices to take p := 2 by (3) and 7.5.1(6). If x = 1 there
is nothing to prove. Finally, if x > 1 then we consider two cases again. If
Prime(x) then it suffices to take p := x because of 7.5.1(2). If ¬Prime(x)
then there is a number q | x s.t. x 6= 1 and q 6= x from the definition. We
have q ≤ x by 7.5.2(2) and, since q < x, there is a prime p s.t. p | q by IH for
which we get p | x by 7.5.1(3).

7.5.6 The lattice of divisibility is distributive. In every lattice we have
(x ∩ y) ∪ (x ∩ z) ≤ x ∩ (y ∪ z). We prove this and its dual for the lattice of
divisibility solely from the seven properties given in Par. 7.5.4:

P̀A y | z → x ∩ y | x ∩ z (1)

P̀A (x ∩ y) ∪ (x ∩ z) | x ∩ (y ∪ z) . (2)

214



(1): Assume y | z. We have x ∩ y | x and x ∩ y | y and so x ∩ y | z by
transitivity. Hence x ∩ y | x ∩ z by 7.5.3(4).

(2): Since y | y ∪ z and z | y ∪ z, we obtain x ∩ y | x ∩ (y ∪ z) and
x ∩ z | x ∩ (y ∪ z) by (1). The property now follows by 7.5.3(2).

UNFINISHED

P̀A x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (3)

P̀A x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z) . (4)

7.5.7 A property of prime divisors. We will need Property (2) which is
a simple consequence of distributivity of the lattice of divisibility.

P̀A x ∪ x = x (1)

P̀A Prime(p) ∧ p | x ∪ y → p | x ∨ p | y . (2)

(1): This follows from x | x by 7.5.4(1).
(2): Assume that p is a prime s.t. p | x ∪ y. If it were the case that p - x

and p - y then we would get p ∩ x 6= p, p ∩ y 6= p by 7.5.4(2). But p ∩ x | p
and p∩ y | p by 7.5.3(3) and so p∩ x = 1 = p∩ y by the definition of primes.
But then we could derive a contradiction:

p
7.5.4(2)

= p ∩ (x ∪ y)
7.5.6(3)

= (p ∩ x) ∪ (p ∩ y) = 1 ∪ 1
(1)
= 1

with the definition of primes.

7.5.8 Coprime numbers. Two numbers x and y are coprime (relatively
prime) if x∩y = 1. We will need the following property which says that every
two successive numbers are coprime:

P̀A x ∩ (x+ 1) = 1 . (1)

We claim that (1) follows from

P̀A z | x ∧ z | x+ 1→ z = 1 . (2)

Indeed, take z := x∩x+1 and use 7.5.3(3). For the proof of (2) assume z | x,
z | x+ 1, and consider three cases. If z = 0 then, since x+ 1 = b·z for some
b, we obtain a contradiction x + 1 = b·z = 0. If z > 1 then, since x = a·z
for some a, we get x+ 1 = a·z + 1 and so (x+ 1) mod z = 1 by 7.4.8(2). We
now obtain contradiction z - x+ 1 by 7.5.2(1). Thus it must be the case that
z = 1.

7.5.9 Least common multiple of interval [1..x]. We will need a func-
tion

⋃x
i=1 i yielding finitely many least common multiples of numbers in the

(possibly empty) interval [1..x]. The function should satisfy:

215



P̀A

0
⋃

i=1

i = 1 (1)

P̀A

x′
⋃

i=1

i = (
x
⋃

i=1

i) ∪ x′ . (2)

We claim that the function can be defined by minimalization

P̀Ax

x
⋃

i=1

i = µm[x = 0 ∧m = 1 ∨

x 6= 0 ∧ ∀y(0 < y ≤ x→ y | m) ∧
∀z(∀y(0 < y ≤ x→ y | z)→ m | z)]

whose existence condition

P̀A ∃m(x = 0 ∧m = 1 ∨
x > 0→ ∀y(0 < y ≤ x→ y | m) ∧ ∀z(∀y(0 < y ≤ x→ y | z)→ m | z))

is proved by iduction on x. In the base case we take m := 1. In the inductive
case we obtain an m1 s.t.

x = 0 ∧m1 = 1 ∨
x 6= 0 ∧ ∀y(0 < y ∧ y ≤ x→ y | m1) ∧ ∀z(∀y(0 < y ≤ x→ y | z)→ m1 | z)

(3)

by IH. We claim that it suffices to take m := m1 ∪ x′. We consider two cases

for x. If x = 0 then m1 = 1 and m = 1 ∪ 1
7.5.7(1)

= 1. We now take any y s.t.
0 < y ≤ x′ = 1, i.e. y = 1, and we have y | m. We also have m = 1 | z for any
z.

If x 6= 0 then for any y s.t. 0 < y ≤ x′ we consider two cases agian. If
y < x′ then y | m1 by (3) and, since m1 | m, we get y | m by transitivity.
If y ≥ x′ then y = x′ and we have y = x′ | m. If for any z we have ∀y(0 <
y ≤ x′ → y | z) then we have x′ | z directly and m1 | z by (3). Hence
m = m1 ∪ x′ | z by 7.5.3(2).

The defining axiom for
⋃x
i=1 i directly implies Property (1) and also

P̀A 0 < y ≤ x→ y |
x
⋃

i=1

i (4)

P̀A x 6= 0 ∧ ∀y(0 < y ≤ x→ y | u)→
x
⋃

i=1

i | u . (5)

We prove Property (2) by showing first

216



P̀A

x′
⋃

i=1

i | (
x
⋃

i=1

i) ∪ x′ (6)

by taking any y s.t. 0 < y ≤ x′ and considering two cases. If y ≤ x then
y |
⋃x
i=1 i by (4) and, since

⋃x
i=1 i | (

⋃x
i=1 i) ∪ x′, we obtain y | (

⋃x
i=1 i) ∪ x′

by transitivity. If y = x′ then we have x′ | (
⋃x′

i=1 i) ∪ x′. (6) now follows by
(5).

We then prove

P̀A (
x
⋃

i=1

i) ∪ x′ |
x′
⋃

i=1

i (7)

by proving first
⋃x
i=1 i |

⋃x′

i=1 i by considering two cases. If x = 0 then
⋃x
i=1 i

(1)
= 1 |

⋃x′

i=1 i by 7.5.1(5). If x 6= 0 we take any y s.t. 0 < y ≤ x. We
have y |

⋃x′

i=1 i by (4) and hence
⋃x
i=1 i |

⋃x′

i=1 i by (5). From
⋃x
i=1 i |

⋃x′

i=1 i

and from x′ |
⋃x′

i=1 i which holds by (4) we get (7) by 7.5.3(2).
Property (2) now follows from (6) and (7) by antisymmetry.
Surprising as it is, we need a proof by induction on x of the following

property:

P̀A

x
⋃

i=1

i 6= 0 . (8)

In the base case the property follows from (1). In the inductive case we have
⋃x
i=1 i 6= 0 by IH and

0
7.5.3(6)

6= (
x
⋃

i=1

i) ∪ x′ (2)
=

x′
⋃

i=1

i .

We will need the following lower bound on our function:

P̀A x ≤
x
⋃

i=1

i (9)

which is proved by considering two cases. If x = 0 then (9) holds by (1). If
x 6= 0 then x |

⋃x
i=1 i by (4). Since

⋃x
i=1 i 6= 0 by (8), the property follows

from 7.5.2(2).

7.5.10 Euclid’s theorem on prime numbers. The lattice of divisibility
has infinitely many atoms by the famous second theorem of Euclid which
asserts that there are infinitely many prime numbers:

P̀A ∃p(p > x ∧ Prime(p)) (1)

217



This is proved by taking any x and considering the number q = (
⋃x
i=1 i) + 1.

For every y > 1 s.t. y ≤ x we have y |
⋃x
i=1 i by 7.5.9(4). If it were the case

that y | q then by 7.5.3(4) we would have a contradiction y = 1 by 7.5.8(2).
We have just proved:

∀y(y > 1 ∧ y ≤ x→ y - q) (2)

Since q 6= 1 by 7.5.9(8) there is a prime p s.t. p | q by 7.5.5(4). By (2) we
have p = 1, p = 0, or p > x. But p 6= 1 by the definition of primes, p 6= 0 by
7.5.5(2), and so it must be the case that p > x.

218



8. Recursive Bootstrapping of PA

8.1 Exponentiation Function

8.1.1 Binary successors. We introduce two binary successor functions by
explicit definitions:

P̀Ax x0 = 2·x (1)

P̀Ax x1 = 2·x+ 1 . (2)

Binary successors are interesting because of binary discrimination:

P̀A ∃y(x = y0 ∨ x = y1) (3)

which directly follows from x = x÷ 2·2 + x mod 2 with x mod 2 < 2 holding
by 7.4.8(1).

8.1.2 The plan for the introduction of 2x into PA. We wish to in-
troduce into PA the exponentiation function 2x satisfying the natural recur-
rences:

P̀A 20 = 1 (1)

P̀A 2x
′

= 2·2x . (2)

We will not be able to express the computation of 2x by these recurrences
but we will succeed in encoding the computation of 2x by the following ex-
ponentially faster recurrences by recursion on binary notation:

20 = 1

2x0 = (2x)2 if x > 0

2x1 = 2·(2x)2 .

We will do this by introducing in Par. 8.1.3 the predicate Pow2(p) of being
a power of two satisfying

P̀A Pow2(p)↔ ∃x 2x = p



and with its help to define in Par. 8.1.10 the log function as the inverse of 2x

by encoding its computation from the following recurrences:

Pow2(p) ∧ p = 1→ log(p) = 0

Pow2(p) ∧ p = q2 ∧ p > 1→ log(p) = log(q)0

Pow2(p) ∧ p = 2·q2 → log(p) = log(q)1 .

That the recurrences cover all cases for p and that they are exclusive will be
proved in Par. 8.1.5.

Only then we will be able to introduce in Par. 8.1.11 the exponentiation
function satisfying

P̀A 2x = p↔ Pow2(p) ∧ log(p) = x .

8.1.3 The predicate of being a power of two. The predicate Pow2(p)
of p being a power of two, i.e. such that ∃x 2x = p, can be presented in a
clausal form with binary recurrences:

Pow2(x0)← x > 0 ∧ Pow2(x)
Pow2(x1)← x = 1 .

We claim that we can introduce into PA the predicate Pow2 to satisfy the
clauses properties by the following explicit definition:

P̀Ax Pow2(p)↔ p 6= 0 ∧ ∀x(x | p→ x = 1 ∨ 2 | x) . (1)

Since Pow2(p)→ p > 0 holds directly from the definition, the above clauses
are equivalent to the following properties:

P̀A Pow2(x0)↔ Pow2(x) (2)

P̀A Pow2(x1)↔ x = 0 . (3)

(2): In the direction (→) assume Pow2(x0). We have x0 > 0 and thus x > 0
from the definition. Now take any z s.t. z | x. Since then z | 2·x we get
z = 1 or 2 | z from the assumption Pow2(x0) and so Pow2(x) holds. In the
direction (←) assume Pow2(x). Since x > 0, we have 2·x > 0 and we take
any z s.t. z | 2·x. We wish to prove z = 1 or 2 | z. We consider two cases
according to 8.1.1(3). If z = 2·z1 for some z1 then 2 | z. If z = 2·z1 + 1 for
some z1 then, since 2·x = a·z for some a, we have 2·x = 2·a·z1 + a and we
get a = a1·2 for some a1 by 7.5.2(3). Thus x = a1·2·z1 + a1 = a1·(2·z1 + 1)
and so z | x. We now get z = 1 or 2 | x from the assumption Pow2(x).

(3): In the direction (→) assume Pow2(2·x+1). Since 2·x+1 | 2·x+1, we
get from the assumption 2·x+ 1 = 1 or 2 | 2·x+ 1. The latter cannot be the
case by 7.5.2(1) and so 2·x+ 1 = 1 must hold. Hence x = 0. In the direction
(←) it suffice to prove Pow2(1). We have 1 6= 0 and we take any z s.t. z | 1.
Since 1 | z by 7.5.1(5), we obtain z = 1 by antisymmetry.

220



We have the following property of powers of two:

P̀A Pow2(p)→ (Pow2(q)↔ Pow2(p·q)) (4)

which is proved by complete induction on p. Assume Pow2(p) and consider
the two cases implied by 8.1.11(3). If p = 2·u + 1 for some u then p = 1 by
(3) and the consequent of the property holds trivially. If p = 2·u for some u
then Pow2(u) by (2) and we have 0 < u < p. Hence

Pow2(q) IH⇔ Pow2(u·q) (2)⇔ Pow2(2·u·q) .

8.1.4 Order of powers. We will need the following ordering properties of
powers of two:

P̀A Pow2(p) ∧ Pow2(q)→ (p < q ↔ ∃u q = 2·u·p) (1)

P̀A Pow2(p) ∧ Pow2(q)→ (p ≤ q ↔ ∃u q = u·p) (2)

P̀A Pow2(p) ∧ Pow2(q)→ ((p < q ↔ 2·p ≤ q) ∧ (p < 2·q ↔ p ≤ q)) . (3)

(1): In the direction (→) we prove

P̀A ∀p (Pow2(p) ∧ Pow2(q) ∧ p < q → ∃u q = 2·u·p)

by complete induction on q. We take any p, assume Pow2(p), Pow2(q), p < q,
and consider two cases for q implied by 8.1.11(3). The case q = 2·q1 + 1 for
some q1 leads to a contradiction because then p < q = 1 by 8.1.3(3). If
q = 2·q1 for some q1 then we consider two similar cases for p. If p = 2·p1 + 1
for some p1 then p = 1 by 8.1.3(3) and it suffices to take u := q1. If p = 2·p1

for some p1 then we have Pow2(p1) and Pow2(q1) by 8.1.3(2) and, since
0 < p1 < q1 < q, we have q1 = 2·u·p1 for some u by IH. It now suffices to
take the same u because q = 2·q1 = 2·2·u·p1 = 2·u·p.

In the direction (←) assume Pow2(p), Pow2(q), and q = 2·u·p. Since q 6= 0
and p | q, we get p ≤ q by 7.5.2(2) and it cannot be the case p = q because
then p = q = a = 0.

(2): In the direction (→) assume Pow2(p), Pow2(q), p ≤ q, and consider
two cases. If p < q then the conclusion of the property holds by (1). If
p = q then it suffices to take u := 1. In the direction (←) assume Pow2(p),
Pow2(q), and q = u·p. We now consider two cases for u implied by 8.1.11(3).
If u = 2·u1 for some u1 then p < q by (1). If u = 2·u1 + 1 for some u1 then,
since Pow2(p·u), we have Pow2(u) by (4). Hence u = 1 by 8.1.3(3) and we
have p = q.

(3): Assume Pow2(p) and Pow2(q). For the first conjunct we have p < q
iff, by (1), q = 2·u·p for some u, since Pow2(2·p) by 8.1.3(2), iff, by (2)
2·p ≤ q.

For the second conjunct we have p ≤ q iff not q < p iff, by the first
conjunct, not 2·q ≤ p iff p < 2·q.

221



We will also often use the following easy to prove property of powers of
two:

P̀A Pow2(u) ∧ Pow2(p) ∧ u ≥ p ∧ u > s ∧ p > t→
(∃b(a·u+ s = b·p+ t)↔ ∃c(s = c·p+ t)) (4)

which is proved by assuming its antecedent and noting that u = d·p for some
d by (2). In the direction (→) assume also a·u+ s = b·p+ t for some b and,
since p > 0, we get

b·p+ t = a·u+ s = a·d·p+ s÷ p·p+ s mod p = (a·d+ s÷ p)·p+ s mod p .

Because t < p we have t = s mod p by 7.4.8(2) and, since then

s = s÷ p·p+ s mod p = s÷ p·p+ t ,

it suffices to take c := s÷ p.
In the direction (←) assume also s = c·p+ t for some c and, since

a·u+ s = a·d·p+ c·p+ t = (a·d+ c)·p+ t ,

it suffices to take b := a·d+ c.

8.1.5 Fast computation of Pow2. The clausal form for the predicate
Pow2 given in Par. 8.1.3 has a ‘slow’ recursion. We need the recursion expo-
nentially speeded up to that for the log function discussed in Par. 8.1.2. The
predicate Pow2 with fast recursion has the following clausal form:

Pow2(p)← p = 1
Pow2(p)← p > 1 ∧ p = [

√
p]2 ∧ Pow2([

√
p])

Pow2(p)← p > 1 ∧ p = 2·[
√
p÷ 2]2 ∧ Pow2([

√
p÷ 2]) .

We wish to prove that the three clauses cover all cases and that they are
mutually exclusive. In other words we wish to prove that for every power of
two p we have either p = 1 or else there is a unique power of two q < p such
that either p = q2 or p = 2·q2 and that at most one of the cases applies.

The existence part of the discrimination is expressed by

P̀A Pow2(p)→ p = 1 ∨ p > 1 ∧ ∃q(q < p ∧ Pow2(q) ∧ (p = q2 ∨ p = 2·q2))
(1)

which is proved by complete induction on p. Thus assume Pow2(p) and con-
sider two cases for p implied by 8.1.11(3). If p = 2·p1 + 1 for some p1 we have
p = 1 by 8.1.3(3). If p = 2·p1 for some p1 then we have Pow2(p1) by 8.1.3(2).
Note that p > p1 ≥ 1. Since p1 < p, one of the three cases obtains by IH. If
p1 = 1 then we have p = 2·p1 = 2·1 = 2·12. It now suffices to take q := 1
because we also have 1 < p and Pow2(1) by 8.1.3(3).

222



If p1 > 0, p1 = q2
1 , q1 < p1, and Pow2(q1) for some q1 then it suffices to

take q := q1 because we have q = q1 < p1 < p, Pow2(q), and p = 2·p1 =
2·q2

1 = 2·q2.
If p1 > 0, p1 = 2·q2

1 , q1 < p1, and Pow2(q1) for some q1 then it suffices
to take q := 2·q1 because we have Pow2(q) by 8.1.3(2), q = 2·q1 < 2·p1 = p,
and p = 2·p1 = 2·2·q2

1 = (2·q1)2 = q2.
The uniqueness part of the discrimination follows from

P̀A Pow2(p) ∧ (p = q2
1 ∨ p = 2·q2

1) ∧ (p = q2
2 ∨ p = 2·q2

2)→ q1 = q2 . (2)

This property follows from two auxiliary properties

P̀A x2 = y2 → x = y (3)

P̀A x2 = 2·y2 → x = 0 ∧ y = 0 (4)

because when we assume the antecedent of (2) there are four cases to consider.
For the cases p = q2

1 and p = q2
2 or p = 2·q2

1 and p = 2·q2
2 the conclusion

q1 = q2 follows by (3).
The cases p = q2

1 and p = 2·q2
2 or p = 2·q2

1 and p = q2
2 cannot happen

because we obtain p = q1 = q2 = 0 by (4) which contradicts the assumption
Pow2(p).

We now prove the two auxiliary properties: (3): This follows by trichotomy
from

x < y → x2 < y2

proved by assuming x < y and considering two cases. If x = 0 then, 02 =
0·y < y·y = y2. If x > 0 then, since also y > 0, we get

x2 = x·x < y·x < y·y = y2 .

(4): This is proved as ∀y(4) by complete induction on x. Thus assume
x2 = 2·y and consider two cases for x implied by 8.1.11(3). If x = 2·x1 + 1
for some x1 then we obtain a contradiction from x2 = 4·x2

1 + 4·x1 + 1 = 2·y2

because the left-hand side is odd.
If x = 2·x1 some x1 then we get 2·x2

1 = y2 and we consider two cases
for y implied by 8.1.11(3). The case y = 2·y1 + 1 leads to a contradiction
similarly as above and when y = 2·y1 for some y1 we obtain x2

1 = 2·y2
1 . If it

were the case that x1 > 0 then we would have x1 < x and we would obtain a
contradiction x1 = y1 = 0 by IH. Thus it must be the case that x1 = 0 and
then from 0 = 2·y2

1 we get y1 = 0. Hence x = y = 0.
We will also need the following property:

P̀A Pow2(p) ∧ (p > 1 ∧ p = q2 ∨ p = 2·q2)→ p > 1 ∧ q < p ∧ Pow2(q) . (5)

whis is proved by assuming the antecedent. In either case we have p > 1 and
from (1) we get

q1 < p ∧ Pow2(q1) ∧ (p = q2
1 ∨ p = 2·q2

1)

for some q1. But then q = q1 by (2).

223



8.1.6 Sequences of powers. We wish to encode the sequence of powers
needed in the computation of Pow2(p) by the clauses given in Par. 8.1.5. If
p = 2x then the sequence is given by 2xk , 2xk−1 , . . . , 2x0 for some k ≥ 0 such
that xk = x, xi = xi+1 ÷ 2 for all i < k, and x0 = 0 where x1 > 0 if k > 0.
We encode the sequence of powers by its sum s =

∑

i≤k 2xi . The reader can
convince himself that the following explicitly defined predicate:

P̀Ax Ps(s)↔ ∀p∀a∀t(Pow2(p) ∧ s = a·2·p+ p+ t ∧ p > t→ p = 1 ∨
∃q∃t1(t = q + t1 ∧ q > t1 ∧ (p>1 ∧ p = q2 ∨ p = 2·q2)))

(1)

is true in the standard interpretation of PA whenever s is a sequence of powers
determined as above. The main idea is that when p and q are two adjacent
powers in s then either p = q2 or p = 2·q2 holds. We will need the following
properties of sequences of powers:

P̀A Ps(0) (2)

P̀A Ps(1) (3)

P̀A Pow2(u) ∧ u > 1 ∧ u > s ∧ P̀A Ps(u+ s)→ Ps(u2 + u+ s) (4)

P̀A Pow2(u) ∧ u > s ∧ P̀A Ps(u+ s)→ Ps(2·u2 + u+ s) (5)

P̀A Pow2(u) ∧ u > s ∧ Ps(u+ s)→ Ps(u) . (6)

(2): This holds trivially because 0 = a·2·p + p + t for no p such that
Pow2(p).

(3): Take any p, a, t such that Pow2(p), 1 = a·2·p+ p+ t and p > t holds.
We then clearly have p = 1 and a = t = 0.

(4): Assume the antecedent of the property and note that Pow2(u2) by
8.1.3(4) and Pow2(2·u2) by 8.1.3(2). For the proof of Ps(u2 +u+ s) take any
p, a, t such that Pow2(p), u2 + u + s = a·2·p + p + t, p > t, and note that
Pow2(2·p) by 8.1.3(2). We consider two cases by dichotomy. If u2 ≥ 2·p then,
since u2 > u, we have u2 ≥ 2·u > u+ s by 8.1.4(3). We also have 2·p > p+ t
and so u + s = a1·2·p + p + t for some a1 by 8.1.4(4). We now obtain from
Ps(u+ s)

p = 1 ∨ ∃q∃t1(t = q + t1 ∧ q > t1 ∧ (p>1 ∧ p = q2 ∨ p = 2·q2))

which is the consequent of Ps(u2 + u+ s).
If u2 < 2·p then u2 ≤ p by 8.1.4(3). If it were the case that a > 0 then we

would obtain contradiction

u2 + u+ s < 2·u2 ≤ 2·p < a·2·p+ p+ t .

We thus have u2 + u+ s = p+ t and if it were the case that u2 < p then we
would obtain contradiction

u2 + u+ s < 2·u2
8.1.4(3)

≤ p ≤ p+ t .

224



This means that p = u2 and so u + s = t, p > 1. Thus it suffices to take
q := u and t1 := s to satisfy the consequent of Ps(u2 + u+ s):

∃q∃t1(t = q + t1 ∧ q > t1 ∧ (p>1 ∧ p = q2 ∨ p = 2·q2)) .

Property (5) is proved similarly.
(6): Assume Pow2(u), u > s, Ps(u + s), and for the proof of Ps(s) take

any p, a, t such that Pow2(p), s = a·2·p + p + t, p > t, and note that
Pow2(2·p) by 8.1.3(2). We consider two cases by dichotomy. If u ≥ 2·p then
u+ s = a1·2·p+ p+ t for some a1 by 8.1.4(4). The consequent of Ps(s) now
follows from that of Ps(u + s). The case u < 2·p cannot happen because it
would lead to contradiction by

s < u
8.1.4(3)

≤ p ≤ a·2·p+ p+ t .

8.1.7 The function ps(p) yielding the power sequence for p. The func-
tion ps(p) yielding the sequence of powers starting from p = 2k, i.e. such that
ps(p) =

∑

i≤k 2xi (see Par. 8.1.6), is introduced into PA by minimalization:

P̀Ax ps(p) = µs[Pow2(p)→ p ≤ s ∧ Ps(s)]

whose existence condition follows from the stronger property

P̀A Pow2(p)→ ∃s(Ps(p+ s) ∧ p > s) (1)

proved by complete induction on p where we assume Pow2(p) and continue
by the case analysis implied by 8.1.5(1). If p = 1 then it suffices to take s := 0
by 8.1.6(3). If p > 1 then there is a q s.t. q < p, Pow2(q), and either p = q2

or p = 2·q2. In either case we have a t s.t. Ps(q+ t) and q > t by IH. If q > 1
then we have 2·q ≤ q2 ≤ p and if q = 1 then p = 2 and we have 2·q = p. In
either case it suffices to take s := q + t < 2·q ≤ p because we have Ps(p+ s)
by 8.1.6(4) when p = q2 and by 8.1.6(5) when p = 2·q2.

The defining axiom for ps implies:

P̀A Pow2(p)→ p ≤ ps(p) ∧ Ps(ps(p)) (2)

P̀A p ≤ s ∧ Ps(s)→ ps(p) ≤ s . (3)

The basic properties of the power sequence function are:

P̀A Pow2(p)→ ps(p) < 2·p (4)

P̀A ps(1) = 1 (5)

P̀A ∀s(Pow2(p) ∧ Ps(p+ s) ∧ p > s→ ps(p) = p+ s) (6)

P̀A Pow2(p) ∧ (p > 1 ∧ p = q2 ∨ p = 2·q2)→ ps(p) = p+ ps(q) . (7)

(4): Assume Pow2(p) and obtain an s s.t. Ps(p + s) and p > s by (1).
Thus

225



ps(p)
(3)

≤ p+ s < 2·p .
(5): We have Pow2(1) by 8.1.3(3) and so 1 ≤ ps(1) by (2). We have

ps(1) < 2 by (4) and so ps(1) = 1.
(6): By complete induction on p. Take any s, assume Pow2(p), Ps(p+ s),

p > s, and consider two cases. If p = 1 then we have s = 0 and ps(1)
(5)
= 1+0.

If p > 1 then for s := p+ s = 0·2·p+ p+ s we obtain from Ps(p+ s)

s = q + t1 ∧ q > t1 ∧ (p > 1 ∧ p = q2 ∨ p = 2·q2)

for some q and t1. We have Pow2(q) and q < p by 8.1.5(5), Ps(s) by 8.1.6(6),
and so ps(q) = q + t1 = s by IH.

We also have p ≤ ps(p) and Ps(ps(p)) by (2) and ps(p) < 2·p by (4).
Hence ps(p) = p + t for some t s.t. p > t. For s := p + t = 0·2·p + p + t we
obtain from Ps(p+ t)

t = q1 + t2 ∧ q1 > t2 ∧ (p > 1 ∧ p = q2
1 ∨ p = 2·q2

1)

for some q1 and t2. We have q = q1 by 8.1.5(2) and, since Ps(t) holds by
8.1.6(6), we get ps(q) = q+t2 = t by IH. Thus ps(p) = p+t = p+ps(q) = p+s.

(7): Assume the antecedent of the property. We have Pow2(q), q < p, and
p > 1 by 8.1.5(5). From (1) there is an s s.t. Ps(p + s) and p > s. Hence
ps(p) = p+ s by (6). For s := p+ s = 0·2·p+ p+ s we obtain from Ps(p+ s)

s = q1 + t1 ∧ q1 > t1 ∧ (p > 1 ∧ p = q2
1 ∨ p = 2·q2

1)

for some q1 and t1. We get q = q1 by 8.1.5(2), and, since Ps(s) holds by
8.1.6(6), we get ps(q) = q + t1 = s by (6).

8.1.8 Course of values sequences for the log function. We will encode
the computation of the log function such that for p = 2x we have log(p) = x
by the fast recurrences discussed in Par. 8.1.2. To that end we take the power
sequence ps(p) =

∑

i≤k 2xi , use the fact that each xi < 2xi , that there are
at least xi bits in ps(p) between the bit postions 2xi+1 and 2xi , and encode
the course of values sequence xk, xk−1, . . . , x0 for the successive values of
log(2xi) at the corresponding bits of the power sequence. We will define in
Par. 8.1.9 a course of values function log(p) to yield the course of values
sequence such that log(p) =

∑

i≤k xi·2xi .
We recall that two neighboring powers p and q in the power sequence

ps(u) are such that either p = q2 or p = 2·q2. The relation between the
values x and y stored in the course of values sequence log(u) at the powers p
and q respectively, i.e. when log(u) = a·p2 + x·p+ y·q + u1 for x < p, y < q,
and q > u1, is expressed by Nbs(log(u), p, q) where the predicate is explicitly
introduced into PA as follows:

P̀Ax Nbs(s, p, q)↔ ∃b∃x∃y∃s1(s = b·p2 + x·p+ y·q + s1 ∧
x < p ∧ y < q ∧ q > s1 ∧ (p > 1 ∧ p = q2 ∧ x = y0 ∨ p = 2·q2 ∧ x = y1)) .

(1)

226



The reader can convince himself that the following explicitly defined predi-
cate:

P̀Ax Cs(u, s)↔ ∀p∀a∀t(Pow2(p) ∧ ps(u) = a·2·p+ p+ t ∧ p > t→
p = 1 ∧ 2 | s ∨ ∃qNbs(s, p, q)) (2)

is true in the standard interpretation of PA whenever s is the course of values
sequence for u, i.e. log(u) = s. We will need the following properties of Cs:

P̀A Cs(1, 0) (3)

P̀A Pow2(u) ∧ u > 1 ∧ Cs(u, z·u+ s) ∧ z < u ∧ u > s→ Cs(u2, z0·u2 + z·u+ s)
(4)

P̀A Pow2(u) ∧ Cs(u, z·u+ s) ∧ z < u ∧ u > s→ Cs(2·u2, z1·2·u2 + z·u+ s)
(5)

P̀A Pow2(u) ∧ Cs(u, z·u+ s) ∧ u > s ∧ (u > 1 ∧ u = u2
1 ∨ u = 2·u2

1)→ Cs(u1, s) .
(6)

(3): Take any p, a, t such that Pow2(p), ps(1) = a·2·p + p + t and p > t
holds. We have ps(1) = 1 by 8.1.7(5) and thus we clearly must have p = 1
and a = t = 0. Since 2 | 0, we get Cs(1, 0).

(4): Assume the antecedent of the property and note that Pow2(2·u) by
8.1.3(2) and Pow2(u2) by 8.1.3(4). Since u < u2, we also have

u < 2·u
8.1.4(3)

≤ u2 . (7)

For the proof of Cs(u2, z0·u2 +z·u+s) we take any p, a, t such that Pow2(p),
ps(u2) = a·2·p+ p+ t, p > t. We thus have

u2 + ps(u)
8.1.7(7)

= ps(u2) = a·2·p+ p+ t . (8)

We also have Pow2(2·p) by 8.1.3(2) and

u2 = u·u ≥ (z + 1)·u = z·u+ z > z·u+ s . (9)

We now consider two cases by dichotomy. If u2 > p then, since u2 ≥ 2·p by
8.1.4(3), we have u2 ≥ 2·u > ps(u) by 8.1.7(4). Since also 2·p > p + t, we
obtain

ps(u) = a1·2·p+ p+ t (10)

for some a1 by 8.1.4(4). From Cs(u, z·u + s) we now get two cases. If p = 1
and 2 | z·u + s then, since 1 < u < u2, we have u2 = 2·k·u for some k by
8.1.4(1) and so 2 | z0·u2 + z·u+ s. This proves Cs(u2, z0·u2 + z·u+ s).

If Nbs(z·u+ s, p, q) for some q then we have

227



z·u+ s = b·p2 + x·p+ y·q + s1 ∧ x < p ∧ y < q ∧ q > s1 ∧
(p > 1 ∧ p = q2 ∧ x = y0 ∨ p = 2·q2 ∧ x = y1)) .

for some b, x, y, and s1. We then get

p2 = p·p ≥ (x+ 1)·p = x·p+ p ≥ x·p+ q2 ≥ x·p+ (y + 1)·q =
x·p+ y·q + q > x·p+ y·q + s1 . (11)

We have 2·u
8.1.7(4)
> ps(u)

(10)

≥ p and so u ≥ p by 8.1.4(3). From u2 ≥ p2, (9),
and (11) we obtain

z0·u2 + z·u+ s = b1·p2 + x·p+ y·q + s1

for some b1 by 8.1.4(4). But then Nbs(z0·u2 + z·u + s, p, q) which proves
Cs(u2, z0·u2 + z·u+ s).

The other dichotomy case is u2 ≤ p. If a > 0 then we contradict (8) by

ps(u2)
8.1.7(4)
< 2·u2 ≤ 2·p ≤ a·2·p+ p+ t .

We thus have a = 0 and by (8) we get u2 + ps(u) = p+ t. If it were the case
that u2 < p then we would contradict (8) again:

u2 + ps(u) = ps(u2)
8.1.7(4)
< 2·u2

8.1.4(3)

≤ p ≤ p+ t .

Thus u2 = p and for q := u, b := 0, x := z0, y := z, and s1 := s we have
Nbs(z0·u2 + z·u + s, p, q) because then y = z < u = q, q = u > s = s1, and

x = z0 < 2·u
(7)

≤ u2 = p.
(5): This is proved similarly as (4).
(6): Assume the antecedent of the property. We have Pow2(u1) and

Pow2(2·u1) by 8.1.3(2) and 8.1.3(4). If u = u2
1 and u1 > 1 then, since u > u1,

we get u ≥ 2·u1 by 8.1.4(3). If u = 2·u2
1 then, since u2

1 ≥ u1, we get u ≥ 2·u1

again. For the proof of Cs(u1, s) we take any p, a, t such that Pow2(p),
ps(u1) = a·2·p + p + t, and p > t. Since Pow2(2·p) by 8.1.3(2), 2·p > p + t,
and

u ≥ 2·u1

8.1.7(4)
> ps(u1) ≥ p , (12)

i.e. u ≥ 2·p by 8.1.4(3), we obtain

ps(u)
8.1.7(7)

= u+ ps(u1) = a1·2·p+ p+ t

for some a1 by 8.1.4(4). From Cs(u, z·u + s) we now get two cases. If p = 1
and 2 | z·u + s then from u ≥ 2·u1 we obtain 2 | z·u because u = k·2·u1 for
some k by 8.1.4(2). Thus 2 | s by 7.5.2(3) which proves Cs(u1, s).

228



If Nbs(z·u+ s, p, q) for some q then we have

z·u+ s = b·p2 + x·p+ y·q + s1 ∧ x < p ∧ y < q ∧ q > s1 ∧
(p > 1 ∧ p = q2 ∧ x = y0 ∨ p = 2·q2 ∧ x = y1)) .

for some b, x, y, and s1. We have Pow2(p2) by 8.1.3(4) and p2 > x·p+y·q+s1

similarly as in (11). We have 2·u1 > p by (12) and so 2·u1 ≥ 2·p, i.e. u1 ≥ p,
by 8.1.4(3). Hence u ≥ u2

1 ≥ p2 and, since u > s, we obtain s = b1·p2 + x·p+
y·q+s1 for some b1 by 8.1.4(4). But then Nbs(s, p, q) which proves Cs(u1, s).

8.1.9 The course of values function log(p) for log(p). The function
log(p) yielding the course of values sequence from p = 2k for log, i.e. such
that log(p) =

∑

i≤k xi·2xi (see Par. 8.1.8), is introduced into PA by minimal-
ization:

P̀Ax log(p) = µs[Pow2(p)→ Cs(p, s)] (1)

whose existence condition follows from the stronger property

P̀A Pow2(p)→ ∃s(Cs(p, s) ∧ p2 > s) (2)

proved by complete induction on p where we assume Pow2(p) and continue
by the case analysis of p implied by 8.1.5(1). If p = 1 then it suffices to take
s := 0 by 8.1.8(3). If p > 1 then there is a q s.t. q < p, Pow2(q), and either
p = q2 or p = 2·q2. We obtain a t < q2 such that Cs(q, t) by IH. We have
t = z·q + s1 for z = t÷ q and s1 = t mod q < q. Also z < q because if z ≥ q
we would get a contradiction q2 > t = z·q + s1 ≥ q2. But then

z1 = 2·z + 1 = z + z + 1 < q + z + 1 ≤ q + q = 2·q
8.1.4(3)

≤ p . (3)

Now, if p = q2 then we have Cs(p, s) for s = z0·p + t by 8.1.8(4), and if
p = 2·q2 then we have Cs(p, s) for s = z1·p+ t by 8.1.8(5). In either case we
have

s ≤ z1·p+ t < z1·p+ q2 ≤ z1·p+ p = (z1 + 1)·p
(3)

≤ p2 .

The defining axiom for log implies:

P̀A Pow2(p)→ Cs(p, log(p)) (4)

P̀A Cs(p, s)→ log(p) ≤ s . (5)

We will need the following basic properties of the function log:

P̀A Pow2(p)→ log(p) < p2 (6)

P̀A log(1) = 0 (7)

P̀A ∀z∀s(Pow2(p) ∧ Cs(p, z·p+ s) ∧ z < p ∧ p > s→ log(p) = z·p+ s) (8)

P̀A Pow2(p) ∧ p > 1 ∧ p = q2 → log(p) = (log(q)÷ q)0·p+ log(q) (9)

P̀A Pow2(p) ∧ p = 2·q2 → log(p) = (log(q)÷ q)1·p+ log(q) . (10)

229



(6): Assume Pow2(p). We have Cs(p, s) for some s < p2 by (2) and so
log(p) ≤ s < p2 by (5).

(7): We have Cs(1, 0) by 8.1.8(3) and so log(1) ≤ 0 by (5).
(8): By complete induction on p. Take any z, s, assume Pow2(p), Cs(p, z·p+

s), z < p, and p > s. We have

ps(p) = p+ t = 0·2·p+ p+ t (11)

for some t < p by 8.1.7(2) and 8.1.7(4). From Cs(p, z·p+ s) we then obtain

p = 1 ∧ 2 | z·p+ s ∨ ∃qNbs(z·p+ s, p, q) .

If p = 1 then, since z = s = 0, we have

log(p) = log(1)
(7)
= 0 = z·p+ s .

If Nbs(z·p+ s, p, q) for some q then we have

z·p+ s = b·p2 + x·p+ y·q + s1 ∧ x < p ∧ y < q ∧ q > s1 ∧
(p > 1 ∧ p = q2 ∧ x = y0 ∨ p = 2·q2 ∧ x = y1))

for some b, x, y, and s1. We obtain p > 1, q < p, Pow2(q) by 8.1.5(5). Because
z < p we have b = 0 and, since y·q + s1 < y·q + q = (y + 1)·q ≤ q2 ≤ p, we
obtain z = x, and s = y·q + s1 by 7.4.8(1)(2). We have Cs(q, s) by 8.1.8(6)
and so log(q) = y·q + s1 = s by IH.

We have Cs(p, log(p)) by (4) and from (11), since p > 1, we obtain
Nbs(log(p), p, q1) for some q1 for which we have q = q1 by 8.1.5(2). Thus

log(p) = b1·p2 + x1·p+ y1·q + s2 ∧ x1 < p ∧ y1 < q ∧ q > s2 ∧
(p > 1 ∧ p = q2 ∧ x1 = y10 ∨ p = 2·q2 ∧ x1 = y11))

for some b1, x1, y1, and s2. We have b1 = 0 by (6) and, since y1·q + s2 < p,
we obtain Cs(q, y1·q + s2) by 8.1.8(6) and log(q) = y1·q + s2 by IH. Since
log(q) = y·q + s1, we obtain y = y1 and s1 = s2 by 7.4.8(1)(2). Because of
8.1.5(4) we then have x = x1 and so

log(p) = x1·p+ y1·q + s2 = x·p+ log(q) = z·p+ y·q + s1 = z·p+ s .

(9): Assume Pow2(p), p > 1, and p = q2. We have Pow2(q) and p > q by
8.1.5(5), Pow2(2·q) by 8.1.3(2), and also

ps(p)
8.1.7(7)

= p+ ps(q) = 0·2·p+ p+ ps(q)

where

ps(q)
8.1.7(4)
< 2·q

8.1.4(3)

≤ p .

230



From (4) we thus obtain Nbs(log(p), p, q1) for some q1 for which we have
q = q1 by 8.1.5(2). We thus have

log(p) = b·p2 + x·p+ y·q + s ∧ x < p ∧ y < q ∧ q > s ∧ x = y0

for some b, x, y, and s, since p 6= 2·q2 by 8.1.5(4). It must be the case that
b = 0 by (6) and, since p > y·q + s, we obtain Cs(q, y·q + s) from (4) by
8.1.8(6). Hence, log(q) = y·q + s by (8), from which we get y = log(q) ÷ q
and so

log(p) = x·p+ log(q) = y0·p+ log(q) = (log(q)÷ q)0·p+ log(q) .

(10): This is proved similarly as (9).

8.1.10 Introduction of log into PA. We explicitly introduce into PA the
logarithm function log by

P̀Ax log(p) = log(p)÷ p . (1)

The function satisfies the following:

P̀A log(1) = 0 (2)

P̀A Pow2(p) ∧ p = q2 ∧ p > 1→ log(p) = log(q)0 (3)

P̀A Pow2(p) ∧ p = 2·q2 → log(p) = log(q)1 (4)

P̀A Pow2(p)→ log(2·p) = log(p) + 1 (5)

P̀A Pow2(p) ∧ Pow2(q) ∧ p < q → log(p) < log(q) . (6)

(2): We have log(1) = log(1)÷ 1
8.1.9(7)

= 0÷ 1 = 0.
(3): Assume Pow2(p), p = q2, and p > 1. We have Pow2(q) by 8.1.5(5)

and by 8.1.9(9) we get log(p) = (log(q)÷ q)0·p+log(q). Since log(q) < q2 = p
by 8.1.9(6) we have

log(p) = log(p)÷ p 7.4.8(2)
= log(q)0 .

(4): Assume Pow2(p) and p = 2·q2. We have Pow2(q) by 8.1.5(5) and by
8.1.9(10) we get log(p) = (log(q)÷ q)1·p + log(q). Since log(q) < q2 < p by
8.1.9(6) we have

log(p) = log(p)÷ p 7.4.8(2)
= log(q)1 .

(5): By complete induction on p. Assume Pow2(p) and obtain Pow2(2·p)
by 8.1.3(2). We now consider three cases implied by 8.1.5(1). If p = 1 then
we have

log(2·p) = log(2·1) = log(2·12)
(4)
= 2· log(1) + 1

(2)
= log(1) + 1 = log(p) + 1 .

231



If p > 1 and p = q2 for some q such that Pow2(q) then we have

log(2·p) = log(2·q2)
(4)
= 2· log(q) + 1

(3)
= log(q2) + 1 = log(p) + 1 .

If p = 2·q2 for some q < p such that Pow2(q) then p > 1 and we have

log(2·p) = log(2·(2·q2)) = log((2·q)2)
(3)
= 2· log(2·q) IH= 2·(log(q) + 1) =

(2· log(q) + 1) + 1
(4)
= log(2·q2) + 1 = log(p) + 1 .

(6): By complete induction on q. Assume Pow2(p), Pow2(q), and p < q.
We have q = 2·u·p for some u by 8.1.4(1) and, since Pow2(u·p) by 8.1.3(2), we
obtain p ≤ u·p < q by 8.1.4(2). Thus either p < u·p and then log(p) < log(u·p)
by IH, or else p = u·p and then log(p) = log(u·p). In either case we have

log(p) ≤ log(u·p) < log(u·p) + 1
(5)
= log(2·u·p) = log(q) .

8.1.11 Introduction of 2x into PA. We are now ready to introduce the
exponentiation function by minimalization:

P̀Ax 2x = µp[Pow2(p) ∧ log(p) = x]

whose existence condition:

P̀A ∃p(Pow2(p) ∧ log(p) = x)

is proved by induction on x. In the base case it suffices to take p := 1 because
of 8.1.3(3) and 8.1.10(2). In the inductive case we obtain a p s.t. Pow2(p) and
log(p) = x by IH. We then get Pow2(2·p) by 8.1.3(2), log(2·p) = log(p) + 1 =
x+ 1 by 8.1.10(5), and so it suffices to take p := 2·p.

The following property asserts that the functions 2x and log are inverse:

P̀A 2x = p↔ Pow2(p) ∧ log(p) = x . (1)

In the direction (→) assume 2x = p and from the first conjunct of the defining
axiom for 2x: Pow2(2x) ∧ log(2x) = x we immediately obtain Pow2(p) and
log(p) = x.

In the direction (←) assume Pow2(p) and log(p) = x and obtain Pow2(2x)
as well as log(2x) = x from the defining axiom for 2x. Consider three cases
by trichotomy. If 2x < p we obtain a contradiction x = log(2x) < log(p) = x
by 8.1.10(6). We similarly derive a contradiction for the case 2x > p. This
means that the third case 2x = p must hold.

We are now ready to prove the two recurrences for the exponentiation
function from Par. 8.1.2. Property 8.1.2(1) follows from (1) by 8.1.3(3) and
8.1.10(2).

Property 8.1.2(2) is proved as follows. From 2x = 2x we get Pow2(2x)
and log(2x) = x by (1). We get log(2·2x) = log(2x) + 1 = x+ 1 by 8.1.10(5)
and, since Pow2(2·2x) by 8.1.3(2), we get 2x+1 = 2·2x by (1).

232



8.1.12 Some properties of 2x. We list some of the properties of the ex-
ponential function:

P̀A 20 = 1 (1)

P̀A 2x+1 = 2·2x (2)

P̀A Pow2(p)↔ ∃x 2x = p (3)

P̀A x < 2x (4)

P̀A x < y → 2x < 2y (5)

P̀A 2x+y = 2x·2y . (6)

Properties (1) and (2) are just the properties 8.1.2(1)(2) proved in
Par. 8.1.11.

(3): Follows directly from 8.1.11(1) because ∃x log(p) = x holds trivially.
(4): By induction on x. In the base case we have 0 < 1 = 20. In the

inductive case we have x < 2x by IH from which we get x+ 1 ≤ 2x < 2x+1.
(5): Assume x < y. By substituting p := 2x in 8.1.11(1) we obtain

Pow2(2x) and log(2x) = x. We get Pow2(2y) and log(2y) = y similarly.
We thus have ¬ log(2y) < log(2x) and we obtain ¬2y < 2x, i.e. 2x ≤ 2y, by
8.1.10(6). If it were the case that 2x = 2y then we would het a contradiction
x = log(2x) = log(2y) = y.

(6): By induction on x. In the base case we have 20+y = 2y = 1·2y = 20·2y.
In the inductive case we have

2x
′+y = 2(x+y)′ = 2·2x+y IH= 2·2x·2y = 2x

′
·2y .

8.2 Primitive Recursion

8.2.1 Primitive recursive functions. The class of primitive recursive
functions can be characterized as the smallest class obtained by explicit def-
initions:

f(~x) = τ [~x] (1)

and by primitive recursion:

f(0, ~y) = g(~y)
f(x′, ~y) = h(x, ~y, f(x, ~y))

where the term τ is formed from the constant 0, variables among the n (n ≥ 0)
variables of ~x, applications of the successor function ρ′, and of applications
of previously introduced functions. In the scheme of primitive recursion the
functions g and h are previously introduced functions, g is n-ary (n ≥ 0) and
h is (n+ 2)-ary.

233



We already know that we can introduce into PA explicitly defined func-
tions. In this section we show that PA is closed under primitive recursion,
i.e. if functions g and h have been introduced into PA then we can introduce
into PA by minimalization a function f to satisfy the above recurrences. The
reader will note that by showing the closure of PA under primitive recursion
will have proved more than that the primitive recursive functions can be in-
troduced into PA. This is because we will be able to introduce into PA the
function f defined by primitive recursion from any two functions g and h
already in PA even if one or both of them will not be primitive recursive.

8.2.2 Bounded indexing function. For the introduction of primitive re-
cursive functions into PA we will need to recover digits of numbers represented
in the notation with the base 2k for for a given k ≥ 1. As is well-known, any
number x can be uniquely written in such a representation as x =

∑

i di·2k·i.
We can recover the i-th digit di of x by a ternary bounded indexing function
di = (x)[k]

i which can be explicitly introduced into PA by:

P̀Ax (s)[k]
i = s÷ 2k·i mod 2k . (1)

We will need the following properties of the bounded indexing function:

P̀A b < 2k ∧ t < 2k·i → (a·2k·i
′
+ b·2k·i + t)[k]

i = b (2)

P̀A i < j ∧ s < 2k·j → (a·2k·j+s)[k]
i = (s)[k]

i . (3)

(2): Assume the antecedent of the property. Since

a·2k·i
′
+ b·2k·i + t

8.1.12(6)
= (a·2k + b)·2k·i + t ,

we have

(a·2k·i
′
+b·2k·i+t)[k]

i = (a·2k·i
′
+b·2k·i+t)÷2k·i mod 2k = (a·2k+b) mod 2k = b .

(3): Assume s < 2k·j and i < j, i.e. j = i + n′ for some n. We have
s = b·2k·i + t for some b < 2k and t < 2k·i. We then obtain

(a·2k·j+s)[k]
i

8.1.12(6)
= ((a·2k·n)·2k·i

′
+ b·2k·i + t)[k]

i

(2)
= b

(2)
=

(0·2k·i
′
+ b·2k·i + t)[k]

i = (s)[k]
i .

8.2.3 Extensions by primitive recursion. Let T be a proper extension of
PA and τ1[~y], τ2[x, ~y, v] terms of LT with free variables among the indicated
ones and where ~y is an n-tuple of variables (n ≥ 0). The extension of the
theory T into S with a new (n + 1)-ary function symbol f and with the
axioms universal closures of

f(0, ~y) = τ1[~y] (1)
f(x′, ~y) = τ2[x, ~y, f(x, ~y)] (2)
Ix(φ[x, ~y, f(x, ~y)]) . (3)

234



is called extension by primitive recursion. The formula φ[x, ~y, z], which is of
LT and with all free variables indicated, will be effectively determined in
Par. 8.2.6 as a graph of the function f . The formula is used in the induction
axiom (3) which is the sole induction axiom of S containing the function
symbol f .

We keep the notation introduced in this paragraph fixed until the end of
the section where we prove in Thm. 8.2.7 that S is an extension by definition
of T .

8.2.4 The outline of extensions. Pursuing our plan of introducing the
function f into the theory S we first extend T to T1 by definitions to contain
the exponentiation function 2x and the bounded indexing function (s)[k]

i if
not already in T .

We plan to extend T1 to T2 by explicitly defining a a predicate Fs such
that when f will be introduced into S we will have

Fs(k, s, x, ~y)↔ ∃k(s mod 2k·x
′

=
∑

i≤x

f(i, ~y)·2k·i ∧ ∀(i ≤ x→ f(i, ~y) < 2k))

in the standard model of S. The third argument s of Fs is a course of values
sequence for the computation of f coded in the base 2k representation.

The function f can be then introduced into S1 by implicit definition which
is equivalent to

S1 ` ∃k∃s(Fs(k, s, x, ~y) ∧ (s)[k]
x = f(x, ~y)) . (1)

8.2.5 Course of values sequences for f . We extend T1 to T2 by an
explicit definition of an (n+ 3)-ary predicate Fs:

T2 ` Fs(k, s, x, ~y)↔ (s)[k]
0 = τ1[~y] ∧ ∀i(i < x→ (s)[k]

i+1 = τ2[i, ~y, (s)[k]
i ]) .

(1)

Clearly, Fs(k, s, x, ~y) holds in the standard model of T2 iff s codes in the 2k-
representation the course of values sequence for f(x, ~y) provided f(i, ~y) < 2k

holds for all i ≤ x.
The following properties of Fs express the fact that course of values se-

quences can be constructed for all arguments x, ~y:

235



T2 ` τ1[~y] < 2k → Fs(k, τ1[~y], 0, ~y) ∧ (τ1[~y])[k]
0 = τ1[~y] (2)

T2 ` Fs(k, s, x, ~y) ∧ s<2k·x
′
∧ a = τ2[x, ~y, (s)[k]

x ]<2k → Fs(k, a·2k·x
′
+s, x′, ~y)

(3)

T2 ` Fs(k, a·2k·x
′
+s, x′, ~y) ∧ s < 2k·x

′
→ Fs(k, s, x, ~y) . (4)

T2 ` ∀s1∀s2∀i(Fs(k1, s1, x, ~y) ∧ Fs(k2, s2, x, ~y) ∧ i ≤ x→ (s1)[k1]
i = (s2)[k2]

i )
(5)

T2 ` ∀k1∀k2(∃sFs(k1, s, x, ~y) ∧ k1≤k2 → ∃s(s<2k2·x′ ∧ Fs(k2, s, x, ~y))) .
(6)

(2): If τ1[~y] < 2k then, since τ1[~y] = 0·2k·1 + τ1[~y]·2k·0 + 0, we have
(τ1[~y])[k]

0 = τ1[~y] by 8.2.2(2) and so Fs(k, τ1[~y], 0, ~y) holds by (1).
(3): Assume the antecedent of the property and set t = a·2k·x′+s. Since,

0 < x′, we have

(t)[k]
0

8.2.2(3)
= (s)[k]

0

Fs(k,s,x,~y)
= τ1[~y] .

For i = x < x′ we have

(t)[k]
i+1

8.2.2(2)
= a = τ2[i, ~y, (s)[k]

i ]
8.2.2(3)

= τ2[i, ~y, (t)[k]
i ]

and for any i < x < x′ we have

(t)[k]
i+1

8.2.2(3)
= (s)[k]

i+1

Fs(k,s,x,~y)
= τ2[i, ~y, (s)[k]

i ]
8.2.2(3)

= τ2[i, ~y, (t)[k]
i ] .

(4): For t = a·2k·x′+s and s < 2k·x
′

assume Fs(k, t, x′, ~y). Since 0 < x′,
we have

(s)[k]
0

8.2.2(3)
= (t)[k]

0

Fs(k,t,x′,~y)
= τ1[~y]

and for any i < x < x′ we have

(s)[k]
i+1

8.2.2(3)
= (t)[k]

i+1

Fs(k,t,x′,~y)
= τ2[i, ~y, (t)[k]

i ]
8.2.2(3)

= τ2[i, ~y, (s)[k]
i ] .

But this means that Fs(k, s, x, ~y) holds.
(5): By induction on x. In the base case take any s1, s2, and i ≤ 0, i.e.

i = 0, s.t. Fs(k1, s1, 0, ~y), and Fs(k2, s2, 0, ~y) holds. We then have

(s1)[k1]
0

Fs(k1,s1,0,~y)
= τ1[~y]

Fs(k2,s2,0,~y)
= (s2)[k2]

0 .

In the inductive case take any s1, s2, and i < x′ s.t. Fs(k1, s1, x
′, ~y), and

Fs(k2, s2, x
′, ~y). We have s1 = a1·2k1·x′ + t1, t1 < 2k1·x′ and s2 = a2·2k2·x′ +

t2, t2 < 2k2·x′ for some a1, a2, t1 and t2. We then get Fs(k1, t1, x, ~y) and
Fs(k2, t2, x, ~y) by (4). We now consider two cases for i. If i ≤ x < x′ then

(s1)[k1]
i

8.2.2(3)
= (t1)[k1]

i
IH= (t2)[k2]

i

8.2.2(3)
= (s2)[k2]

i .

236



If i = x′ then we have

(s1)[k1]
x+1

Fs(k1,s1,x
′,~y)

= τ2[x, ~y, (s1)[k1]
x ] IH= τ2[x, ~y, (s2)[k2]

x ]
Fs(k2,s2,x

′,~y)
= (s2)[k2]

i .

(6): By induction on x. In the base case take any k1, k2 s.t. k1 ≤ k2 and
Fs(k1, s1, 0, ~y) for some s1. We then have

2k2
8.1.12(5)

≥ 2k1 > (s1)[k1]
0 = τ1[~y]

and for s2 = τ1[~y] we obtain Fs(k2, s2, 0, ~y) by (2).
In the inductive case take any k1, k2 s.t. k1 ≤ k2 and Fs(k1, s1, x

′, ~y)
for some s1. We have s1 = a·2k1·x′ + t1 for some a and t1 < 2k1·x′ . Thus
Fs(k1, t1, x, ~y) by (4) and Fs(k2, t, x, ~y) for some t < 2k2·x′ by IH. We have

2k2
8.1.12(5)

≥ 2k1 > (s1)[k1]
x+1

Fs(k1,s1,x
′,~y)

= τ2[x, ~y, (s1)[k1]
x ]

8.2.2(3)
=

τ2[x, ~y, (t1)[k1]
x ]

(5)
= τ2[x, ~y, (t)[k2]

x ] .

We set s := τ2[x, ~y, (t)[k2]
x ]·2k2·x′+ t and obtain Fs(k2, s, x

′, ~y) by (3) together
with:

s = τ2[x, ~y, (t)[k2]
x ]·2k2·x′ + t < τ2[x, ~y, (t)[k2]

x ]·2k2·x′ + 2k2·x′ =

(τ2[x, ~y, (t)[k2]
x ] + 1)·2k2·x′ ≤ 2k2 ·2k2·x′ 8.1.12(6)

= 2k2·x′′ .

8.2.6 The graph φ of the function f . We could now extend T2 to S1 by
the implicit definition of f :

S1 ` ∃k∃s(Fs(k, s, x, ~y) ∧ (s)[k]
x = f(x, ~y)) (1)

but we will instead equivalently extend T in Thm. 8.2.7 with the help of a
formula φ[x, ~y, z] of LT which is a graph of f . Since T2 is an extension by
definitions of T , the formula φ is effectively obtained by translation from the
formula

∃k∃s(Fs(k, s, x, ~y) ∧ (s)[k]
x = z)

of T2 in such a way that we have

T2 ` φ[x, ~y, z]↔ ∃k∃s(Fs(k, s, x, ~y) ∧ (s)[k]
x = z) . (2)

by the Theorem on Extensions by definitions 6.6.2. We will need in the proof
of Thm. 8.2.7 the following properties of the formula:

T ` φ[0, ~y, τ1[~y]] (3)
T ` φ[x, ~y, z]→ φ[x′, ~y, τ2[x, ~y, z]] (4)
T ` ∃zφ[x, ~y, z] (5)
T ` φ[x, ~y, z1] ∧ φ[x, ~y, z2]→ z1 = z2 . (6)

237



In the following proofs we work in T2 and use the equivalence (2) without
explicitly referring to it. Properties (3) through (6) are thus derived in T2 but,
since they all are in the language LT , they are also theorems of T because T2

is conservative over T .
(3): We set k = τ1[~y]. Since τ1[~y] < 2k by 8.1.12(4), we get Fs(k, τ1[~y], 0, ~y)

and (τ1[~y])[k]
0 = τ1[~y] by 8.2.5(2). We thus have φ[0, ~y, τ1[~y]].

(4): We assume φ[x, ~y, z], i.e. Fs(k1, t1, x, ~y) and (t1)[k1]
x = z for some k1

and t1. We set k := max(k1, τ2[x, ~y, z]) and, since k1 ≤ k, we obtain a t < 2k·x
′

s.t. Fs(k, t, x, ~y) by 8.2.5(6). We have z = (t1)[k1]
x = (t)[k]

x by 8.2.5(5) and so

2k
8.1.12(5)

≥ 2τ2[x,~y,z]
8.1.12(4)
> τ2[x, ~y, z] = τ2[x, ~y, (t)[k]

x ] .

Thus by setting s := τ2[x, ~y, (t)[k]
x ]·2k·x′+t, we obtain Fs(k, s, x′, ~y) by 8.2.5(3)

and (s)[k]
x′ = τ2[x, ~y, (t)[k]

x ] = τ2[x, ~y, z] by 8.2.2(2). Hence φ[x′, ~y, τ2[x, ~y, z]].
(5): By induction on x. The base case is implied by (3). In the inductive

case we have φ[x, ~y, z] for some z by IH, we get φ[x′, ~y, τ2[x, ~y, z]] by (4), and
it suffices to set z := τ2[x, ~y, z].

(6): We assume φ[x, ~y, z1] and φ[x, ~y, z2], i.e. Fs(k1, s1, x, ~y), (s1)[k1]
x = z1,

Fs(k2, s2, x, ~y), and (s2)[k2]
x = z2 for some k1, k2, s1, s2. We then obtain

z1 = (s1)[k1]
x

8.2.5(5)
= (s2)[k2]

x = z2 .

8.2.7 Theorem (Extensions by primitive recursion). If T is a proper
extension of PA then an extension of T by primitive recursion is an extension
by definition.

Proof. Let S be an extension of T by primitive recursion as in Par. 8.2.3
and S1 an extension of T by implicit definition with the defining axiom an
universal closure of φ[x, ~y, f(x, ~x)]. We have LS1 = LS and S1 is an extension
by definition of T by Thm. 6.6.3 because T proves the existence 8.2.6(5) and
uniqueness 8.2.6(6) conditions for f . Clearly

S1 ` φ[x, ~y, f(x, ~y)] . (1)

In order to prove the theorem it suffices to prove that the theories S and S1

are equivalent.
We prove first S1 ` S. First of all, S1 proves 8.2.3(1), i.e. S1 ` f(0, ~y) =

τ1[~y], because we have φ[0, ~y, f(0, ~y)] by (1) and φ[0, ~y, τ1[~y]] by 8.2.6(3). Thus
f(0, ~y) = τ1[~y] by 8.2.6(6).

Secondly, S1 proves 8.2.3(2), i.e. S1 ` f(x′, ~y) = τ2[x, ~y, f(x, ~y)], because
we have φ[x, ~y, f(x, ~y)] and φ[x′, ~y, f(x′, ~y)], by (1) and φ[x′, ~y, τ [x, ~y, f(x, ~y)]]
by 8.2.6(4). Hence f(x′, ~y) = τ [x, ~y, f(x, ~y)] by 8.2.6(6).

Finally, since S1 is proper, it also proves the induction axiom 8.2.3(3) of
S: Ixφ[x, ~y, f(x, ~y)].

238



Vice versa, in order to prove S ` S1 it suffices to show S ` φ[x, ~y, f(x, ~y)].
This is done by working in S and by using the induction axiom 8.2.3(3) of S.
In the base case we have φ[0, ~y, τ1[~y]] by 8.2.6(3) and hence φ[0, ~y, f(0, ~y)] by
8.2.3(1). In the inductive case we have φ[x, ~y, f(x, ~y)] by IH, from which we
get φ[x′, ~y, τ2[x, ~y, f(x, ~y)]] by 8.2.6(4), and hence φ[x′, ~y, f(x′, ~y)] by 8.2.3(2).

ut

239



8.3 Suitable Pairing Function

Our main task in this section will be to introduce the suitable pairing function
from Par. 1.3.11 into PA and prove its properties 1.3.7(1) through 1.3.7(3)
as theorems.

8.3.1 Dyadic size function |x|d. We will introduce our suitable pairing
function by arithmetizing the binary trees from Fig. 1.2 in the dyading no-
tation.

Toward that end we introduce into PA the dyadic size function (see
Par. 1.3.4) by minimalization:

P̀Ax |x|d = µn[x+ 1 < 2n+1] (1)

whose existence condition P̀A ∃nx + 1 < n + 1 is proved by taking n := x
and using 8.1.12(4). The defining axiom for the dyadic size function implies:

P̀A x+ 1 < 2|x|d+1 (2)

P̀A n < |x|d → 2n+1 ≤ x+ 1 (3)

and the function satisfies:

P̀A |x|d > 0↔ x > 0 (4)

P̀A |x|d = n↔ 2n ≤ x+ 1 < 2n+1 . (5)

(4): If 0 < |x|d then 21 ≤ x+1 by (3) and so 1 ≤ x. Vice versa, if 0 < x then

we cannot have |x|d = 0 because we would then get 2 ≤ x+ 1
(2)
< 20+1 = 2.

(5): In the direction (→) assume |x|d = n and consider two cases. If n = 0
then x = 0 by (4) and we have 20 = 1 ≤ 0 + 1 < 2 = 20+1. If n > 0 then

2n = 2n
.− 1+1

(3)

≤ x+ 1
(2)
< 2n+1 .

In the direction (→) assume 2n ≤ x + 1 < 2n+1 and consider three cases. If
n < |x|d then we get a contradiction

2n+1
(3)

≤ x+ 1 < 2n+1 .

If n = |x|d there is nothing to prove. If |x|d < n then |x|d + 1 ≤ n and we get
a contradiction:

x+ 1
(2)
< 2|x|d+1

8.1.12(5)

≤ 2n ≤ x+ 1 .

240



8.3.2 Dyadic concatenation function x ? y. We will also need the dyadic
concatenation function x ? y (see Par. 1.3.5) which is explicitly introduced
into PA as follows:

P̀Ax x ? y = x·2|y|d + y (1)

The concatenation function satisfies the following:

P̀A x = 0 ? x ∧ x = x ? 0 (2)

P̀A |x ? y|d = |x|d + |y|d (3)

P̀A (x ? y) ? z = x ?(y ? z) (4)

P̀A n ≤ |x|d → ∃a∃b(x = a ? b ∧ |b|d = n) (5)

P̀A a ? b = c ? d ∧ |b|d = |d|d → a = c ∧ b = d . (6)

(2): We have 0 ? x = 0·2|x|d+x = x and x ? 0 = x·2|0|d+0
8.3.1(4)

= x·20+0 =
x.

(3): We have 2|x|d ≤ x+ 1 by 8.3.1(5). Since 2|y|d > 0, we get

2|x|d+|x|d = 2|x|d ·2|y|d ≤ x·2|y|d + 2|y|d
8.3.1(5)

≤ x·2|y|d + y + 1 = (x ? y) + 1 .

We have x+ 1 < 2|x|d+1, i.e. x+ 2 ≤ 2·2|x|d , by 8.3.1(5). Since 2|y|d > 0, we
get

(x ? y)+1 = x·2|y|d+y+1
8.3.1(5)
< x·2|y|d+2·2|y|d ≤ 2·2|x|d ·2|y|d = 2|x|d+|x|d+1 .

Combining the two inequalities we obtain |x ? y|d = |x|d + |x|d by 8.3.1(5).
(4): We have

(x ? y) ? z = (x·2|y|d + y)·2|z|d + z = x·2|y|d+|z|d + y·2|z|d + z
(3)
=

x·2|y ? z|d + (y ? z) = x ?(y ? z) .

(5): Assume n ≤ |x|d. We have

2n
8.1.12(5)

≤ 2|x|d
8.3.1(5)

≤ x+ 1

and for a = (x + 1 .− 2n) ÷ 2n, c = (x + 1 .− 2n) mod 2n we get x + 1 .− 2n =
a·2n + c, c < 2n by 7.4.8(1). For b = 2n .− 1 + c we then get x = a·2n + b. We
have 2n ≤ 2n + c < 2·2n, i.e. 2n ≤ b + 1 < 2n+1. Hence |b|d = n by 8.3.1(5)
and thus x = a ? b.

(6): Assume a ? b = c ? d and |b|d = |d|d. Thus

a·2|d|d + b = a·2|b|d + b = a ? b = c ? d = c·2|d|d + d

and we get a = c, b = d by 7.4.8(1)(2).
In the following we will use the associativity of the concatenation opera-

tion (4) without explicitly referring to it.

241



8.3.3 Counting function #(x). For the arithmetization of binary trees we
will need a unary counting function #(x) yielding the number of digits 2 in
the dyadic representation of x.

The counting function is introduced with the help of an auxiliary binary
dyadic indexing function [x]i yielding the i-th dyadic digit in the dyadic
representation of x decreased by one where the least significant digit is with
the index 0. We intend to introduce the function into PA by contextual
definition:

[x]i = z ↔ ∃a∃b(x = a ?(z + 1) ? b ∧ z ≤ 1 ∧ |b|d = i) ∨ i ≥ |x|d ∧ z = 0 .
(1)

Its existence condition follows from (2), (3) and its uniqueness condition from
(4), (5):

P̀A i < |x|d → ∃z∃a∃b(x = a ?(z + 1) ? b ∧ z ≤ 1 ∧ |b|d = i) (2)

P̀A i ≥ |x|d → ∃z z = 0 (3)

P̀A x = a1 ?(z1 + 1) ? b1 ∧ z1 ≤ 1 ∧ |b1|d = i ∧
x = a2 ?(z2 + 1) ? b2 ∧ z1 ≤ 1 ∧ |b2|d = i→ i < |x|d ∧ z1 = z2 (4)

P̀A z1 = 0 ∧ z2 = 0→ z1 = z2 . (5)

(2): Assume i < |x|d and get x = c ? b for some b, c such that |b|d = i by
8.3.2(5). We have |x|d = |c|d+i by 8.3.2(3). Thus 1 ≤ |c|d and we get c = a ? y
for some a, y such that |y|d = 1 by 8.3.2(5) again. We have 21 ≤ y + 1 < 22

and so 1 ≤ y ≤ 2 by 8.3.1(5). Hence y = z + 1 for a z s.t. z ≤ 1.
(3): This is trivial.
(4): Assume the antecedent. We get b1 = b2, and a1 ?(z1+1) = a2 ?(z2+1)

by 8.3.2(6). Since |z1 + 1|d = 1 = |z2 + 1|d by 8.3.1(5), we get a1 = a2 and
z1 = z2 by 8.3.2(6) again. We have |x|d = |a1|d + 1 + i by 8.3.2(3) and so
i < |x|d.

(5): This is trivial.
We will need the following simple properties of the dyadic indexing func-

tion:

P̀A i < |b|d → [a ? b]i = [b]i (6)

P̀A [a ? b]i+|b|d = [a]i (7)

(6): Assume i < |b|d and obtain b = b1 ?(z + 1) ? b2 for some b1, b2, z ≤ 1
such that |b2|d = i by (2). Since also a ? b = (a ? b1) ?(z + 1) ? b2, we obtain
[b]i = z = [a ? b]i by (1).

(7): Consider two cases. If i ≥ |a|i then also i + |b|d ≥ |a|i + |b|d
8.3.2(3)

=
|a ? b|s and we have [a ? b]i+|b|d = 0 = [a]i by (1). If i < |a|i then also i+|b|d <
|a ? b| and we have a = a1 ?(z+1) ? a2 for some a1, a2, z ≤ 1 such that |a2|d = i
by (2). Since also a ? b = a1 ?(z+ 1) ?(a2 ? b) with |a2 ? b|d = i+ |b|d, we have
[a ? b]i+|b|d = z = [a]i by (1) again.

242



We also need an auxiliary binary function f which is introduced into PA
by primitive recursion:

P̀Ax f(0, x) = 0 (8)

P̀Ax f(i′, x) = [x]i + f(i, x) . (9)

We will need the following properties of f :

P̀A ∀a∀b(i ≤ |b|d → f(i, a ? b) = f(i, b)) (10)

P̀A ∀a∀b f(i+ |b|d, a ? b) = f(i, a) + f(|b|d, b) . (11)

(10): By induction on i. In the base case we have f(0, a ? b) = 0 = f(0, b).
In the inductive case we assume i+ 1 ≤ |b|d and, since i < |b|d, we obtain:

f(i+ 1, a ? b) = [a ? b]i + f(i, a ? b) IH=

[a ? b]i + f(i, b)
(6)
= [b]i + f(i, b) = f(i+ 1, b) .

(11): By induction on i. In the base case we have

f(0 + |b|d, a ? b) = f(|b|d, a ? b)
(10)
= f(|b|d, b) = f(0, a) + f(|b|d, b) .

In the inductive case we have:

f(i+ 1 + |b|d, a ? b) = [a ? b]i+|b|d + f(i+ |b|d, a ? b)
IH=

[a ? b]i+|b|d + f(i, a) + f(|b|d, b)
(7)
=

[a]i + f(i, a) + f(|b|d, b) = f(i+ 1, a) + f(|b|d, b) .

We introduce the function #(x) into PA by explicit definition:

P̀Ax #(x) = f(|x|d, x) (12)

The counting function has the following properties which we will need below:

P̀A #(0) = 0 (13)

P̀A #(1) = 0 (14)

P̀A #(2) = 1 (15)

P̀A #(a ? b) = #(a) + #(b) . (16)

(13): #(0) = f(|0|d, 0)
8.3.1(4)

= f(0, 0) = 0.

(14): We have #(1) = f(|1|d, 1)
8.3.1(5)

= f(1, 1) = [1]0 + f(0, 0) = [1]0 and,

since 1
8.3.2(2)

= 0 ?(0 + 1) ? 0, |0|d
8.3.1(4)

= 0, we get [1]0 = 1 by (1).
(15): Similarly as (14).
(16): We have

#(a ? b) = f(|a ? b|d, a ? b)
8.3.2(3)

= f(|a|d + |b|d, a ? b)
(11)
=

f(|a|d, a) + f(|b|d, b) = #(a) + #(b) .

243



Prefix Codes

We will define a subset Prf of natural numbers which code in the dyadic
notation the binary trees from Fig. 1.2 expressed in the prefix notation.

8.3.4 Prefix notation of pair numerals. Recall that every pair numeral
is either 0 or it has a form (τ1, τ2) for pair numerals τ1 and τ2. The right paren-
theses and commas in pair numerals are superfluous in the sense that when
we omit them we are still able to represent every natural number uniquely.

The sequences of words over the two element alphabet ( and 0 obtained
in this way from pair numerals represent the same numbers as pair numerals
in the (Polish) prefix notation. Thus the number zero 0 is represented by the
pair numeral 0 and the prefix notation 0. The number 1 is represented by the
pair numeral (0, 0) and by the prefix notation (00. The number 2 is denoted
by the pair numeral (0, (0, 0)) and by the prefix notation (0(00. The number
3 is denoted by the pair numeral ((0, 0), 0) and by the prefix notation ((000,
and so on.

The reader will note that every number x with the pair size |x|p = n is
represented by the prefix word of length 2·n + 1 which contains exactly n
left parentheses and n + 1 zeroes. However, not every such word is a prefix
notation. For instance out of

(

5
2

)

= 10 words of length 5 six words 0(00(,
(00(0, 00(0(, 0(0(0 (000(, 000((, 00((0, and 0((00 are not prefix notations. It
can be shown that there are

1
2·n+ 1

·
(

2·n+ 1
n

)

=
1

n+ 1
·
(

2·n
n

)

prefix notations of numbers with the pair size n out of
(

2·n+1
n

)

possible words
with n symbols ( and n+ 1 symbols 0.

A moment of thought shows that the word w with n symbols ( and n+ 1
symbols 0 is a prefix notation iff for all w = w1w2 where w2 is not empty the
count i of symbols ( in w2 is less than the count j of 0. We clearly have i < j
iff the size of w2 is greater than 2·i, i.e. iff i+ j > 2·i.

The plan for the introduction of the pairing function x, y is as follows.
We will first arithmetize (code) the prefix notation in the dyadic represen-
tation in Par. 8.3.5. We will then define a pairing function over prefix codes
in Par. 8.3.6. We will well-order the prefix codes by a relation <p defined
in Par. 8.3.8. We will then enumerate the prefix codes by a function π in
Par. 8.3.13 such that < and <p will be isomorphic. The isomorphism then
defines in Par. 8.3.14 the pairing function x, y as the isomorphic image of the
pairing function on the prefix codes.

8.3.5 Prefix codes. We arithmetize the prefix notation by coding into nat-
ural numbers where in the dyadic representation the symbol ( is coded by the
digit 2 and the symbol 0 by the digit 1. The unary predicate Prf (x) holding

244



iff x codes the prefix code of length |x|d is introduced into PA by explicit
definition:

P̀Ax Prf (x)↔ |x|d = 2·#(x) + 1 ∧ ∀a∀b(x = a ? b ∧ b > 0→ |b|d > 2·#(b))
(1)

We have

P̀A |x|d > 2·#(x)→ ∃v∃b(x = v ? b ∧ Prf (v)) (2)

P̀A Prf (a ? b) ∧ Prf (a)→ b = 0 . (3)

P̀A Prf (x) ∧ #(x) = 0↔ x = 1 . (4)

(2): Assume |x|d > 2·#(x) and consider the formula

φ[x, k] ≡ ∃v∃b(|v|d = k ∧ x = v ? b ∧ |v|d > 2·#(v)) .

Since x = x ? 0 by 8.3.2(2), we have φ[x, |x|d] for v := x and b := 0. By the
least number principle there is the smallest such k for which there are v and
b such that |v|d = k, x = v ? b,

|v|d > 2·#(v) , (5)

and for any m < k we have ¬φ[x,m], i.e.

∀v1∀b1(|v1|d < |v|d ∧ x = v1 ? b1 → |v1|d ≤ 2·#(v1)) . (6)

In order to prove Prf (v) we assume v = v1 ? v2 for some v1, v2 > 0. We have

|v1|d + |v2|d
8.3.2(3)

= |v|d
(5)
> 2·#(v)

8.3.3(16)
= 2·#(v1) + 2·#(v2) (7)

and, since x = v1 ?(v2 ? b), |v1|d < |v|, we obtain

|v1|d ≤ 2·#(v1) (8)

by (6). This means that

|v2|d > 2·#(v2) . (9)

It remains to derive |v|d = 2·#(v) + 1. We have |v|d > 0 by (5) and so
v = v1 ? v2 for some v1, v2 s.t. |v2|d = 1 by 8.3.2(5). We then get #(v2) = 0
by (9) and |v1|d+1 > 2·#(v1), i.e. |v1|d ≥ 2·#(v1), by (7). Thus |v1|d = 2·#(v1)
by (8) and hence |v|d = |v1|d + 1 = 2·#(v) + 1.

(3): Assume Prf (a ? b) and Prf (a). If it were the case that b > 0 then we
would have |b|d > 2·#(b) and we would obtain a contradiction

|a ? b|d
8.3.2(3)

= |a|d + |b|b = 2·#(a) + 1 + |b|b > 2·#(a) + 1 + 2·#(b) =

2·(#(a) + #(b)) + 1
8.3.3(16)

= 2·#(a ? b) + 1 .

245



(4): If Prf (x) and #(x) = 0 then |x|d = 1 and we get x = 1 or x = 2 by
8.3.1(5) and, since #(2) = 1 by 8.3.3(15), it must be the case that x = 1.

Vice versa, if x = 1 then we have

|1|d
8.3.1(5)

= 1
8.3.3(14)

= 2·#(1) + 1 .

Take any b > 0 and a such that 1 = x = a ? b. We have 1 = |1|d
8.3.2(3)

=
|a|d + |b|d and so a = 0 by 8.3.1(4). But then b = 1 by 8.3.2(2) and so

|b|d = 1 > 0
8.3.3(14)

= 2·#(b) .

8.3.6 Pairing function over prefix codes. We define the binary prefix
code pairing function x ,p y by explicit definition:

P̀Ax x ,p y = 2 ? x ? y . (1)

The basic properties of the function are that it is over prefix codes and that
it satisfies there the pairing property:

P̀A Prf (x) ∧ Prf (y)→ Prf (x ,p y) ∧ #(x ,p y) = #(x) + #(y) + 1 (2)

P̀A Prf (x) ∧ Prf (v) ∧ x ,p y = v ,p w → x = v ∧ y = w . (3)

(2): Assume Prf (x) and Prf (y). We have

#(x, ,p y) = #(2 ? x ? y) = 1 + #(x) + #(y) (4)

by the properties of the counting function and

|x ,p y|d = |2 ? x ? y|d = 1 + |x|d + |y|d =

1 + 2·#(x) + 1 + 2·#(y) + 1
(4)
= 2·#(x ,p y) + 1 (5)

by the properties of the dyadic size function. We now take any a and b > 0
such that x ,p y = 2 ? x ? y = a ? b and, since |b|d ≤ |x ,p y|d, we consider three
cases for the dyadic size of b:
|b|d ≤ |y|d: We have y = y1 ? y2 for some y1, y2 s.t. |b|d = |y2|d by 8.3.2(5),

y2 = b by 8.3.2(6), and |y2|d > 2·#(y2), i.e. |b|d > 2·#(b), by Prf (y). Hence
Prf (x ,p y).
|y|d < |b|d ≤ |x|d+ |y|d: We have b = b1 ? b2 for some b1, b2 s.t. |y|d = |b2|d

by 8.3.2(5) and, since 2 ? x ? y = a ? b1 ? b2, we get 2 ? x = a ? b1 and y = b2 by
8.3.2(6). From |y|d < |b|d = |b1|d + |b2|d ≤ |x|d + |y|d we get 0 < |b1|d ≤ |x|d
and so b1 > 0, by 8.3.1(4). Thus x = x1 ? x2 for some x1, x2 s.t. |x2|d = |b1|d
by 8.3.2(5) and, since 2 ? x1 ? x2 = a ? b1, we get x2 = b1 by 8.3.2(6). Now,
|x2|d > 2·#(x2) by Prf (x). Hence

|b|d = |b1 ? b2|d = |b1|d + |b2|d = |x2|d + 2·m+ 1 > 2·#(x2) + 2·m =
2·(#(b1) +m) = 2·(#(b1) + #(b2)) = 2·#(b)

246



and thus Prf (x ,p y).

|b|d = 1+|x|d+|y|d: We have 0 ?(x ,p y)
8.3.2(2)

= x ,p y = a ? b, |x ,p y|d = |b|d,
and hence x ,p y = b by 8.3.2(6). Thus

|b|d = |x ,p y|d
(5)
= 2·(1 + #(x) + #(y)) + 1 > 2·(1 + #(x) + #(y))

(4)
=

2·#(x ,p y) = 2·#(b)

and so Prf (x ,p y) again.
(3): Assume Prf (x), Prf (v), and x ,p y = v ,p w. From 2 ? x ? y = 2 ? v ?w

we get |x ? y|d = |v ?w|d by 8.3.2(3) and then x ? y = v ?w by 8.3.2(6). We
now consider two cases. If |y|d ≤ |w|d then we have w = w1 ?w2 for some w1,
w2 such that |w2|d = |y|d by 8.3.2(5). We obtain x = v ?w1 and w2 = y by
8.3.2(6). But then w1 = 0 by 8.3.5(3) and so x = v as well as w = w2 = y by
8.3.2(2). The case |y|d ≥ |w|d is similar.

Additional property of the prefix code pairing function is that its range
is the set of the prefix codes with positive counts of digits 2:

P̀A 1 6= x ,p y (6)

P̀A Prf (x) ∧ #(x) > 0→ ∃v∃w(x = v ,p w ∧ Prf (v) ∧ Prf (w)) . (7)

(6): This is because

#(1)
8.3.3(14)

= 0 < 1 + #(x ? y)
8.3.3(15)

= #(2) + #(x ? y)
8.3.3(16)

=
#(2 ? x ? y) = #(x ,p y) .

(7): Assume Prf (x) and #(x) > 0. Since 2·#(x) + 1 = |x|d, we have
x = x1 ? x2 for some x1, x2 s.t. |x2|d = 2·#(x) by 8.3.2(5). Thus |x1|d = 1
by 8.3.2(3). Since |x2|d > 0 we have x2 > 0 by 8.3.1(4) and from Prf (x) we
obtain

2·#(x) = |x2|d > 2·#(x2) , (8)

i.e. #(x1) + #(x2)
8.3.3(16)

= #(x) > #(x2) and so #(x1) > 0. Since x1 = 1
or x1 = 2 by 8.3.1(5), it must be the case that x1 = 2 by 8.3.3(14). We
have x2 = v ?w for some v, w s.t. Prf (v) by (8) and 8.3.5(2). We have
x = x1 ? x2 = 2 ? v ?w = v ,p w and it suffices to prove Prf (w). For that we
note that

2 + 2·#(v) + 2·#(w) + 1 = 2·#(2 ? v ?w) + 1 = 2·#(x) + 1 = |x|d =
|2 ? v ?w|d = 1 + |v|d + |w|d = 1 + 2·#(v) + 1 + |w|d

by the properties of the dyadic size and counting functions. Hence 2·#(w) +
1 = |w|d. We now take any a, b > 0 such that w = a ? b. From x = (2 ? v ? a) ? b
and Prf (x) we get the desired |b|d > 2·#(b).

247



Order on Prefix Codes

We will now define a well-ordering relation <p on the prefix codes which will
impose the structure of N on the codes.

8.3.7 Indexing properties of prefix codes. Following properties of pre-
fix codes play central role in the definition of the order <p:

P̀A Prf (x) ∧ i < |x|d → ∃a∃v∃b(x = a ? v ? b ∧ |a|d = i ∧ Prf (v)) (1)

P̀A Prf (x) ∧ x = a1 ? v1 ? b1 ∧ Prf (v1) ∧ x = a2 ? v2 ? b2 ∧ Prf (v2) ∧
|a1|d = |a2|d → a1 = a2 ∧ v1 = v2 ∧ b1 = b2 . (2)

Property (1) says that in every prefix code x it is possible to find a prefix
code v at an arbitrary distance i < |x|d from the beginning of x. Property
(2) asserts that this v is uniquely determined. We can thus view the number
i as an index selecting the prefix code v at the position i of x.

(1): Assume Prf (x) and i < |x|d. Since 0 < |x|d .− i < |x|d, we get x = a ? c
for some a, c such that 0 < |c|d = |x|d .− i by 8.3.2(5). We have |a|d = i by
8.3.2(3) and |c| > #(c) because Prf (x). Thus c = v ? b for some v, b s.t.
Prf (v) by 8.3.5(2).

(2): Assume the antecedent of the property. We have |v1 ? b1|d = |v2 ? b2|d
by 8.3.2(3) and a1 = a2, v1 ? b1 = v2 ? b2 by 8.3.2(6). We now consider two
cases. If |b1|d ≤ |b2|d then b2 = c1 ? c2 for some c1, c2 such that |b1|d = |c2|d
by 8.3.2(5), v1 = v2 ? c1, b1 = c2 by 8.3.2(6), and c1 = 0 by 8.3.5(3). Thus
v1 = v2 and b1 = b2 by 8.3.2(2).

The case |b1|d ≥ |b2|d is similar.

8.3.8 Order on prefix codes. We will define x <p y to hold iff x and y
code in the prefix notation binary trees t and s respectively and if in the
order from left to right there is a subtree in t with a lesser number of inner
nodes than the corresponding subtree in s while all corresponding subtrees
to the left are identical and all corresponding ancestors subtrees have equal
number of inner nodes.

This seemingly complicated property expresses the first-by-size-than-by-
lexicographic-order enumeration of binary trees in Fig. 1.2. The property is
arithmetized with the help of two auxiliary ternary predicates x <ip y and
x =i

p y introduced into PA by explicit definitions:

P̀Ax x <
i
p y ↔ ∃a∃v1∃b1∃v2∃b2(x = a ? v1 ? b1 ∧ Prf (v1) ∧ |a|d = i ∧

y = a ? v2 ? b2 ∧ Prf (v2) ∧ #(v1) < #(v2)) (1)

P̀Ax x =i
p y ↔ ∃a∃v1∃b1∃v2∃b2(x = a ? v1 ? b1 ∧ Prf (v1) ∧ |a|d = i ∧

y = a ? v2 ? b2 ∧ Prf (v2) ∧ #(v1) = #(v2)) . (2)

For two prefix codes x and y we clearly have x <ip y (x =i
p y) iff the code

at the position i of x has a lesser (equal) dyadic size than the code at the
position i of y.

248



We now explicitly introduce into PA the binary predicate x <p y:

P̀Ax x <p y ↔ Prf (x) ∧ Prf (y) ∧ ∃i(x <ip y ∧ ∀j(j < i→ x =j
p y)) (3)

and prove that it is a linear order over Prf :

P̀A Prf (x)→ x 6<p x (4)

P̀A x <p y ∧ y <p z → x <p z (5)

P̀A Prf (x) ∧ Prf (y) ∧ x 6= y → x <p y ∨ y <p x . (6)

(4): Assume Prf (x) and take any i < |x|d. By Par. 8.3.7 we have x =
a ? v ? b for the uniquely determined a, v, b s.t. |a|i = i. We cannot have
#(v) < #(v), thus ¬v <ip v, and hence x 6<p x.

(5): Suppose x <p y and y <p z. We have Prf (x), Prf (y), Prf (z), x <i1p y,
y <i2p z for some i1, i2 s.t. i1 < |x|d, i1 < |y|d, i2 < |y|d, i2 < |z|d. In the
following we will use obvious transitivity properties of the auxiliary predicates
which are direct consequences of the indexing of prefix codes (see Par. 8.3.7).
We consider three cases. If i1 < i2 then for any j < i1 we have x =j

p y, y =j
p z,

and hence x =j
p z. From x <i1p y and y =i1

p z we get x <i1p z. Thus x <p z.
The case when i2 < i1 is similar, and if i1 = i2 then we clearly have

x <i1p z and x =j
p z for any j < i1. Hence x <p y again.

(6): Suppose Prf (x), Prf (y), x 6= y, and consider three cases. If |x|d < |y|d
then x <0

p y and so x <p y. If |y|d < |x|d then y <0
p x and so y <p x. Finally,

if |y|d = |x|d = k then ¬y =i
p x for some i < k and there is the least such i

by the least number principle. We thus have x =j
p y for all j < i and either

x <ip y or y <ip x. Hence x <p y or y <p x.

8.3.9 Additional properties of <p. We introduce the binary predicate
≤p by explicit definition:

P̀Ax x ≤p y ↔ x <p y ∨ x = y ∧ Prf (x) . (1)

The reader will note that x ≤ x does not hold if x is not a prefix code.
We now prove the remaining properties of the order on Prf which we will

need below:

P̀A Prf (x) ∧ Prf (y)→ #(x) < #(y)→ x <p y (2)

P̀A x ≤p y → #(x) ≤ #(y) (3)

P̀A Prf (x)→ 1 ≤p x (4)

P̀A Prf (x) ∧ Prf (y) ∧ Prf (v) ∧ Prf (w) ∧ #(x) + #(y) = #(v) + #(w)→
(x ,p y <p v ,p w ↔ x <p v ∨ x = v ∧ y <p w) . (5)

(2): Suppose Prf (x), Prf (y), and #(x) < #(y). We have x <0
p y and so

x <p y.

249



(3): Suppose x ≤p y. We have Prf (x), Prf (y). If it were the case that
#(x) > #(y) we would have y <p x by (2) and x <p x by 8.3.8(5) thus
contradicting 8.3.8(4).

(4): Suppose Prf (x) and consider two cases. If #(x) = 0 then x = 1 by
8.3.5(4) and we trivially have 1 ≤p 1. If #(x) > 0 then, since #(1) = 0, we
have 1 <p x by (2).

(5): Assume the antecedent of the property. We have Prf (x ,p y), Prf (v ,p w),
and

#(x ,p y) = #(x) + #(v) + 1 = #(v) + #(w) + 1 = #(v ,p w) (6)

by 8.3.6(2). Set k = 2·#(x ,p y) + 1 = |x ,p y|d = |v ,p w|d and in the direction
(→) assume 2 ? x ? y = x ,p y <p v ,p w = 2 ? v ?w. We now consider three
cases. If #(x) < #(v) then x <p v by (2) and we are done.

If #(x) > #(v) then v <p x by (2) and we have v <ip x for some i <
|v|d = 2·#(v) + 1 < 2·#(x) + 1 = |x|d. Also v =j

p x for all j < i. But we then
get a contradiction as we obtain v ,p w = 2 ? v ?w <p 2 ? x ? y = x ,p y from
2 ? v ?w <i+1

p 2 ? x ? y and 2 ? v ?w <jp 2 ? x ? y for all j < i+ 1.
The final case is #(x) = #(v). Then #(y) = #(w), |x|d = |v|d, and |y|d =

|w|d. We cannot have v <p x by the same reasoning as in the preceding case.
Thus x ≤p v by 8.3.8(6). If x <p v we are done. If x = v then we have
2 ? x ? y <ip 2 ? v ?w for some 1 + |x|d ≤ i < k and 2 ? x ? y =j

p 2 ? v ?w for all

j < i. But then y <
i

.−(1+|x|d)
p w and y =j

p w for all j < i .−(1 + |x|d). Hence
y <p w.

In the direction (←) consider two cases. If x <p v then, since #(x) ≤ #(v)
and so |x|d ≤ |v|d by (3), we have x <ip v for some i < |x|d and x =j

p v

for all j < i. We then get x ,p y <p v ,p w because 2 ? x ? y <i+1
p 2 ? v ?w and

2 ? x ? y =j
p 2 ? v ?w for all j < i+ 1.

The second case is when x = v and y <p w. We similarly as in the
preceding case get y <ip w for some i < |y|d and y =j

p w for all j < i. But then

x ,p y <p v ,p w because 2 ? x ? y <i+|x|d+1
p 2 ? v ?w and 2 ? x ? y =j

p 2 ? v ?w
for all j < i+ |x|d + 1.

8.3.10 The principle of the least prefix code. The ordering predicate
of prefix codes <p is a well-order. This can be expressed in the first-order
language of PA only as a theorem schema called the principle of the least
prefix code with a formula φ[x] with one indicated variable x and y a variable
not occurring in φ:

T ` ∃xφ[x] ∧ ∀x(φ[x]→ Prf (x))→ ∃x(φ[x] ∧ ∀y(y <p x→ ¬φ[y])) . (1)

Here T is any proper extension of PA which contains the functions and pred-
icates involved with prefix codes.

Property (1) is proved by working in T . We assume ∀x(φ[x] → Prf (x))
and φ[z0] for some z0. For the formula ψ1[n, x] ≡ φ[x] ∧ |x|d = n we have

250



ψ1[|z0|d, z0]. Hence ∃xψ1[m,x] for the least m by the least number principle.
Thus φ[z] and |z|d = m for some z. Thus also Prf (z) and m = |z|d =
2·#z + 1 > 0. By the minimality of m we have m ≤ |y|d for any y s.t. φ[y].

For the formula

ψ2[n, x] ≡ φ[x] ∧ |x|d = m ∧
∀y∀i(φ[y] ∧ i < n ∧ ∀j(j < i→ x =j

p y)→ ¬y <ip x)

we prove by induction on n

n ≤ m→ ∃xψ2[n, x] . (2)

Roughly speaking, the property says that for every n ≤ m there is an x
satisfying φ[x] which is a minimal prefix code up to n.

The base case is trivially satisfied by x := z because i 6< 0. In the inductive
case assume n+1 ≤ m and there is an x0 s.t. ψ2[n, x0] by IH. We have Prf (x0)
and n < m = |x0|d and let v0 be the code at the position n of x0. We thus
have ψ3[|v0|d, x0] for the formula

ψ3[k, x] ≡ ψ2[n, x] ∧ ∀a∀v∀b(x = a ? v ? b ∧ Prf (v) ∧ |a|d = n→ |v|d = k) .

Hence ∃k∃xψ3[k, x], and by the least number principle there is a smallest
such k for which ∃xψ3[k, x]. Thus ψ3[k, x] for some x and so ψ2[n, x] and for
the code v at the position n of x we have |v|d = k. We claim that φ2[n+ 1, x]
holds. So take any y, i s.t. φ[y], i < n+ 1, and ∀j(j < i→ x =j

p y). We have
Prf (y) and we wish to show ¬y <ip x. If i ≥ |y|d then we have ¬y <ip x. If
i < |y|d we consider two cases. If i < n then we have ¬y <ip x from ψ2[n, x].
If i = n then let w be the code at the position n of y. By the minimality
of k we have |v0|d = k ≤ |w|d and so we have x <np y or x =n

p y and hence
¬y <np x. This ends the induction proof of (2).

From the just proved property we obtain ψ2[m,x] for some x and we claim
that x is the least prefix code satisfying φ[x]. So take any y s.t. y <p x and
suppose on the contrary φ[y]. We have m ≤ |y|d and so there is an i such
that i < m, y <ip x, and y =j

p x for all j < i. We now get the contradiction
¬φ[x] from ψ2[m,x].

8.3.11 Minima and maxima of prefix codes of count n. We call the
number a the minimum of codes with the count n if

Prf (a) ∧ #(a) = n ∧ ∀x(Prf (x) ∧ #(x) = n→ a ≤p x) (1)

We call the number b the maximum of codes with the count n if

Prf (b) ∧ #(b) = n ∧ ∀x(Prf (x) ∧ #(x) = n→ x ≤p b) (2)

The reader will note that because <p is a linear order over Prf there is at
most one minimum (maximum) code of a given count n. For each n the
maxima and minima exist:

251



P̀A ∃b(Prf (b) ∧ #(b) = n ∧ ∀x(Prf (x) ∧ #(x) = n→ x ≤p b)) (3)

P̀A ∃a(Prf (a) ∧ #(a) = n ∧ ∀x(Prf (x) ∧ #(x) = n→ a ≤p x)) . (4)

(3): By induction on n. In the base case we set b := 1 because #(b) = 0
and for any x s.t. Prf (x), #(x) = 0 we have x = 1 by 8.3.5(4). In the
inductive case we obtain the maximum b1 of the count n by IH and we set
b = b1 ,p 1. Since Prf (1), #(1) = 0 by 8.3.5(4), we get Prf (b), #(b) = n + 1
by 8.3.6(2). Let x be any number such that Prf (x) and #(x) = n + 1. We
have x = x1 ,p x2 for some x1, x2 such that Prf (x1), Prf (x2) by 8.3.6(7) and
#(x1) + #(x2) = n by 8.3.6(2). For the proof of x = x1 ,p x2 ≤p b1 ,p 1 = b in
which we use 8.3.9(5) we note that #(x1) ≤ n = #(b1). If #(x1) < #(b1) then
x1 <p b1 by 8.3.9(2) and so x <p b. If #(x1) = #(b1) then x1 ≤p b1 by the
maximality of b1. If x1 <p b1 then x <p b again. If x1 = b1 then #(x2) = 0
and we get x2 = 1 by 8.3.5(4) and so x <p b.

(4): We use the principle of the least prefix code with the formula φ[x, n] ≡
Prf (x)∧#(x) = n. Let b be the maximum code with the count n existing by
(3). We have φ[b, n] and so the antecedent of 8.3.10(1) is satisfied. Thus there
is a number a s.t. φ[a, n] and for any y <p a we have ¬φ[y, n]. To see that a
is the minimum take any number x s.t. Prf (x) and #(x) = n, i.e. φ[x, n]. We
must have x 6<p a and so a ≤p x by 8.3.8(6).

8.3.12 Successor function over prefix codes. We wish to introduce the
unary function sp(x) yielding the least prefix code after x in the order <p by
the following contextual definition:

P̀Ax sp(x) = y ↔ x <p y ∧ ∀z(x <p z → y ≤p z) ∨ ¬Prf (x) ∧ y = 0 (1)

Its existence condition

P̀A ∃y(x <p y ∧ ∀z(x <p z → y ≤p z) ∨ ¬Prf (x) ∧ y = 0) (2)

is proved by taking any x and considering two cases. If ¬Prf (x) then it suffices
to set y := 0. If Prf (x) then also Prf (x ,p x) and #(x, ,p x) = 2#(x)+1 > #(x)
by 8.3.6(2). Hence x <p x ,p x by 8.3.9(2) and thus ∃y x <p y. The formula
φ[x, y] ≡ x <p y satisfies for y the antecedent of the principle of the least
prefix code because we have ∃y x <p y and from x <p y we obtain Prf (y).
Hence there is a y s.t. x <p y and for any z such that z <p y we have ¬x <p z.
But then if x <p z we have ¬z <p y, i.e. y ≤p z by 8.3.8(6).

The uniqueness condition for sp follows from

P̀A x <p y1 ∧ ∀z(x <p z → y1 ≤p z) ∧
x <p y2 ∧ ∀z(x <p z → y2 ≤p z)→ y1 = y2 (3)

P̀A y1 = 0 ∧ y2 = 0→ y1 = y2 . (4)

(3): Assume the antecedent. We have Prf (y1) and Prf (y2). If it were the
case that y1 6= y2 then we would have y1 <p y2 or y2 <p y1 by 8.3.8(6). If

252



y1 <p y2 then, since x <p y1, we instantiate the second quantifier formula
in the antecedent with z := y1 and get y2 ≤p y1. Thus y2 <p y1 and then
y1 <p y1 by 8.3.8(5) contradicting 8.3.8(4). The case y2 <p y1 leads to a
contradiction similarly.

(4): This is trivial.
The function sp satisfies the following:

P̀A Prf (x)→ x <p sp(x) ∧ ∀z(x <p z → sp(x) ≤p z) (5)

P̀A Prf (x)↔ Prf (sp(x)) (6)

P̀A x <p y ↔ sp(x) <p sp(y) (7)

P̀A Prf (x) ∧ #(x) > 0→ ∃y(Prf (y) ∧ sp(y) = x) . (8)

(5): If Prf (x) then we get the consequent by instantiating (1) with y :=
sp(x).

(6): If Prf (x) then x <p sp(x) by (5) and we have Prf (sp(x)). Vice versa,
if Prf (sp(x)) then if it were the case that ¬Prf (x) we would get sp(x) = 0
by instantiating (1) with y := sp(x). We would then get #(sp(x)) = 0 by
8.3.3(13) and a contradiction sp(x) = 1 by 8.3.5(4).

(7): Assume x <p y. We have Prf (x) and Prf (y) and we get x <p sp(x) ≤p
y < sp(y) by (5) and transitivity. Vice versa, assume sp(x) <p sp(y). We
have Prf (x) and Prf (y) by 8.3.8(3) and (6). It cannot be the case that x = y
because then sp(x) = sp(y) would contradict 8.3.8(4). Thus either y <p x or
x <p y by 8.3.8(6). If the former then

sp(y)
(5)

≤p x
(5)
<p sp(x) < sp(y)

which by transitivity contradicts the irreflexivity of <p.
(8): In the proof of this property we will repeatedly prove sp(x) = y for

some Prf (x) and Prf (y) by using (1) where we will derive x <p y and then
for any z such that x <p z we will prove y ≤p z. The property follows from
an auxiliary property

P̀A ∀x(Prf (x) ∧ k = #(x) ∧ k > 0→ ∃y(Prf (y) ∧ sp(y) = x))

by instantiating k := #(x). The auxiliary property is proved by complete
induction on k. So assume Prf (x), k = #(x), and k > 0. We have x = v ,p w
for some v, w such that Prf (v), Prf (w) by 8.3.6(7) and #(x) = #(v)+#(w)+1
by 8.3.6(2). We consider two cases.

The first case is when w is not the minimum code with the count #(w),
i.e. a <p w and #(a) = #(w) for some a. We then have w 6= 1 by 8.3.9(4) and
#(w) > 0 by 8.3.5(4). Since #(w) < k, we have Prf (w1), sp(w1) = w for some
w1 by IH. Thus w1 <p w by (5) and #(w1) ≤ #(w) by 8.3.9(3). If it were
the case that #(w1) < #(w) then we would have w1 <p a by 8.3.9(2) and we
would get a contradiction w = sp(w1) ≤p a <p w by (5). Thus #(w1) = #(w)
and we get v ,p w1 <p v ,p w by 8.3.9(5). Note that we have #(v ,p w1) = k.

253



We claim that sp(v ,p w1) = v ,p w = x. For that it remains to show that
if w ,p w1 <p z for any z then x ≤p z. Thus take any z s.t. w ,p w1 <p z. We
have k = #(v ,p w1) ≤ #(z) by 8.3.9(3). If k < #(z) then x <p z by 8.3.9(2).
If 0 < k = #(z) then z = z1 ,p z2 for some z1, z2 such that Prf (z1), Prf (z2)
by 8.3.6(7) and #(z) = #(z1) + #(z2) + 1 by 8.3.6(2). Since v ,p w1 <p z1 ,p z2

and #(v) + #(w) = #(v) + #(w1) = #(z1) + #(z2), we have either v <p z1

or v = z1 and w1 <p z2, i.e. w = sp(w1) ≤p z2 by 8.3.9(5). But then
x = v ,p w ≤p z1 ,p z2 = z by 8.3.9(5) again.

The second case is that w is the minimum code with the count #(w) and
we consider three subcases.

The first subcase is when v = 1. We obtain from 8.3.11(3) the maximum
code b with the count k .− 1. We claim that sp(b) = x = 1 ,p w. For that
we note that b <p x by 8.3.9(2). We now take any z s.t. b <p z. We have
Prf (z) and it must be the case that k .− 1 ≤ #(z) by 8.3.9(3). We cannot have
k .− 1 = #(z) by the maximality of b. If k < #(z) then x <p z by 8.3.9(2).
If k = #(z) then z = z1 ,p z2 for some z1, z2 such that Prf (z1), Prf (z2) by
8.3.6(7) and #(z1) + #(z2) = #(1) + #(w) = k .− 1 by 8.3.6(2). For the proof
of 1 ,p w = x ≤p z1 ,p z2 = z we note that 1 ≤p z1 by 8.3.9(4). We use 8.3.9(5)
in the two cases when either 1 <p z1 and then x <p z or else 1 = z1 and then,
since #(w) = #(z2), we get w ≤p z2 by the minimality of w and so a ≤p x.

The second subcase is when v 6= 1 and v is not the minimum with the
count #(v). By similar reasoning as in the first case above we obtain by IH a
v1 s.t. Prf (v1), #(v1) = #(v), v1 <p v, and sp(v1) = v. We then obtain from
8.3.11(3) the maximum code b with the count #(w). We have Prf (b), #(b) =
#(w), and we claim that sp(v1 ,p b) = v ,p w. Since #(v1)+#(b) = #(v)+#(w),
we get v1 ,p b <p v ,p w by 8.3.9(5). Now we take any z such that v1 ,p b <p z.
We have k = #(v1 ,p b) ≤ #(z) by 8.3.9(3). If k < #(z) then x <p z by 8.3.9(2).
If 0 < k = #(z) then z = z1 ,p z2 for some z1, z2 such that Prf (z1), Prf (z2)
by 8.3.6(7) and #(z) = #(z1) + #(z2) + 1 by 8.3.6(2). Since v1 ,p b <p z1 ,p z2

and #(v) + #(w) = #(v1) + #(b) = #(z1) + #(z2), we have either v1 <p z1

or v1 = z1 and b <p z2 by 8.3.9(5). The latter case cannot obtain because it
would contradict the maximality of b because we would have #(b) = #(z2).
Hence we have v1 < z1 and so v = sp(v1) ≤p z1 by (5). If v <p z1 then
x = v ,p w <p z1 ,p z2 = z by 8.3.9(5) If v = z1 then #(w) = #(z2) and we
have w ≤ z2 by the minimality of w. Thus x = v ,p w ≤p z1 ,p z2 = z by
8.3.9(5) again.

The third subcase is when v 6= 1 and v is the minimum code with the count
#(v). We must have #(v) > 0 by 8.3.5(4). We use 8.3.11(3) to get the maxima
b1 with the count #(v) .− 1 and b2 with the count #(w) + 1. Thus Prf (b1),
#(b1) = #(v) .− 1, Prf (b2), #(b2) = #(w)+1, and #(b1)+#(b2) = #(v)+#(w).
We claim that sp(b1 ,p b2) = v ,p w. First of all, we have b1 <p v by 8.3.9(2)
and so b1 ,p b2 <p v ,p w by 8.3.9(5). We now take any z s.t. b1 ,p b2 <p z.
We have Prf (z) and k = #(b1 ,p b2) ≤ #(z) by 8.3.9(3). If k < #(z) we have
x <p z by 8.3.9(2). If 0 < k = #(z) then we have z = z1 ,p z2 for some z1, z2

254



such that Prf (z1), Prf (z2) by 8.3.6(7) and #(b1) + #(b2) = #(v) + #(w) =
#(z1) + #(z2) by 8.3.6(2). From b1 ,p b2 <p z1 ,p z2 we get b1 <p z1 or b1 = z1

and b2 <p z2 by 8.3.9(5). The second case cannot happen because if b1 = z1

then #(b2) = #(z2) and we get a contradiction z2 ≤p b2 from the maximality
of b2. In the first case, when b1 <p z1, we get #(b1) ≤ #(z1) by 8.3.9(3) and
so #(b1) < #(z1) by the maximality of b1. Thus #(v) ≤ #(z1). If #(v) < #(z1)
then x = v ,p w <p z1 ,p z2 = z by 8.3.9(5). If #(v) = #(z1) then v ≤p z1 by
the minimality of v and, since #(w) = #(z2), w ≤p z2 by the minimality of
w. But then x = v ,p w ≤p z1 ,p z2 = z by 8.3.9(5).

Isomorphism of N and Prf and a Pairing Function over N

We will now establish an isomorphism between natural numbers and prefix
codes. The isomorphism preserves orders and endows N with pairing.

8.3.13 Enumeration of prefix codes. We define the unary function π by
primitive recursion:

P̀Ax π(0) = 1 (1)

P̀Ax π(x′) = sp π(x) . (2)

The following properties of π assert that the function enumerates the prefix
codes, i.e. it is an injection: (6), into Prf : (3), and onto Prf : (4). It is also an
order isomorphism between N and Prf : (5).

P̀A Prf (π(x)) (3)

P̀A Prf (y)→ ∃xπ(x) = y (4)

P̀A x < y ↔ π(y) <p π(y) (5)

P̀A π(x) = π(y)→ x = y . (6)

(3): By induction on x. In the base case we have π(0) = 1 and Prf (1)
by 8.3.5(4). In the inductive case we obtain Prf (π(x)) from IH and π(x) <p
sp π(x) = π(x′) by 8.3.12(5). But then Prf (π(x′)).

(4): Assume Prf (y) and ∀xπ(x) 6= y. The formula

φ[y] ≡ Prf (y) ∧ ∀xπ(x) 6= y

thus satisfies the antecedent of the principle of least prefix code 8.3.10(1) and
there is a z such that φ[z], i.e. Prf (z), ∀xπ(x) 6= z, and for all u <p z we
have ¬φ[u]. Since π(0) = 1, we have z 6= 1 and so #(z) > 0 by 8.3.5(4). But
then sp(u) = z for some u s.t. Prf (u) by 8.3.12(8) and u <p z by 8.3.12(5).
Hence π(x) = u for some x from ¬φ[u] and we contradict φ[z] because:

π(x′) = sp π(x) = sp(u) = z .

255



(5): We prove ∀y(5) by induction on x. In the base case we assume in the
direction (→) 0 < y. Then z′ = y for some z and π(y) = sp π(z). We have
Prf (π(z)), Prf (π(y)) by (3) and π(x) <p π(y) by 8.3.12(5). Since 1 ≤p π(x)
by 8.3.9(4), we get π(0) = 1 <p π(y) by 8.3.8(5). In the direction (←) we
assume π(0) <p π(y). Thus Prf (π(0)), Prf (π(y)) and then π(y) 6= 1 = π(0)
by 8.3.8(4). Hence y 6= 0, i.e. 0 < y.

In the inductive case we have x′ < y iff x′ < z′ for some z s.t. z′ = y iff
x < z for some z s.t. z′ = y iff, by IH, π(x) <p π(z) for some z s.t. z′ = y, iff
by 8.3.12(7), sp π(x) <p sp π(z) for some z s.t. z′ = y, iff π(x′) <p π(z′) for
some z s.t. z′ = y iff π(x′) <p π(y).

(6): if π(x) = π(y) then, since Prf (π(x)) by (3), we have π(x) 6<p π(y)
and π(y) 6<p π(x) by 8.3.8(4) and so x 6< y and y 6< x by (5).

Property (4) is the existence condition for the inverse of π introduced into
PA by minimalization:

π−1(x) = µy[Prf (x)→ π(y) = x] (7)

Direct consequence of the defining axiom for π−1 is

P̀A Prf (x)→ π π−1(x) = x . (8)

8.3.14 Pairing function. We are now ready to introduce by explicit defi-
nition into PA the binary pairing function:

P̀Ax x, y = π−1(π(x) ,p π(y)) (1)

The function extends the order isomorphism π between N and Prf also to
pairing because we have:

P̀A π(x, y) = π(x) ,p π(y) . (2)

Indeed, from the definition we obtain π(x, y) = π π−1(π(x) ,p π(y)) and, since
Prf (π(x, y)) by 8.3.13(3), the property follows by 8.3.13(8).

The basic properties of the pairing function are the pairing property
1.3.7(1) which is proved as (3) and the property 1.3.7(3) proved as (4) which
assert that every positive number is in the range of the pairing function:

P̀A x, y = v, w → x = v ∧ y = w (3)

P̀A x = 0 ∨ ∃v∃w x = v, w . (4)

(3): Assume x, y = v, w. From π(x, y) = π(v, w) we obtain π(x) ,p π(y) =
π(v) ,p π(w) by (2). Since Prf (π(x)), Prf (π(v)), Prf (π(y)) by 8.3.13(3), we
obtain π(x) = π(v); π(y) = π(w) by 8.3.6(3), and x = π−1π(x) = π−1π(v) =
v; y = π−1π(y) = π−1π(w) = w by 8.3.13(8).

(4): Assume 0 < x and obtain 1 = π(x) <p π(x) by 8.3.13(5). We have
Prf (1) and Prf (π(x)). Since 1 6<p 1 by 8.3.8(4), we have 1 6= π(x) and so

256



#(π(x)) > 0 by 8.3.5(4). Thus π(x) = y ,p z for some y, z such that Prf (y),
Prf (z) by 8.3.6(7). We have π(v) = y and π(w) = z for some v and w by
8.3.13(4) and so

x
8.3.13(8)

= π−1π(x) = π−1(y ,p z) = π−1(π(v) ,p π(w))
8.3.14(1)

= v, w .

8.3.15 Pair size function. The function #(x) measures the complexity of
prefix codes x as the number of inner nodes of binary trees expressed by x.
The isomorphic image of #(x) is the pair size function |x|p (see Par. 1.3.9)
which is introduced into PA by an explicit definition:

P̀Ax |x|p = #(π(x)) (1)

The following are the basic properties of the pair size function

P̀A |0|p = 0 (2)

P̀A |x, y|p = |x|p + |y|p + 1 . (3)

(2): We have π(0) = 1 and #(1) = 0 by 8.3.3(14).
(3): We have Prf (π(x)) and Prf (π(y)) by 8.3.13(3) and so

|x, y|p = #(π(x, y))
8.3.14(2)

= #(π(x) ,p π(y))
8.3.6(2)

=

#(π(x)) + #(π(y)) + 1 = |x|p + |y|p + 1 .

8.3.16 Ordering properties of pairs. The pairing property 8.3.14(3) and
the property 8.3.14(4) which says that there is at most one atom 0 are con-
cerned solely with the pairing function. We will now investigate properties
connecting pairing to the order on N. Property (1) says that 0 is an atom,
(2) gives sufficent and necessary conditions for the comparison of two pairs,
and (3) will be the basis for the induction principle on pairs:

P̀A 0 < x, y (1)

P̀A x, y < v,w ↔ |x, y|p < |v, w|p ∨
|x, y|p = |v, w|p ∧ (x < v ∨ x = v ∧ y < w) (2)

P̀A x < x, y ∧ y < x, y . (3)

(1): We have Prf (π(x)), Prf (π(y)) by 8.3.13(3) and Prf (π(x) ,p π(y)),
#(π(x) ,p π(y)) > 0 by 8.3.6(2). For π(0) = 1 we have Prf (π(0)) and
#(π(0)) = 0 by 8.3.5(4). We get π(0) <p π(x) ,p π(y) by 8.3.9(2) and, since
and π(x, y) = π(x) ,p π(y) by 8.3.14(2), we obtain 0 < x, y by 8.3.13(5).

(2): We have x, y < v,w iff, by 8.3.13(5), π(x, y) <p π(v, w) iff, by
8.3.14(2), π(x) ,p π(y) <p π(v) ,p π(w).

We have Prf (π(x)), Prf (π(y)), Prf (π(v)), Prf (π(w)) by 8.3.13(3) and
Prf (π(x) ,p π(y)), Prf (π(v) ,p π(w)) by 8.3.6(2).

257



We also have |x, y|p < |v, w|p iff #(π(x, y)) < #(π(v, w)) iff, by 8.3.14(2),
#(π(x) ,p π(y)) < #(π(v) ,p π(w)) iff, by 8.3.6(2), #(π(x)) + #(π(y)) <
#(π(v)) + #(π(w)).

We similarly have |x, y|p = |v, w|p iff #(π(x)) + #(π(y)) = #(π(v)) +
#(π(w)).

Now, in the direction (→) assume x, y < v,w, get π(x, y) <p π(v, w)
by 8.3.13(5), and then #(π(x, y)) ≤ #(π(v, w)) by 8.3.9(3). Thus |x, y|p ≤
|v, w|p. If |x, y|p < |v, w|p there is nothing to prove. If |x, y|p = |v, w|p then
#(π(x)) + #(π(y)) = #(π(v)) + #(π(w)) and we have

π(x) <p π(v) ∨ π(x) = π(v) ∧ π(y) <p π(w) (4)

by 8.3.9(5). Thus

x < v ∨ x = v ∧ y < w (5)

by 8.3.13(5)(6).
In the direction (←) consider first the case |x, y|p < |v, w|p. We get

#(π(x) ,p π(y)) < #(π(v) ,p π(w)) by 8.3.14(2) and π(x) ,p π(y) <p π(v) ,p π(w)
by 8.3.9(2). Hence x, y < v,w by the above.

In the second case assume |x, y|p = |v, w|p, i.e. #(π(x)) + #(π(y)) =
#(π(v)) + #(π(w)), and (5). We obtain (4) by 8.3.13(5) and π(x) ,p π(y) <p
π(v) ,p π(w) by 8.3.9(5). Thus x, y < v,w again.

(3): If x = 0 we have x < x, y by (1). If x > 0 we have x = v, w for some
v, w by 8.3.14(4), and since |x|d < |x, y| by 8.3.15(3), we get x < x, y by (2).
The proof of y < x, y is similar.

8.3.17 Projection functions. The unary projection functions H and T
(see Par. 1.3.13) are introduced into PA by minimalization whose existence
conditions are direct consequences of 8.3.14(4):

P̀Ax H(x) = µv[x > 0→ ∃w v,w = x] (1)

P̀Ax T (x) = µw[x > 0→ ∃v v, w = x] . (2)

The projection functions satisfy the following:

P̀A H(0) = 0 (3)

P̀A H(v, w) = v (4)

P̀A T (0) = 0 (5)

P̀A T (v, w) = w . (6)

(3): The defining axiom for H implies 0 < H(0)→ ¬(0 > 0→ ∃w 0, w =
0) from which we get 0 < H(0)→ 0 > 0 and then H(0) = 0.

(4): The defining axiom for H implies v, w > 0→ ∃w1H(v, w), w1 = v, w.
We then get H(v, w), w1 = v, w for some w1 by 8.3.16(1) and H(v, w) = v by
8.3.14(3).

(5): Similarly as (3).
(6): Similarly as (4).

258



8.3.18 List indexing. We wish to introduce into PA the list indexing func-
tion (x)i. The function was defined in Par. 1.3.18 by a clausal definition to
satisfy:

P̀A (0)x = 0 (1)

P̀A (v, w)0 = v (2)

P̀A (v, w)i+1 = (w)i . (3)

The reader will note that this is not a definition by primitive recursion because
the paramater x changes in the recursive application. We can introduce the
list indexing function into PA with the help of the binary function T i(x)
called the iteration of T . The iteration function is introduced into PA by
primitive recursion:

P̀Ax T
0(x) = x (4)

P̀Ax T
i′(x) = T T i(x) . (5)

The iteration function satisfies

P̀A T i(0) = 0 (6)

P̀A ∀xT i+1(x) = T iT (x) . (7)

(6): By induction on i. In the base case we have T 0(0) = 0. In the inductive

case we have T i
′
(0) = T T i(0) IH= T (0)

8.3.17(5)
= 0.

(7): By induction on i. In the base case we have T 0+1(x) = T T 0(x) =
T (x) = T 0T (x). In the inductive case we get

T i
′+1(x) = T T i

′
(x) IH= T T iT (x) = T i+1T (x) .

We can now introduce the indexing function into PA by explicit definition:

P̀Ax (x)i = H T i(x) (8)

and we can prove the above properties:

(1): We have (0)i = H T i(0)
(6)
= H(0)

8.3.17(3)
= 0.

(2): We have (v, w)0 = H T 0(v, w) = H(v, w)
8.3.17(4)

= v.

(3): We have (v, w)i+1 = H T i+1(v, w)
(7)
= H T iT (v, w)

8.3.17(6)
= H T i(w) =

(w)i.

259



8.4 Course of Values Recursion with Measure

The most general form of introducing functions into PA by recursion is the
course of values recursion with measure where we introduce into PA an n-ary
function f such that P̀A f(~x) = τ [~x] for a term τ applying, in addition to
the previously introduced functions, also the function symbol f provided a
measure term µ[~x] ‘goes down’ in the recursion, i.e. we have µ[~ρ] < µ[~x] for
all recursive applications f(~ρ). There are no additional restrictions on the
form of recursive applications f(~ρ) and the arguments ~ρ can again apply the
function f in a nested form. The depth of nesting is not restricted.

The requirement that that the measure of arguments goes down is not
met by all terms τ . Suitable terms must satisfy certain non-trivial contex-
tual properties. We leave the specification of the properties until the third
part UNFINISHED of this text where we introduce a clausal language
for a ‘comfortable’ definition of functions such as is expected in computer
programming.

In this section we introduce syntactical restrictions imposed on recursive
applications in τ which will guarantee that the measure goes down regardless
of the form of the term τ .

8.4.1 Case discrimination function D. We will need in PA the ternary
case discrimination function D satisfying

P̀A D(x′, y, z) = y (1)

P̀A D(0, y, z) = z . (2)

The function is introduced into PA by contextual definition:

P̀Ax D(x, y, z) = v ↔ x > 0 ∧ v = y ∨ x = 0 ∧ v = z (3)

whose existence and uniqueness conditions are straightforward to prove.
Properties (1), (2) directly follow from the defining axiom.

8.4.2 Characteristic functions of predicates. Let P be an n-ary pred-
icate which has been introduced into PA. We denote by P∗ its characteristic
function which is an n-ary function introduced into PA by minimalization:

P̀Ax P∗(~x) = µy[P (~x)→ y = 1] . (1)

This is legal because the existence condition P̀A ∃y(P (~x)→ y = 1) is trivially
provable. We have

P̀A P (~x)→ P∗(~x) = 1 (2)

P̀A P (~x)↔ P∗(~x) > 0 (3)

because (2) directly follows from the defining axiom for P∗. Property (3)
in the direction (→) follows from (2). In the direction (←) we note that
the minimality condition in the defining axiom for P∗ is P̀A y < P∗(~x) →
¬(P (~x)→ y = 1) from which we obtain (←) of (3) by instantiation y := 0.

260



8.4.3 Numerals. We will need a notation for successor terms directly de-
noting natural numbers. The terms are called (monadic) numerals and they
are defined in the meta-theory to satisfy the following recurrences:

0m ≡ 0 (1)
n+ 1m ≡ n

′
m . (2)

Note that for a number n the numeral term nm is of the form

0

n
︷︸︸︷

′ . . .′

and it denotes n in the standard model of PA.

8.4.4 Measure induction. Properties of functions introduced into PA by
course of values recursion with measure µ are generally proved by induction
with measure.

Let T be a proper extension of PA containing the predicate <, φ[~x] a
formula, and µ[~x] a term of LT with n ≥ 1 indicated variables. Both φ and
µ can have additional free variables as parameters. Furthermore, let the new
variables ~y be pairwise distinct from the variables of ~x. The formula of the
induction with measure µ is

∀~x(∀~y(µ[~y] < µ[~x]→ φ[~y])→ φ[~x])→ φ[~x] (1)

The reader will note that for ~x ≡ x and µ[x] ≡ x the schema of measure
induction is the schema of complete induction (see Par. 7.3.7).

8.4.5 Theorem. Every proper extension T of PA containing the predicate
< proves the schema of induction with measure 8.4.4(1).

Proof. We prove 8.4.4(1) from an auxiliary property

T ` ∀~x(∀~y(µ[~y] < µ[~x]→ φ[~y])→ φ[~x])→ ∀~v(µ[~v] < z → φ[~v])

with ~v and z new. We work in T , assume the formula expressing that φ is
µ-progressive

∀~x(∀~y(µ[~y] < µ[~x]→ φ[~y])→ φ[~x]) , (1)

and prove

∀~v(µ[~v] < z → φ[~v]) (2)

by induction on z. In the base case there is nothing to prove. In the inductive
case we take any ~v s.t. µ[~v] < z′ and consider two cases by dichotomy. If
µ[~v] < z we obtain φ[~v] from IH: (2), If µ[~v] ≥ z then we have µ[~v] = z and
we use a variant ∀~y(µ[~y] < µ[~v] → φ[~y]) of IH: (2) in (1) instantiated with
~x := ~v to obtain φ[~v].

The formula for the measure induction 8.4.4(1) follows from the auxiliary
property by instantiating its consequent with z := µ[~x] + 1 and ~v := ~x. ut

261



8.4.6 Extension by course of values recursion with measure. Let T
be a proper extension of PA. We assume that the pairing function (x, y), the
case discrimination function D(x, y, z), as well as the characteristic function
<∗ of the predicate < have been introduced into T .

We wish to extend T into a theory S whose language contains the n-ary
function symbol f (n ≥ 1) in such a way that a course of values definition
f(~x) = τ is a theorem of S. For that we assume that τ [f ; ~x] is a term of
LT + f with its free variables among the n indicated ones. Thus τ is built
up from the variables among ~x, numerals nm, and applications g1(~ρ), . . . ,
gk(~ρ) of functions where for 1 ≤ j ≤ k the function gj has the arity nj ≥ 1.
The term τ can also recursively apply the n-ary function symbol f which
we indicate as τ [f ; ~x]. The recursive applications f(~ρ) can be arbitrary, even
nested when f is applied in terms ~ρ. There is no restriction on the depth of
nesting. The only condition, which is a semantic one, is that the recursion
‘goes down’ in a measure term µ[~x] of LT with its free variables among the
n indicated ones.

We keep the notation introduced in this paragraph fixed until the end of
the section.

For an n-tuple of terms ~ρ and an n-ary function symbol g we will denote
by τ [g; ~ρ] the term obtained from τ by replacing in it all occurrences of
variables from among ~x by the corresponding terms from among ~ρ and by
the replacement of all recursive applications f(~σ) by applications g(~σ). We
will also use the notation τ [[f ]µ~x; ~x] as an abbreviation for the term

τ [λ~y.D((µ[~y]<∗µ[~x], f(~y), 0); ~x] ,

i.e. the term where we have replaced every application of f(~σ) in τ by the
guarded application

D((µ[~σ]<∗µ[~x]), f(~σ), 0) .

The reader will note that the substitution of terms ~ρ for the corresponding
variables ~x in the guarded term τ [[f ]µ~x; ~x] is written as τ [[f ]µ]

~ρ ; ~ρ] and it is an
abbreviation for the term

τ [λ~y.D((µ[~y]<∗µ[~ρ], f(~y), 0); ~ρ] ,

i.e. the term where we have replaced every application of f(~σ) in τ by the
guarded application

D((µ[~σ]<∗µ[~ρ]), f(~σ), 0) .

We use the same notation ρ[[f ]µ~x; ~x] also for subterms ρ of τ .
The extension of T to S with the (n+ 1)-ary function symbol f and with

the axioms universal closures of

f(~x) = τ [[f ]µ~x; ~x] (1)
∀~v(µ[~v] < µ[~x]→ φ[p〈τ〉q, ~v, f(~v)])→ φ[p〈τ〉q, ~x, f(~x)] . (2)

262



is called extension by course of values recursion with measure. The formula
φ[c, ~x, y], which is of LT and it is used in the single induction (with measure)
axiom of S containing the symbol f , will be determined in Par. 8.4.13.

We do not impose any semantic restrictions on the recursion in τ to guar-
antee that the measure goes down, We achieve the same effect by purely syn-
tactic means where we surround recursive applications by if-then-else guards.
Such a restriction is acceptable from the point of view of mathematics where
it simplifies the proofs below but, by amounting to an additional test, it is
not acceptable in computer programming. We will discuss the semantic con-
ditions (which can be syntactically enforced by provability) in the part three
UNFINISHED of this text.

8.4.7 Special terms. Pursuing our plan of introducing the function f into
the theory S, we first extend the theory T to T1 by introducing the list index-
ing function (x)i (see Par. 8.3.18) and, by explicit definitions, the functions
hj for every 1 ≤ j ≤ k as special contractions of functions gj :

T1 ` hj(x) = gj((x)0, (x)1m
, . . . , (x)nj−1

m
) . (1)

It should be clear that we have for all 1 ≤ j ≤ k:

T1 ` hj(x1, . . . , xnj , 0) = gj(x1, . . . , xnj ) . (2)

The reader will recall our convention that the single argument of hj is ob-
tained by pairing.

For every subterm ρ of τ we define its contraction term 〈ρ〉 by induction
on the structure of ρ to satisfy:

〈xi〉 ≡ (x)i−1
m

〈nm〉 ≡ nm
〈gj(ρ1, . . . , ρn)〉 ≡ hj(〈ρ1〉, . . . , 〈ρn〉, 0)
〈f(ρ1, . . . , ρn)〉 ≡ r(〈ρ1〉, . . . , 〈ρn〉, 0)

where r is a new unary function symbol. The reader will note that the term 〈τ〉
is built up from the single variable x used only in applications (x)i−1

m
where

1 ≤ i ≤ n and from numerals mm by applications of unary function symbols
r and hj where 1 ≤ j ≤ k whose arguments may contain also applications of
the pairing function. Until the end of this section we call such terms special.

We designate by µ1[x] the term obtained from the measure term µ[~x] by
replacing for every 1 ≤ i ≤ n the occurrences of variables xi by (x)i−1

m
.

Since T1 ` (x1, . . . , xn, 0)i−1
m

= xi for all 1 ≤ i ≤ n, we van prove by a
simple meta-theoretical induction on the structure of µ:

T1 ` µ1[(x1, . . . , xn, 0)] = µ[x1, . . . , xn] . (3)

263



8.4.8 Computation trees. We will introduce the function f into S by the
arithmetization of computations of terms r(am) using as computation rule
the identity r(x) = 〈τ〉[[r]µ1

x ;x]. Terms of the form r(am) are special cases
of subterms of 〈τ〉[[r]µ1

am
; am] and we will need to record the computation of

all subterms ρ of 〈τ〉. The computation of such a special term ρ is recorded
by a binary labelled tree with the label consisting of a triple 〈ρ, a, v〉 where
a is the value assigned to the variable x which may occur in ρ and v is the
computed value, i.e. the denotation of the term ρ[[r]µ1

am
; am]. The two sons t1

and t2 are the trees recording possible subcomputations:

〈ρ, a, v〉

t1 t2

The form of the term ρ determines the shape of the sons t1 and t2 as follows.
If ρ ≡ ρ1, ρ2 then the computation tree looks as follows:

〈(ρ1, ρ2), a, (v1, v2)〉
〈ρ1, a, v1〉

t1

〈ρ2, a, v2〉
t2

where the denotation v1 of ρ1[[r]µ1
am

; am] is computed in the left son and the
denotation v2 of ρ2[[r]µ1

am
; am] is computed in the right son. The denotation

of (ρ1, ρ2)[[r]µ1
am

; am] is then the pair (v1, v2).
If ρ ≡ (x)im or ρ ≡ nm then the respective computation trees are:

〈(x)im , a, (a)i〉 〈nm, a, n〉

where there are no subcomputations because the denotations of (x)im [[r]µam ; am]
and nm[[r]µam ; am] can be determined directly as (a)i and n respectively.

If ρ ≡ hj(ρ1) then the computation tree is

〈hj(ρ1), a, hj(v)〉
〈ρ1, a, v〉

t

where we record in the left son the computation of the argument ρ1 into the
value v and then the denotation of hj(ρ1)[[r]µ1

am
; am] is hj(v). There is not

need to record any computation in the right son.
Finally, if ρ ≡ r(ρ1) then there are two possible computation trees:

〈r(ρ1), a, w〉
〈ρ1, a, v〉

t1

〈〈τ〉, v, w〉
t2

〈r(ρ1), a, 0〉
〈ρ1, a, v〉

t1

264



In both cases the denotation v of the argument ρ1 is computed in the
left son. The two cases are determined by the outcome of the test N �
µ1[vm] < µ1[am]. If the measure decreases, i.e. if the formula µ1[vm] < µ1[am]
is true in the standard model, then the computation tree is shown above on
the left. This is when the identity r(x) = 〈τ〉[[r]µ1

x ;x] is used as the com-
putation rule in the form r(vm) 7→ 〈τ〉[[r]µ1

vm
; vm]. The denotation w of the

term 〈τ〉[[r]µ1
vm

; vm] is computed in the right son and the denotation of the
recursive application r(vm) is determined as w.

If the outcome of the test is negative then the computation tree is shown
above on the right where the denotation of r(vm) is 0. The reader will note
that the computation of r(ρ) thus evaluates the guard

r(ρ1)[[r]µ1
am

; am] ≡ D(µ1[ρ1[[r]µ1
am

; am]]<∗µ1[x[[r]µ1
am

; am]], r(ρ1[[r]µ1
am

; am]), 0) .

It should be obvious that we can construct a computation tree for any
subterm ρ of 〈τ〉 and any assignment a of the value of the variable x because
the terms in the labels of the tree are always smaller except in the right
sons of recursive applications but then the measure decreases and the initial
measure, which is the denotation of µ1[am], can decrease only finitely many
times.

The property of t being a computation tree can be expressed as follows:

for all non-empty subtrees s of t the label of s is of a form 〈ρ, a, v〉
where ρ is a subterm of 〈τ〉 and the relation between this label and
the labels of the two sons of s is as shown in the above diagrams.

We will arithmetize the computation trees by extending in Par. 8.4.9 the
theory T1 to T3 with the arithmetized subtree predicate a E b where a codes
a subtree of the tree coded by b We will then extend in Par. 8.4.11 the theory
T3 to T4 with a predicate Ct(c) holding in the standard model iff c codes a
computation tree t. The predicate Ct will be introduced with the help of the
he predicate Nd(a) expressing the local node relation between the label of
the non-empty tree coded by a and the labels of its two sons.

8.4.9 Subtree predicate. We will now extend the theory T1 into a theory
T3 by introducing a binary predicate u E t intended to hold whenever u codes
a subtree of a binary tree coded by t. The empty binary tree is coded by the
number 0 and the binary tree with the label b and two sons t1, t2 by the
triple n, a1, a2 where a1 and a2 are the codes of the respective sons.

We wish the subtree predicate to satisfy the following:

T3 ` u E t↔ u = 0 ∨ u = t ∨ ∃b∃t1∃t2(t = b, t1, t2 ∧ (u E t1 ∨ u E t2)) .
(1)

The reader will note that such a subtree predicate u E t does not fully express
the relation that u codes a subtree of a binary tree coded by t. In particular,

265



we have 0 E t even if t is not a code. But if t codes a binary tree and u E t
holds then u codes a subtree of the tree coded by t.

Property (1) is a recurrence where the subtree predicate is applied on the
right to lesser second arguments t1 < t and t2 < t than on the left. Recursive
predicates are usually defined from their characteristic functions. We cannot
introduce E∗ by primitive recursion because its natural recurrences

(0 E∗ t) = 1
(u E∗ u) = 1

(u E∗ t1) = 1 ∨ (u E∗ t2) = 1→ (u E∗ b, t1, t2) = 1

are of the form of so called course of values recursion where the recursive
argument (the second one) does not decrease in the recursion to its immediate
predecessor. Course of values recursion can be reduced to primitive recursion
with the help of the course of values function h for E∗ such that the following
holds:

h(t, u) = (u E∗ t− 1), (u E∗ t− 2), . . . , (u E∗ 1), (u E∗ 0), 0 .

We clearly have
(h(t+ i′, u))i → u E∗ t

and so the values of applications u E∗ t1 and u E∗ t2 in the recurrences for
E∗ can be recovered from the course of values function h as (h(t, u))i where
t1 + i′ = t or t2 + i′ = t respectively.

Preparatory to the introduction of the function h we explicitly extend T1

into T2 with an auxiliary ternary predicate R:

T2 ` R(u, t, a)↔ u = 0 ∨ u = t ∨
∃b∃t1∃t2∃i(t = b, t1, t2 ∧ (t1 + i′ = t ∨ t2 + i′ = t) ∧ (a)i > 0) ,

(2)

we also introduce into T1 its characteristic function R∗ (see Par. 8.4.2), and
finally the course of values function h which is defined by primitive recursion:

T2 ` h(0, u) = 0 (3)
T2 ` h(t′, u) = R∗(u, t, h(t, u)), h(t, u) . (4)

The reader will note that the characteristic function E∗ for E could be
now introduced into T2 (but we will not need to do this) by explicit definition
u E∗ t = R∗(u, t, h(t, u)) because of the following property:

T2 ` (h(s+ i′, u))i = R∗(u, s, h(s, u)) (5)

which is proved in T2 by induction on i. In the base case we have

(h(s+0′, u))0 = (h(s′, u))0 = (R∗(u, s, h(s, u)), h(s, u))0
8.3.18(2)

= R∗(u, s, h(s, u)) .

266



In the inductive case we have

(h(s+ i′′, u))i′ = (h((s+ i′)′, u))i′ =

(R∗(u, s+ i′, h(s+ i′, u)), h(s+ i′, u))i′
8.3.18(3)

=

(h(s+ i′, u))i
IH= R∗(u, s, h(s, u)) .

We are now ready to extend T2 into T3 by introducing the subtree predicate
by explicit definition:

T3 ` u E t↔ R(u, t, h(t, u)) . (6)

The predicate satisfies the following auxiliary property:

T3 ` u E s ∧ s < t↔ ∃i(s+ i′ = t ∧ (h(t, u))i > 0) (7)

for which we have u E s and s < t iff R(u, s, h(s, u)) and s < t iff, by 8.4.2(3),
R∗(u, s, h(s, u)) > 0 and s + i′ = t for some i iff, by (5), (h(t, u))i > 0 and
s+ i′ = t for some i.

We are now ready to prove in T3 the basic recurrence (1) for the subtree
predicate. We have u E t iff R(u, t, h(t, u)) iff, by (2), (u = 0 ∨ u = t) or
t = b, t1, t2, (t1 + i′ = t∨ t2 + i′ = t), and (h(t, u))i > 0 for some b, t1, t2, and
i iff (u = 0 ∨ u = t) or t = b, t1, t2 and

∃i(t1 + i′ = t ∧ (h(t, u))i > 0) ∨ ∃i(t2 + i′ = t ∧ (h(t, u))i > 0)

for some b, t1, t2 iff, by (7), (u = 0 ∨ u = t) or t = b, t1, t2 and

t1 < t ∧ u E t1 ∨ t2 < t ∧ u E t2

for some b, t1, t2 iff, by 8.3.16(3), (u = 0 ∨ u = t) or t = b, t1, t2 and
(u E t1 ∨ u E t2) for some b, t1, t2.

8.4.10 Codes of special terms. Special terms are arithmetized by en-
coding into numbers. To that end we introduce the following constructor
functions operating on terms:

Xρ ≡ 0, ρ (1)
N(ρ) ≡ 1, ρ (2)

P (ρ1, ρ2) ≡ 2, ρ1, ρ2 (3)
Hρ1(ρ2) ≡ 3, ρ1, ρ2 (4)
R(ρ) ≡ 4, ρ . (5)

Constructor meta-functions are used to assign codes pρq (Gödel numbers) to
special terms ρ to satisfy:

267



p(x)imq ≡Xim
(6)

pmmq ≡N(mm) (7)
pτ1, τ2q ≡ P (pτ1q, pτ2q) (8)
phj(τ)q ≡Hj

m
(pτq) (9)

pr(τ)q ≡ R(pτq) . (10)

The reader will note that pρq stands for a closed term of LT2 whose interpre-
tation in the standard model of PA denotes the code of the special term ρ.
Specifically, p3mq stands for the termN(0′′′) which denotes the same number
as the term 1, 3, i.e. the number 15.

The reader may ask why we have defined the constructor function as
meta-functions yielding terms rather than as functions in PA? The reason
for that will be seen in Par. 8.4.13 where it will be essential that the terms
constructed with the help of constructors are of LT .

8.4.11 The predicate Ct. We will now extend the theory T3 to T4 by
introducing the predicate Ct(t) holding of codes t of computation trees. We
arithmetize (encode) the empty computation tree as the number 0 and the
tree

〈ρ, a, v〉

t1 t2

by the number denoted by the term

(pρq, am, vm), pt1q, pt2q

where pt1q and pt2q encode the two sons respectively. The predicate is defined
with the help of an auxiliary unary predicate Nd(t) holding iff the labels of
t and of its sons satisfy the local node conditions discussed in Par. 8.4.8.

Both predicates are introduced by explicit definitions:

T4 ` Nd(t)↔ ∃c∃a∃v∃t1∃t2(t = (c, a, v), t1, t2 ∧ (
∃i(c = Xi ∧ i < n ∧ v = (a)i ∧ t1 = 0 ∧ t2 = 0) ∨
∃m(c = N(m) ∧ v = n ∧ t1 = 0 ∧ t2 = 0) ∨
∃c1∃c2∃v1∃v2∃s1∃s2(c = P (c1, c2) ∧ v = v1, v2 ∧
t1 = (c1, a, v1), s1 ∧ t2 = (c2, a, v2), s2) ∨
∃c1∃j∃w∃s1(c = Hj(c1) ∧ t1 = (c1, a, w), s1 ∧ t2 = 0 ∧

(j = 1m ∧ v = h1(w) ∨ . . . ∨ j = km ∧ v = hk(w))) ∨
∃c1∃w∃s1∃s2(c = R(c1) ∧ t1 = (c1, a, w), s1 ∧

(µ1[w] < µ1[a] ∧ t2 = (pτq, w, v), s2 ∨
µ1[w] ≥ µ[a] ∧ v = 0 ∧ t2 = 0))) (1)

T4 ` Ct(t)↔ ∀u(u E t ∧ u > 0→ Nd(u)) . (2)

268



and Ct satisfies the following:

T4 ` Ct(0) (3)
T4 ` i < n→ Ct((Xi, a, (a)i), 0, 0) (4)
T4 ` Ct((N(m), a,m), 0, 0) (5)
T4 ` Ct((c1, a, v1), s1) ∧ Ct((c2, a, v2), s2)→

Ct((P (c1, c2), a, v1, v2), ((c1, a, v1), s1), ((c2, a, v2), s2)) (6)
T4 ` Ct((c, a, v), s)→ Ct((Hj

m
(c), a, hj(v)), ((c, a, v), s), 0) (7)

T4 ` Ct((c, a, v), s1) ∧ µ1[v] < µ1[a] ∧ Ct((p〈τ〉q, v, w), s2)→
Ct((R(c), a, w), ((c, a, v), s1), ((p〈τ〉q, v, w), s2)) (8)

T4 ` Ct((c, a, v), s1) ∧ µ1[v] ≥ µ1[a]→ Ct((R(c), a, 0), ((c, a, v), s1), 0) (9)
T4 ` Ct(b, t1, t2)→ Ct(t1) ∧ Ct(t2) . (10)

Property (7) is a schema of k theorems one for each 1 ≤ j ≤ k. Properties
(3) through (9) can be called sufficient conditions for computation trees to
be constructed out of smaller trees. The property (10) can be seen as stating
a necessary condition for a triple b, t1, t2 to be a computation tree.

(3): This holds trivially.
(4): Assume i < n and take any u > 0 such that u E (Xi, a, (a)i), 0, 0.

Since u E 0 leads to contradiction u = 0, it must be the case that u =
(Xi, a, (a)i)), 0, 0 by 8.4.9(1) and thus Nd(u). This proves the consequent.

(5): Take any u > 0 such that u E (N(m), a,m), 0, 0. Since u E 0 leads
to contradiction u = 0, it must be the case that u = (N(m), a,m), 0, 0 by
8.4.9(1) and thus Nd(u). This proves the consequent.

(6): Assume Ct((c1, a, v1), s1), Ct((c2, a, v2), s2). For

t := (P (c1, c2), a, v1, v2), ((c1, a, v1), s1), ((c2, a, v2), s2)

we wish to prove Ct(t). We thus take any u > 0 such that u E t. We consider
the three cases implied by 8.4.9(1). If u = t then we can see that Nd(u) and
hence Ct(t) hold. If u E (c1, a, v1), s1 then we obtain Nd(u) and hence Ct(t)
from the assumption Ct((c1, a, v1), s1). If u E (c2, a, v2), s2 then we obtain
Nd(u) and hence Ct(t) from the assumption Ct((c2, a, v2), s2).

(7): Take any 1 ≤ j ≤ k and assume Ct((c, a, v), s). For

t := (Hj
m

(c), a, hj(v)), ((c, a, v), s), 0

we wish to prove Ct(t). We thus take any u > 0 such that u E t. Since u E 0
leads to contradiction u = 0, we consider the two cases implied by 8.4.9(1).
If u = t then we can see that Nd(u) and hence Ct(t) hold. If u E (c, a, v), s
we obtain Nd(u), and hence Ct(t), from the assumption Ct((c, a, v), s).

(8): Assume Ct((c, a, v), s1), µ1[v] < µ1[a], Ct((p〈τ〉q, v, w), s2), and for

t := (R(c), a, w), ((c, a, v), s1), ((p〈τ〉q, v, w), s2)

269



we wish to prove Ct(t). We thus take any u > 0 such that u E t. We consider
the three cases implied by 8.4.9(1). If u = t then we can see that Nd(u) and
hence Ct(t) hold. If u E (c, a, v), s1 or u E (p〈τ〉q, v, w), s2 then we obtain
Nd(u), and hence Ct(t) from the corresponding assumptions on Ct .

(9): Assume Ct((c, a, v), s1), µ1[v] ≥ µ1[a], and for

t := (R(c), a, 0), ((c, a, v), s1), 0

we wish to prove Ct(t). We thus take any u > 0 such that u E t. Since u E 0
leads to contradiction u = 0, we consider the two cases implied by 8.4.9(1).
If u = t then we can see that Nd(u) and hence Ct(t) hold. If u E (c, a, v), s1

then we obtain Nd(u), and hence Ct(t), from the assumption Ct((c, a, v), s1).
(10): Assume Ct(b, t1, t2) and for the proof of Ct(t1) take any u > 0 such

that u E t1. We have u E b, t1, t2 by 8.4.9(1), Nd(u) from the assumption by
(2), and hence Ct(t1) by (2). We prove Ct(t2) similarly.

8.4.12 Existence and uniqueness properties for r. We could now in-
troduce the function r by the implicit definition ∃sCt((p〈τ〉q, x, r(x)), s) and
prove that it solves the identity r(x) = 〈τ〉[[r]µ1

x ;x]. In the proof of Theorem
8.4.14 we will introduce instead the n-ary function f directly by an implicit
axiom equivalent to

∃sCt((p〈τ〉q, (x1, . . . , xn, 0), f(x1, . . . , xn)), s)

and then solve the identity f(~x) = τ [[f ]µ~x; ~x].
In any case we will need the following properties from which the existence

uniqueness conditions for r and f will follow:

T4 ` ∃y∃sCt((p〈τ〉q, x, y), s) (1)
T4 ` Ct((c, x, y1), s1) ∧ Ct((c, x, y2), s2)→ y1 = y2 ∧ s1 = s2 . (2)

(1): We first prove the following auxiliary properties:

T4 ` ∀v(µ1[v] < µ1[x]→ ∃y∃sCt((p〈τ〉q, v, y), s))→ ∃y∃sCt((pρq, x, y), s) .
(3)

for the finitely many subterms ρ of 〈τ〉 in the order of their construction, i.e.
by the meta-theoretical induction on the construction of the special term ρ.
So assume the antecedent

∀v(µ1[v] < µ1[x]→ ∃y∃sCt((p〈τ〉q, v, y), s) (4)

and continue by the case analysis of the special term ρ where we wish to find
a y and s such that Ct((pρq, x, y), s).

If ρ ≡ (x)im where i < n = nm then pρq ≡ Xi, we use 8.4.11(4), and set
y := (x)i, s := 0, 0.

270



If ρ ≡ mm then pρq ≡ N(mm), we use 8.4.11(5), and set y := mm,
s := 0, 0.

If ρ ≡ ρ1, ρ2 then pρq ≡ P (pρ1q, pρ2q) and we have

T4 ` (4)→ ∃y∃sCt((pρ1q, x, y), s)
T4 ` (4)→ ∃y∃sCt((pρ2q, x, y), s)

by two inductive meta-hypotheses. We use the assumption (4) and obtain
Ct((pρ1q, x, y1), s1), Ct((pρ2q, x, y2), s2) for some y1, y2, s1, and s2. We now
use 8.4.11(6) and set y := y1, y2, s := ((pρ1q, x, y1), s1), ((pρ2q, x, y2), s2).

If ρ ≡ hj(ρ1) where 1 ≤ j ≤ k then pρq ≡ Hj
m

(pρ1q) and we have
Ct((pρ1q, x, v), s1) for some v and s1 from the inductive meta-hypothesis.
We now use 8.4.11(7) and set y := hj(v), s := ((pρ1q, x, v), s1), 0.

If ρ ≡ r(ρ1) then pρq ≡ R(pρ1q) and we have Ct((pρ1q, x, v), s1)
for some v and s1 from the inductive meta-hypothesis. We now consider
two cases. If µ1[v] < µ1[x] we have Ct((p〈τ〉q, v, z), s2) for some w and
s2 from (4) and it suffices now to use 8.4.11(8) and set y := w, s :=
((pρ1q, x, v), s1), ((p〈τ〉q, v, w), s2). If µ1[v] ≥ µ1[x] then it suffices to use
8.4.11(9) and set y := 0, s := ((pρ1q, x, v), s1), 0. This ends the proof of the
auxiliary properties (3).

We now prove (1) by measure induction with µ1[x]. The induction hy-
pothesis is (4) and the property follows from it by (3) with ρ := 〈τ〉.

(2): We prove

T4 ` ∀c∀x∀y1∀y2∀s2(Ct((c, x, y1), s1) ∧ Ct((c, x, y2), s2)→ y1 = y2 ∧ s1 = s2)
(5)

by complete induction on s1. So we take any c, x, y1, y2, s2, and assume
Ct((c, x, y1), s1), Ct((c, x, y2), s2). We have (c, x, y1), s1 E (c, x, y1), s1 by
8.4.9(1),

Nd((c, x, y1), s1) (6)

by 8.4.11(2), s1 = t1, t2 for some t1 and t2 by 8.4.11(1), and Ct(t1), Ct(t2)
by 8.4.11(10). We similarly obtain

Nd((c, x, y2), s2) , (7)

s2 = u1, u2, Ct(u1), and Ct(u2) for some u1 and u2.
We now consider the cases implied by (6) and (7) where we wish to prove

y1 = y2, t1 = u1, and t2 = u2.
If c = Xi for some i then we have i < n, y1 = (x)i = y2, t1 = 0 = u1, and

t2 = 0 = u2.
If c = N(m) for some m then we have y1 = m = y2, t1 = 0 = u1, and

t2 = 0 = u2.
If c = P (c1, c2) for some c1, c2 then we have y1 = w1, w2, t1 =

(c1, x, w1), s3; t2 = (c2, x, w2), s4 for some w1, w2, s3, s4 by (6) and y2 =

271



z1, z2; u1 = (c1, x, z1), s5; u2 = (c2, x, z2), s6 for some z1, z2, s5, s6 by (7).
Since s3 < t1 < s1, we get w1 = z1; s3 = s5 from Ct(t1), Ct(u1) by IH.
Similarly, since s4 < t2 < s1, we get w2 = z2; s4 = s6 from Ct(t2), Ct(u2) by
IH. Hence y1 = y2; t1 = u1; and t2 = u2.

If c = Hi(c1) for some i, c1 then we have

i = 1m ∧ y1 = h1(w) ∨ . . . ∨ i = km ∧ y1 = hk(w) ,

t1 = (c1, x, w), s3; t2 = 0 for some w and s3 by (6) and

i = 1m ∧ y2 = h1(z) ∨ . . . ∨ i = km ∧ y2 = hk(z) ,

u1 = (c1, x, z), s4; u2 = 0 for some z and s4 by (7). Since s3 < t1 < s1, we
get w = z; s3 = s4 by IH from Ct(t1), Ct(u1). Hence y1 = y2; t1 = u1; and
t2 = u2.

If c = R(c1) for some c1 then we have t1 = (c1, x, w), s3 for some w and
s3 by (6) and u1 = (c1, x, z), s4 for some z and s4 by (7). Since s3 < t1 < s1,
we get w = z, s3 = s4 by IH from Ct(t1), Ct(u1). Hence t1 = u1. We now
consider two cases. If µ1[w] < µ1[x] then we have t2 = pτq, w, y1, s5 for some
s5 by (6) and u2 = pτq, z, y2, s6 for some s6 by (7). Since s5 < t2 < s1,
w = z, we get y1 = y2, s5 = s6 by IH from Ct(t2), Ct(u2). Hence t2 = u2. If
µ1[w] ≥ µ1[x] then we have y1 = 0 = y2 and t2 = 0 = u2 by (6), (7).

8.4.13 Graph of the arithmetized denotation function for subterms
of τ . We will now effectively determine an (n + 2)-ary formula φ[c, ~x, y] of
LT with the free variables among the indicated ones, which is used in the
induction axiom 8.4.6(2) of S. The formula can be viewed as the graph of
the arithmetized denotation function for the subterms ρ of τ because we will
have N � φ[p〈ρ〉q, ~x, y] in the standard model of S iff y is the denotation of
the term ρ[[f ]µ~x, ~x] in the assignment ~x.

Since T4 is an extension by definitions of T , the formula φ[c, x1, . . . , xn, y]
is effectively obtained from the formula

∃sCt((c, (x1, . . . , xn, 0), y), s)

of LT4 by translation and in such a way that we have

T4 ` φ[c, x1, . . . , xn, y]↔ ∃sCt((c, (x1, . . . , xn, 0), y), s) (1)

by the Theorem on Extensions by definition 6.6.2. We will need the following
properties of the formula φ:

272



T ` ∃yφ[p〈τ〉q, ~x, y] (2)
T ` φ[c, ~x, y1] ∧ φ[c, ~x, y2]→ y1 = y2 (3)
T ` φ[Xi−1

m
, ~x, xi] (4)

T ` φ[N(m), ~x,m] (5)
T ` φ[c1, ~x, v1] ∧ φ[c2, ~x, v2]→ φ[P (c1, c2), ~x, (v1, v2)] (6)
T ` φ[c, ~x, (v1, . . . , vnj , 0)]→ φ[Hj

m
(c), ~x, gj(v1, . . . , vnj )] (7)

T ` φ[c, ~x, (v1, . . . , vn, 0)] ∧ µ[v1, . . . , vn] < µ[~x] ∧
φ[p〈τ〉q, v1, . . . , vn, w]→ φ[R(c), ~x, w] (8)

T ` φ[c, ~x, (v1, . . . , vn, 0)] ∧ µ[v1, . . . , vn] ≥ µ[~x]→
φ[R(c), ~x, 0] . (9)

for every 1 ≤ i ≤ n and 1 ≤ j ≤ k. In the following proofs we work in T4

and use the equivalence (1) without explicitly referring to it. Properties (2)
through (9) are thus derived in T4 but, since they all are in the language LT ,
they are also theorems of T because T4 is conservative over T .

(2): A direct consequence of 8.4.12(1).
(3): A direct consequence of 8.4.12(2).
(4): Take an i s.t. 1 ≤ i ≤ n. Since T4 proves i− 1m < n and

(x1, . . . , xn, 0)i−1
m

= xi ,

we get Ct((Xi−1
m
, (x1, . . . , xn, 0), xi), 0, 0) by 8.4.11(4) and then

∃sCt((Xi−1
m
, (x1, . . . , xn, 0), xi), s) .

(5): A direct consequence of 8.4.11(5).
(6): A direct consequence of 8.4.11(6).
(7): Take any j s.t. 1 ≤ j ≤ k and assume the antecedent. Then

Ct((c, (x1, . . . , xn, 0), (v1, . . . , vnj , 0)), s1) for some s1 and we get

∃sCt((Hj
m

(c), (x1, . . . , xn, 0), hj(v1, . . . , vnj , 0)), s)

by 8.4.11(7). We now use 8.4.7(2) to get

∃sCt((Hj
m

(c), (x1, . . . , xn, 0), gj(v1, . . . , vnj )), s) .

(8): Assume the antecedent. Then Ct((c, (x1, . . . , xn, 0), (v1, . . . , vn, 0)), s1),
µ[v1, . . . , vn] < µ[x1, . . . , xn], and Ct((p〈c〉q, (v1, . . . , vn, 0), w), s2), for some
s1, s2. We have µ1[(v1, . . . , vn, 0)] < µ1[(x1, . . . , xn, 0)] by 8.4.7(3) and
∃sCt((R(c), (x1, . . . , xn, 0), w), s) by 8.4.11(8).

(9): This is similar to and somewhat simpler than (8).

273



8.4.14 Theorem. If T is a proper extension of PA containing the pairing
function (x, y), the case discrimination function D(x, y, z), as well as the
characteristic function <∗ of the predicate < then an extension of T by course
of values recursion with measure is an extension by definition.

Proof. Let T be as in the theorem, S an extension of T by course of values
recursion with measure as in Par. 8.4.6, and S1 an extension of T by implicit
definition with the defining axiom an universal closure of φ[p〈τ〉q, ~x, f(~x)].
We have LS1 = LS and S1 is an extension by definition of T by Thm. 6.6.3
because T proves the existence 8.4.13(2) and uniqueness 8.4.13(3) conditions
for f . Clearly

S1 ` φ[p〈τ〉q, ~x, f(~x)] . (1)

In order to prove the theorem it suffices to prove that the theories S and S1

are equivalent.
For the proof S1 ` S we derive auxiliary properties

S1 ` φ[p〈ρ〉q, ~x, ρ[[f ]µ~x; ~x]] (2)

for the finitely many subterms ρ of τ by the meta-induction on the construc-
tion of ρ.

If ρ ≡ xi where 1 ≤ i ≤ n then, since p〈xi〉q ≡ p(x)i−1
m
q ≡ Xi−1

m
, we

have φ[Xi−1
m
, ~x, xi] by 8.4.13(4) and we note that xi[[f ]µ~x; ~x] ≡ xi.

If ρ ≡ mm then, since p〈mm〉q ≡ pmmq ≡N(mm), we have φ[N(mm), ~x,mm]
by 8.4.13(5) and we note that mm[[f ]µ~x; ~x] ≡ mm.

If ρ ≡ gj(ρ1, . . . , ρnj ) where 1 ≤ j ≤ k we obtain φ[p〈ρ1〉q, ~x, ρ1[[f ]µ~x; ~x]],
. . . , φ[p〈ρnj 〉q, ~x, ρn[[f ]µ~x; ~x]] by nj inductive meta-hypotheses. Since for

c = P (p〈ρ1〉q, . . . ,P (p〈ρnj 〉q,N(0)) . . .) ≡ p〈ρ1〉, . . . , 〈ρnj 〉, 0q

we have

p〈gj(ρ1, . . . , ρnj )〉q ≡ phj(〈ρ1〉, . . . , 〈ρnj 〉, 0)q ≡Hj
m

(c) ,

we get
φ[c, ~x, (ρ1[[f ]µ~x; ~x], . . . , ρnj [[f ]µ~x; ~x], 0)]

by nj applications of 8.4.13(6) and then

φ[Hj
m

(c), ~x, gj(ρ1[[f ]µ~x; ~x], . . . , ρnj [[f ]µ~x; ~x])]

by 8.4.13(7). We are done since

gj(ρ1, . . . , ρnj )[[f ]µ~x; ~x] ≡ gj(ρ1[[f ]µ~x; ~x], . . . , ρnj [[f ]µ~x; ~x]) .

If ρ ≡ f(ρ1, . . . , ρn) we obtain φ[p〈ρ1〉q, ~x, ρ1[[f ]µ~x; ~x]], . . . , φ[p〈ρn〉q, ~x, ρn[[f ]µ~x; ~x]]
by n inductive meta-hypotheses. Since for

274



c = P (p〈ρ1〉q, . . . ,P (p〈ρn〉q,N(0)) . . .) ≡ p〈ρ1〉, . . . , 〈ρn〉, 0q

we have
p〈f(ρ1, . . . , ρn)〉q ≡ pr(〈ρ1〉, . . . , 〈ρn〉, 0)q ≡ R(c) ,

we get
φ[c, ~x, (ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x], 0)]

by n applications of 8.4.13(6). We now consider two cases. If

µ[ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]] < µ[~x] (3)

then from (1) we obtain

φ[p〈τ〉q, ~x, f(ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x])] (4)

and from 8.4.13(8) φ[R(c), ~x, f(ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x])]. We are done be-
cause

f(ρ1, . . . , ρn)[[f ]µ~x; ~x] ≡ D((µ[ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]]<∗µ[~x]),
f(ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]), 0) =

f(ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]) .

If not (3) then we get φ[R(c), ~x, 0] by 8.4.13(9) and we are done because

f(ρ1, . . . , ρn)[[f ]µ~x; ~x] ≡ D((µ[ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]]<∗µ[~x]),
f(ρ1[[f ]µ~x; ~x], . . . , ρn[[f ]µ~x; ~x]), 0) = 0 .

With (2) proved, we derive the defining axiom 8.4.6(1) of S for f :
S1 ` f(~x) = τ [[f ]µ~x; ~x] by 8.4.13(3) from (1) and from (2) where we take
the subterm τ of τ for ρ. Since S1 is proper, it also proves the induction
axiom 8.4.6(2) of S by Thm. 8.4.5.

Vice versa, for the proof S ` S1 we derive auxiliary properties

S ` ∀~v(µ[~v] < µ[~x]→ φ[p〈τ〉q, ~v, f(~y)])→ φ[p〈ρ〉q, ~x, ρ[[f ]µ~x; ~x]] (5)

for the finitely many subterms ρ of τ by the meta-induction on the construc-
tion of ρ. So we assume

∀~v(µ[~v] < µ[~x]→ φ[p〈τ〉q, ~v, f(~y)]) (6)

and continue by the case analysis of ρ exactly as in the proof of (2) where the
only difference is in the case when ρ ≡ f(ρ1, . . . , ρn) and (3) holds. We obtain
(4) from the assumption (6) rather than from (1) as was the case above.

With (5) proved, we derive the defining axiom (1) for f in S1: S `
φ[p〈τ〉q, ~x, f(~x)] by the induction axiom with measure 8.4.6(2) where we as-
sume (6) and use (5) with the subterm τ of τ for ρ to get φ[p〈τ〉q, ~x, τ [[f ]µ~x; ~x]].
We now get (1) from the defining axiom 8.4.6(1) for f in S. ut

275



276



9. Proof Theory of PA

UNFINISHED Gentzen was first. but we need the strength of induction
schemas for the characterization purposes by means of provably recursive
functions.



278



Part II

Computer Programming

279





10. Clausal Language

10.1 Clausal Definitions

10.1.1 Characteristic terms of formulas. UNFINISHED only boolean
combinations of formulas

For a formula φ its characteristic term is denoted by φ∗

P̀A φ→ φ∗(~x) = 1 (1)

P̀A φ↔ φ∗(~x) > 0 (2)

10.1.2 Generalized terms. Generalized terms extend the language of (an
extension of) PA with new constructs which will be used purely in the meta-
theory to describe the introduction of functions and predicates into PA by
clausal definitions. Generalized terms will also be used in the description of
computation of such functions and predicates.

Generalized terms will not be used for the presentation purposes. Clausal
definitions are presented to humans in the form of clauses which are formulas
derived from generalized terms, and which are in the language of PA.

We do not intend to extend the language of first-order theories to contain
the generalized terms because some of the terms, by being variable binding
constructs similar to the µ-construct used for the introduction of functions
into PA by minimalization, go beyond the usual syntax of terms in mathe-
matical logic. The reader will recall that the µ term in a definition by min-
imalization f(~x) = µy[φ[~x, y]] does not belong to the language of first-order
terms either. The sole purpose of this definition is graphically illustrate the
defining axiom for f :

φ[~x, f(~x)] ∧ ∀z(z < f(~x)→ φ[~x, z]) .

Generalized terms are similar to the µ-terms in that some of them bind
variables and contain formulas , they also offer a succint notation in which to
describe the semantics and computation (syntax) of clausal definitions, but
they are definitely much less readable than the clauses derived from them.

We now describe the syntax of generalized terms which, unlike the com-
plex syntax which seems to be de rigueur in the definitions of programming



languages, is in the usual simple style of logic. The reader should bear on mind
that this syntax is not meant for presentation to humans. We use, in addi-
tion to the usual possibly subscripted meta-variables, x, y, . . . ranging over
variables, τ , ρ, . . . ranging over terms of PA, c, d, . . . ranging over constant
symbols of PA, φ, ψ, . . . ranging over formulas of PA, the meta-variables α,
β, . . . to range over generalized terms and p, m to range over meta-theoretic
constants for natural numbers. The class of generalized terms is defined rel-
atively to the current extension of PA as the minimal class containing the
kinds of terms listed in Fig. 10.1.

ρ

Neg(φ, α1, α2)

Dich(τ1, τ2, α1, α2)

Trich(τ1, τ2, α1, α2, α3)

Constmc1,...,cm(τ, α1, . . . , αm, αm+1)

Lety(τ, α)

Pairy,z(τ, α1, α2)

Cartmx1,...,xm(τ, α1, α2)

Monmy (τ, α0, α1, . . . , αm)

Padicap,my,z (τ, α0, α1, . . . , αm)

Padicbp,my,z (τ, α0, α1, . . . , αm)

UNFINISHED constructor discr

Fig. 10.1. Syntax of generalized terms

It would not be too difficult to assign denotations in the standard model
of PA to the generalized terms but, since they will play role only in the meta-
theory, we will not do it. We will instead translate the generalized terms to
the terms of PA by defining a meta-theoretic function α? yielding a term of
PA whose interpretation can be understood as the intended interpretation
of α. The translation function is defined by induction on the construction of
generalized terms α to satisfy the term identities listed in Fig. 10.2.

Generalized terms are never used in the formulas of theorems and proofs
of PA except in the translated form α? which stands for a term of PA. We do
not discuss the syntax and translation of generalized terms any further here
because we will study them in detail one kind at a time below.

The logician readers can be now expected to ask a question which is quite
natural to him. Why so many kinds of generalized terms are needed? Do we
not, when studying a formal system, choose as simple syntax as possible in
order to manage the study of the formal system? The answer is quite obvious
to computer scientist readers. We need many kinds of terms for pragmatic
reasons of good expressive power expected by computer programmers and

282



Neg(ψ, α1, α2)? ≡ D(ψ∗, α
?
1, α

?
2)

Dich(τ1, τ2, α1, α2)? ≡ D((τ1≤∗τ2), α?1, α
?
2)

Trich(τ1, τ2, α1, α2, α3)? ≡ D((τ1<∗τ2), α?1, D((τ2<∗τ1), α?3, α
?
2))

Constmc1,...,cm(τ, α1, . . . , αm, αm+1)? ≡
D((τ=∗c1), α?1, . . . , D((τ=∗cm), α?m, α

?
m+1))

Lety(τ, α)? ≡ α?y[τ ]

Pairy,z(τ, α1, α2)? ≡ D(τ, α?1y[H(τ)]
z
[T (τ)], α?2)

Cartmx1,...,xn−1,xm(τ, α1, α2)? ≡

D(Tm
.− 2(τ), α?1x1

[H T 0(τ)] . . .
xm−1

[H Tm
.− 2(τ)]

xm
[Tm

.− 1(τ)], α?2)

UNFINISHED monadic translation

UNFINISHED p-adic I translation

UNFINISHED p-adic II translation

UNFINISHED constructor pattern translation.

Fig. 10.2. Translation of generalized terms to the terms of PA

also because different kinds of terms yield efficient reduction sequences, i.e.
efficient computations. If we were only after the effectivity as studied in the
theory of computability then we would not need to extend the class of PA
terms at all.

10.1.3 Outline of clausal definitions. When we say that an n-ary func-
tion symbol f is introduced into PA by a clausal definition (see Par. 10.1.18
for the precise definition) then we mean a recursive extension with f of PA
with axioms the universal closures of formulas from a finite set

S = {φ1, . . . , φk} (1)

which are in the language of PA and are called clauses (cf Par. 10.1.4). The
set S is obtained from a measure function m and a formula

f(~x) = α[[f ]m~x ; ~x] (2)

by an effective meta-theoretic process called unfolding (cf Par. 10.1.17). The
unfolding process satisfies the following:

P̀A ∀~x f(~x) = α?[[f ]m~x ; ~x]↔ ∀φ1 ∧ . . . ∧ ∀φk (3)

where ∀φi stands for an universal closure of the clause φi ∈ S. This means
that the function f can be also introduced into PA by course of values recur-
sion with measure:

f(~x) = α?[[f ]m~x ; ~x] . (4)

283



and then the formulas from S are provable as theorems.
If the definition (4) is recursive, i.e. if applications of f occur in the

generalized term α and α is regular in m (cf Par. 10.2.1) then we additionally
have:

P̀A f(~x) = α?[f ; ~x] (5)

which means that the restriction tests m(~ρ) < m(~x) are always satisfied and
so they are superfluous in the recursive applications f(~ρ) in α.

10.1.4 Clauses. Clauses are Horn formulas, i.e. implications with atomic
formulas in the consequent. Every clause can be presented in a form ψ1 ∧
. . . ∧ ψk → f(~τ) = α. Clauses used in definitions are in logic programming
customarily written with converse implications:

f(~x) = α← ψ1 ∧ . . . ∧ ψk . (1)

We adopt this custom and treat such a formula only as a notational variant
of ψ1 ∧ . . . ∧ ψk → f(~x) = α.

We do not exclude the case when k = 0 when the body ψ1 ∧ . . . ∧ ψk of
the clause is empty and then the clause is written as f(~x) = α.

A clause φ of a form (1) with α a generalized term can be used in a proof
only with the generalized term translated away, i.e. as the formula

f(~x) = α? ← ψ1 ∧ . . . ∧ ψk (2)

denoted by φ? and which is in the language of PA. We denote by ∀φ? any of
the universal closures of the formula φ?.

10.1.5 Unfolding invariant. We will discuss in detail the syntax and
translation of all kinds of generalized terms in the following paragraps. We
will also discuss with each kind of α the unfolding step which leads from a
clause φ of a form 10.1.4(1) to a finite set of clauses φ1, . . . , φl satisfying the
following unfolding invariant

P̀A ∀φ? ↔ ∀φ?1 ∧ . . . ∧ ∀φ?l . (1)

The unfolding process is started from an initial clause of a form 10.1.3(2) and
eventually leads to the set of clauses 10.1.3(1). The invariant is proved under
the assumption that all function and predicate symbols applied in (1) have
been introduced into PA. In particular we assume that the function symbol
f has been introduced, for instance, by 10.1.3(4).

10.1.6 Negation discrimination terms. Negation (discrimination) terms
have the following syntax:

Neg(ψ, α1, α2)

284



and their translation is:

Neg(ψ, α1, α2)? ≡ D(ψ∗, α?1, α
?
2) . (1)

The clause

f(~x) = Neg(ψ, α1, α2)← ψ1 ∧ . . . ∧ ψk (2)

unfolds to

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ ψ (3)
f(~x) = α2 ← ψ1 ∧ . . . ∧ ψk ∧ ¬ψ (4)

and the following property clearly implies the unfolding invariant 10.1.5(1):

P̀A (2)? ↔ (3)? ∧ (4)? . (5)

In the direction (→) we assume (2)?, ψ1, . . . , ψk, and consider two cases. If
ψ then (4)? holds trivially and, since ψ∗ > 1 by 10.1.1(2), we have

f(~x) = Neg(ψ, α1, α2)? ≡ D(ψ∗, α?1, α
?
2)

8.4.1(1)
= α?1 .

Hence (3)?. If ¬ψ then then (3)? holds trivially and, since ψ∗ = 0 by 10.1.1(2),
we have

f(~x) = Neg(ψ, α1, α2)? ≡ D(ψ∗, α?1, α
?
2)

8.4.1(2)
= α?2 .

and hence (4)?.
In the direction (←) we assume (3)?, (4)?, ψ1, . . . , ψk, and consider two

cases. If φ then

f(~x)
(3)?

= α?1
10.1.1(2),8.4.1(1)

= D(ψ∗, α?1, α
?
2) ≡ Neg(ψ, α1, α2)? .

The case ¬φ is similar and uses the assumption (4)?.
Proofs of unfolding invariants (2)? for the remaining forms of general-

ized terms as discussed below are quite similar to the one just done. They
rely mostly on Property 10.1.1(2) expressing the relation between the char-
acteristic terms and their formulas and on Properties 8.4.1(1)(2) of the case
discrimination function D. For this reason we will mostly just sketch the
proofs and leave the details to the interested reader.

UNFINISHED Current restrictions in CL: φ only τ1 = τ2, R(~ρ).

10.1.7 Dichotomy discrimination terms. Dichotomy (discrimination)
terms have the following syntax:

Dich(τ1, τ2, α1, α2)

and their translation is

285



Dich(τ1, τ2, α1, α2)? ≡ D((τ1≤∗τ2), α?1, α
?
2) . (1)

The clause

f(~x) = Dich(τ1, τ2, α1, α2)← ψ1 ∧ . . . ∧ ψk (2)

unfolds to

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ τ1 ≤ τ2 (3)
f(~x) = α2 ← ψ1 ∧ . . . ∧ ψk ∧ τ1 > τ2 . (4)

The following easy to prove property implies the unfolding invariant 10.1.5(1):

P̀A f(~x) = D((τ1≤∗τ2), α?1, α
?
2)↔

(τ1 ≤ τ2 → f(~x) = α1) ∧ (τ1 > τ2 → f(~x) = α2) . (5)

10.1.8 Trichotomy discrimination terms. UNFINISHED Trichotomy
(discrimination) terms have the following syntax:

Trich(τ1, τ2, α1, α2, α3)

Translation:

Trich(τ1, τ2, α1, α2, α3)? ≡ D((τ1<∗τ2), α?1, D((τ2<∗τ1), α?3, α
?
2)) (1)

In clausal contexts (2) they abbreviate clauses (3):

f(~x) = Trich(τ1, τ2, α1, α2, α3)← ψ1 ∧ . . . ∧ ψk (2)

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ τ1 < τ2

f(~x) = α2 ← ψ1 ∧ . . . ∧ ψk ∧ τ1 = τ2

f(~x) = α3 ← ψ1 ∧ . . . ∧ ψk ∧ τ1 > τ2

(3)

10.1.9 Discrimination on constants. UNFINISHED Constant dis-
crimination terms have the following syntax:

Constmc1,...,cm(τ, α1, . . . , αm, αm+1) (1)

where c1, . . . , cm are symbols for constants.
Translation:

Constmc1,...,cm(τ, α1, . . . , αm, αm+1)? ≡
D((τ=∗c1), α?1, . . . , D((τ=∗cm), α?m, α

?
m+1)) (2)

In clausal contexts (3) they abbreviate clauses (4):

f(~x) = Constmc1,...,cm(τ, α1, . . . , αm, αm+1)← ψ1 ∧ . . . ∧ ψk (3)

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ τ = c1

...
f(~x) = αm ← ψ1 ∧ . . . ∧ ψk ∧ τ = cm

f(~x) = αm+1 ← ψ1 ∧ . . . ∧ ψk ∧ τ 6= c1 ∧ . . . ∧ τ 6= cm

(4)

286



10.1.10 Assignment terms. Assignment (let) terms have the following
syntax:

Lety(τ, α)

where the variable y is bound in α and may not occur in τ . The translation
is

Lety(τ, α)? ≡ α?y[τ ] . (1)

The clause

f(~x) = Lety(τ, α)← ψ1 ∧ . . . ∧ ψk (2)

unfolds to

f(~x) = α← ψ1 ∧ . . . ∧ ψk ∧ τ = y (3)

and the following property which follows from UNFINISHED implies the
unfolding invariant 10.1.5(1):

P̀A f(~x) = α?y[τ ]↔ ∀y(τ = y → f(~x) = α?) . (4)

10.1.11 Discrimination on pair patterns. Pair discrimination terms
have the following syntax:

Pairy,z(τ, α1, α2)

where the variables y, z are bound in α1 and may not occur in τ . The trans-
lation is

Pairy,z(τ, α1, α2)? ≡ D(τ, α?1y[H(τ)]
z
[T (τ)], α?2) (1)

The clause

f(~x) = Pairx,y(τ, α1, α2)← ψ1 ∧ . . . ∧ ψk (2)

unfolds to the clauses

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ τ = y, z (3)
f(~x) = α2 ← ψ1 ∧ . . . ∧ ψk ∧ τ = 0 (4)

and the following property implies the unfolding invariant 10.1.5(1):

P̀A f(~x) = D(τ, α?1y[H(τ)]
z
[T (τ)], α?2)↔

∀y∀z(τ = y, z → f(~x) = α?1) ∧ (τ = 0→ f(~x) = α?2) . (5)

The property is proved in the direction (→) by assuming

f(~x) = D(τ, α?1y[H(τ)]
z
[T (τ)], α?2) . (6)

287



The first conjuct is proved by taking any y, z and assuming τ = y, z. We
then have H(τ) = y and T (τ) = z and so

f(~x)
(6)
= α?1y[H(τ)]

z
[T (τ)]

6.1.3(1)
= α?1 .

The second conjunct is proved by assuming τ = 0 and deriving f(~x) = α?2
from (6).

In the direction (←) we assume the two conjucts and consider the two
cases implied by 8.3.14(4). If τ = 0 then we obtain

f(~x) = α?2 = D(τ, α?1y[H(τ)]
z
[T (τ)], α?2)

from the second assumption. If τ = y, z for some y, z then, since y = H(τ)
and z = T (τ), we have

f(~x) = α?1
6.1.3(1)

= α?1y[H(τ)]
z
[T (τ)] = D(τ, α?1y[H(τ)]

z
[T (τ)], α?2)

from the first assumption.

10.1.12 Discrimination on cartesian patterns. Cartesian (discrimina-
tion) terms have the following syntax:

Cartmx1,...,xm(τ, α1, α2)

where the variables x1, . . . , xm (n ≥ 3) are bound in α1 and may not occur
in τ .

Translation:

Cartmx1,...,xn−1,xm(τ, α1, α2)? ≡

D(Tm
.− 2(τ), α?1x1

[H T 0(τ)] . . .
xm−1

[H Tm
.− 2(τ)]

xm
[Tm

.− 1(τ)], α?2) (1)

In clausal contexts (2) they abbreviate clauses (3):

f(~x) = Cartmx1,...,xm(τ, α1, α2)← ψ1 ∧ . . . ∧ ψk (2)

f(~x) = α1 ← ψ1 ∧ . . . ∧ ψk ∧ τ = x1, . . . , xm

f(~x) = α2 ← ψ1 ∧ . . . ∧ ψk ∧ ¬∃x1 . . .∃xm τ = x1, . . . , xm
(3)

Restriction: not available in the current version of CL.

10.1.13 Discrimination on monadic patterns. UNFINISHED

10.1.14 Discrimination on p-adic patterns I. UNFINISHED

10.1.15 Discrimination on p-adic patterns I. UNFINISHED

288



10.1.16 Discrimination on constructor patterns. UNFINISHED

10.1.17 Unfolding. We now define a meta-theoretic unfolding function Cl
taking a finite set T of clauses for f of a form 10.1.4(1) and yielding a finite
set of clauses without generalized terms. The size of a generalized term α is
the total number of its subterms which are not in the language of PA. If α
is in the language of PA then its size is 0. The size of a clause φ of a form
10.1.4(1) is the size of α.

The function is defined by recursion on the maximum of sizes of clauses
in T . If the maximum is 0 then the clauses of T are in the language of PA
and we define Cl(T ) = T . Otherwise there is a finite number of clauses in T
with the maximum size n > 0. We form a finite set of clauses T1 by including
in it all clauses of T with the size < n and adding to it for each clause φ ∈ T
with the size n the clauses φ1, . . . , φk obtained from φ by one unfolding step.
As these clauses have sizes < n, the set T1 has the maximum of sizes of its
clauses < n and we define Cl(T ) = Cl(T1).

By (meta-theoretical) induction on the maximum of sizes of clauses in
T we easily prove from the unfolding invariant 10.1.5(1) the following basic
property of the unfolding function:

P̀A

∧

φ∈T

∀φ? ↔
∧

φ∈Cl(T )

∀φ? . (1)

The reader will note that the unfolding process works with concretely pre-
sented objects and that the function Cl is effective.

10.1.18 Clausal definitions of functions. Let f be an n-ary function
symbol, ~x an n-tuple of variables, and m an n-ary function which has been
introduced into PA. The generalized term α[f, ~x] is suitable for the clausal
definition of f if

– all function and predicate symbols other than f applied in α? have been
introduced into PA,

– the function symbol f is not in the current language of PA,
– if α applies f then n ≥ 1 otherwise n ≥ 0,
– the free variables of α are among ~x,
– for every subterm β of α no free variable of β is bound in it.

The last condition means that the variables ~x are not used as bound variables
in α and no bound variable in α is bound again in its scope. The reader will
note that the first condition guarantees not only that all function symbols
other than f applied in the generalized term α are in PA but also that the
auxiliary function symbols introduced by the translation into the term α? are
in PA. The conditions on α guarantee that α?[f ; ~x], which is a term of PA, is
suitable for the definition of f by course of values recursion with measure m.

The extension of PA with the new function symbols f and with the uni-
versal closures of the clauses

289



Cl({f(~x) = α[[f ]m~x ; ~x]}) (1)

as defining axioms is called a clausal extension of PA. We also say that f has
been introduced into PA by a clausal definition.

10.1.19 Theorem. UNFINISHED clausal definitions of functions are re-
cursive extensions.

10.1.20 Clausal Definitions of Predicates. Clausal definitions can be
used to introduce predicates into PA. This is done by modifying clausal def-
initions of their characteristic functions.

Let R be an n-ary predicate symbol, f an n-ary function symbol, ~x an
n-tuple of variables, and m an n-ary function which has been introduced into
PA. The generalized term α[f, ~x] is suitable for the clausal definition of R if

– α is suitable for the clausal definition of f ,
– α does not apply R,
– the predicate symbol R is not in the current language of PA,
– all recursive applications of f in α (if any) are as atomic subformulas
f(~τ) = 1 (~τ does not apply f) of formulas φ which are parts of of subterms
Neg(φ, α1, α2) of α,

– the generalized term α is built up from the constituents listed in Fig. 10.1
where the terms ρ are restricted to the terms 0 or 1.

The extension of PA with the new predicate symbols R and with the
universal closures of the formulas from the finite set S1 as defining axioms is
called a clausal extension of PA if the set S1 is constructed from the set

S = Cl({f(~x) = α[[f ]m~x ; ~x]}) (1)

by replacing in every φ ∈ S

– the atomic formula in its head which, on accord of the last condition above,
must be either f(~x) = 0 or f(~x) = 1 by the application R(~x) or ¬R(~x)
respectively,

– by replacing every atomic formula with applications of f in the body of φ
which, on accord of the fourth condition above, is of a form

D((m(~τ)<∗m(~x)), f(~τ), 0) = 1

by the formula
m(~τ) < m(~x) ∧R(~τ) .

We also say that R has been introduced into PA by a clausal definition.
The reader worrying that our conditions on clausal definitions of predi-

cates are too strict in the sense that they might exclude a clausal definition of
a predicate R from the clausal definition f(~x) = α[[f ]m~x ; ~x] of its characteristic
function where α is suitable for f but not for R should note that the function

290



f is 0-1 valued and so the term α can be transformed to a suitable term β
such that P̀A α? = β?. The tranformation is simple because, if for instance,
we have for a term τ1[z] the generalized term Dich(τ1[f(~σ)], τ2, α1, α2) as a
subterm of α then we can replace it in β by the generalized term

Neg((f(~σ) = 1),Dich(τ1[1], τ2, α1, α2),Dich(τ1[0], τ2, α1, α2)) .

In this way we can deal with every ‘misplaced’ recursive application of f in
α except when it is in a subterm ρ of α where ρ should be either 0 or 1. The
situation is remedied in the same way when ρ does not apply f by replacing
ρ in β by the generalized term:

Neg(ρ, 1, 0) .

10.1.21 Theorem. UNFINISHED clausal definitions of predicates are
recursive extensions.

10.1.22 Presentation of clauses. UNFINISHED Back substitution
UNFINISHED Order of clauses
UNFINISHED defaults
UNFINISHED renaming of bound variables
UNFINISHED alignment to the left as alert that default axioms may

be missing.

10.1.23 Refinement versus syntax analysis.

10.2 Regular Clausal Definitions

10.2.1 Outline of conditions of regularity. UNFINISHED we need
a stronger definition because of computability. Show with an example.

10.2.2 Conditions of regularity for clauses. Suppose that f is an n-ary
function symbol which we wish to introduce into PA by a clausal definition
with a measure m. We assign to every clause of a form 10.1.4(1):

f(~x) = α← ψ1 ∧ . . . ∧ ψk (1)

its condition of regularity with respect to m which is the formula > or a
formula of the language of PA of the form

ψ1 ∧ . . . ∧ ψk → m(~ρ1) < m(~x) ∧ . . . ∧m(~ρl) < m(~x) . (2)

If k = 0 then (2) stands just for

m(~ρ1) < m(~x) ∧ . . . ∧m(~ρl) < m(~x) .

291



The form of the condition of regularity depends on the form of the generalized
term α according to Fig. 10.1. We will assign below a formula φ0 of PA to
each α. If τ does not apply f then the condition of regularity is > . Otherwise
it is the formula (2) where the n-tuples of terms ~ρ1, . . . , ~ρl are the arguments
of all applications of f(~ρ1), . . . , f(~ρl), occurring in the order left to right and
inside out in φ0.

If α ≡ ρ with ρ a term of PA then we set φ0 :≡ ρ = 0. If α ≡ Neg(φ, α1, α2)
then we set φ0 :≡ φ. If α ≡ Dich(τ1, τ2, α1, α2) or α ≡ Trich(τ1, τ2, α1, α2, α3)
then we set φ0 :≡ τ1 = τ2. If α is one of

Constmc1,...,cm(τ, α1, . . . , αm, αm+1)

Lety(τ, α1)
Pairy,z(τ, α1, α2)

Cartmx1,...,xm(τ, α1, α2)

Monmy (τ, α0, α1, . . . , αm)

Padicap,my,z (τ, α0, α1, . . . , αm)

Padicbp,my,z (τ, α0, α1, . . . , αm)

UNFINISHED constructor discr

then we set φ0 :≡ τ = 0.

10.2.3 Regularity function. We now define a meta-theoretic regularity
function Reg(m,T ) where m is an n-ary function symbol, T a finite set of
clauses for the n-ary function symbol f of a form 10.1.4(1). The function
yields a finite set of formulas of PA. and it is defined by recursion on the
maximum of sizes of clauses in T . There is a finite number of clauses in T
with the maximum size n ≥ 0. We form a finite set of clauses T1 by including
in it all clauses of T with the size < n. Let S be the finite set of conditions
of regularity w.r.t. m assigned to each of the clauses φ ∈ T with the size n. If
n = 0 we define Reg(m,T ) = S and Reg(m,T ) = S ∪ Reg(m,T1) otherwise.
It should be clear that the regularity function Reg is effective.

10.2.4 Conditions of regularity for clausal definitions of functions.
UNFINISHED

10.2.5 Theorem. UNFINISHED If the definition is regular then P̀A f(~x) =
α?[f ; ~x].

10.2.6 Regular Clausal definitions. UNFINISHED we need some the-
orem on regularity.

UNFINISHED special cases when cond of regularity is in the language
of PA.

292



10.3 The Strength of Clausal Definitions

293



294



11. Computation of Clausal Programs

Until now we were interested only in the definability of functions and predi-
cates over natural numbers. We will now investigate questions of their effec-
tive computability.

11.1 Computation over Monadic Numerals

11.1.1 Monadic numerals. We recall the notation

nm ≡ 0

n
︷︸︸︷

′ . . .′

introduced in Par. 8.4.3 for monadic numerals. Monadic numerals are the
least class of terms containing the constant 0 and with every term ρ containing
also the term ρ′.

11.1.2 Generalized terms for monadic numerals. The basic general-
ized term for the definition of clausal programs operating over monadic nu-
merals is

Monx(τ, α1[x], α2) = z ↔ ∃x(τ = x′ ∧ α1[x] = z) ∨ τ = 0 ∧ α2 = z .

11.1.3 Monadic clausal definitions. Monadic functions and predicates
are defined by monadic clausal definitions. We have two classes of functions,
primitive recursive and µ-recursive.

All primitive recursive functions are provably recursive in PA but not all
µ-recursive functions are such.

11.1.4 Reductions over monadic numerals.

Monx(0, α1[x], α2) I α2

Monx(ρ′, α1[x], α2) I α1[ρ] .

11.1.5 Computability of functions defined by monadic clausal defi-
nitions. Both primitive recursive and µ-recursive functions can be effectively
computed by reductions.



11.2 Computation over Binary Numerals

If we were interested only in the effective computability of functions and pred-
icates then we would not need more than monadic functions and predicates.
Since we are discussing computer programming, we are also interested in
the efficiency of computed programs. Monadic computation is exponentially
slower than it should be. Computationally optimal is the so-called recursion
on notation of which binary notation is the most well-known.

11.2.1 Binary numerals. Binary numerals are the least set of terms con-
taining the constant 0, with every term ρ also the term ρ1, and with every
term ρ 6≡ 0 also the term ρ0. Thus the term 00 is not a binary numeral.

11.2.2 Generalized terms for binary numerals. The basic generalized
terms for clausal programs operating over binary numerals are

Bin([τ = x0;α1]x, [τ = x1;α2]x)
D([τ > 0;α1], [τ = 0;α2]) .

11.2.3 Binary clausal definitions. Binary functions and predicates are
defined by binary clausal definitions.

11.2.4 Fast binary arithmetic. Basic operations and comparisons.

11.2.5 Binary pairing function. Pb(x, y)

11.2.6 Binary projections. Hb(x), Tb(x)

11.2.7 Characterization of binary functions and predicates. Binary
functions and predicates are exactly the monadic ones.

11.2.8 Reductions over binary numerals.

Bin([0 = x0;α1]x, [0 = x1;α2]x) I α1x[0]
Bin([ρ0 = x0;α1]x, [ρ0 = x1;α2]x) I α1x[ρ]
Bin([ρ1 = x0;α1]x, [ρ1 = x1;α2]x) I α2x[ρ]

D([0 > 0;α1], [0 = 0;α2]) I α2

D([ρ0 > 0;α1], [ρ0 = 0;α2]) I α1

D([ρ1 > 0;α1], [ρ1 = 0;α2]) I α1 .

11.2.9 Computability of binary functions and predicates. Binary
functions and predicates are effectively computable by reductions.

296



11.2.10 Memory models for binary numerals. Computation is a syn-
tactic process which proceeds by the manipulation of concrete objects. In the
above discussion the concrete objects were monadic and binary numerals. In
any practical implementation of computations over binary numerals on an
electronic computer the d numerals will have to be mapped into the memory
structures of the computer.

UNFINISHED Bignums

11.3 Computation over Pair Numerals

Although exponentially more efficient than monadic computation, the binary
computation greatly suffers when computing with symbolic (coded) data.

11.3.1 Pair numerals. We recall the definition in Par. 1.3.8 of pair numer-
als as the least class of terms containing 0 and with every two terms ρ1 and
ρ2 also the term (ρ1, ρ2).

11.3.2 Generalized term for pair numerals. The basic generalized term
for clausal programs operating over pair numerals is

Pair([τ = v, w;α1]v,w, [τ = 0;α2]) .

11.3.3 Pair clausal definitions. Pair functions and predicates are defined
by pair clausal definitions.

11.3.4 Pair arithmetic. Basic operations and comparisons.

11.3.5 Characterization of pair functions and predicates. Pair func-
tions and predicates are exactly the monadic ones.

11.3.6 Reductions over pair numerals.

Pair([0 = v, w;α1]v,w, [0 = 0;α2]) I α2

Pair([(ρ1, ρ2) = v, w;α1]v,w, [(ρ1, ρ2) = 0;α2]) I α1v[ρ1]w[ρ2] .

11.3.7 Computability of pair functions. Pair functions and predicates
are effectively computable by reductions.

11.3.8 Memory models for pair numerals. The memory model of LISP
is natural for the representation of pair numerals. The pair numeral 0 is
represented in computer’s memory with, say 32-bit words, by the word 0.
The pair numeral (ρ1, ρ2) is represented by a non-zero word interpreted as
a pointer to a LISP-cell, i.e. to two adjacent 32-bit words. The first word
represents the first projection ρ1 and the second word the second projection
ρ2. UNFINISHED

297



11.4 Computation over Mixed Numerals

We can combine the fast computation of numeric functions and predicates
defined as binary functions with the gast computation of symbolic functions
and predicates defined in pair notations by computing over mixed numerals.

11.4.1 Mixed numerals. Mixed numerals are the least set of terms con-
taining the constant 0, with every terms ρ1, ρ2 also the terms ρ11 and (ρ1, ρ2),
and with every term ρ 6≡ 0 also the term ρ0. Binary and pair numerals are
thus proper subsets of mixed numerals.

In contrast to monadic, binary, and pair numerals, the mixed numerals
do not enjoy the unique representation of natural numbers. For instance, the
number three is denoted by four mixed numerals which are all different as
terms:

011 (0, 0)1 (01, 0) ((0, 0), 0) .

11.4.2 Mixed clausal definitions. Mixed functions and predicates are de-
fined by mixed clausal definitions which are constructed from the Bin, Pair ,
and D generalized terms.

Mixed clausal definitions clearly define all primitive recursive and µ-
recursive functions.

11.4.3 Reductions over mixed numerals. Since binary and pair numer-
als are a subset of mixed ones, the reductions given in Paragrahps 11.2.8 and
11.3.6 apply also to mixed numerals. A pair (ρ1, ρ2) as an argument of a D
generalized term has a natural reduction:

D([(ρ1, ρ2) > 0;α1], [(ρ1, ρ2) = 0;α2]) I α1 .

Reductions without conversion between representations are impossible in
the following three cases:

Bin([(ρ1, ρ2) = x0;α1]x, [(ρ1, ρ2) = x1;α2]x) I
Bin([M2B(ρ1, ρ2) = x0;α1]x, [M2B(ρ1, ρ2) = x1;α2]x)

Pair([ρ0 = v, w;α1]v,w, [ρ0 = 0;α2]) I α1v[H(ρ0)]w[T (ρ0)]
Pair([ρ1 = v, w;α1]v,w, [ρ1 = 0;α2]) I α1v[H(ρ1)]w[T (ρ1)]

where we have denoted by M2B, H, and T three conversion functions which
are defined in the following paragraph to operate over mixed numerals.

11.4.4 Conversion of mixed to binary numerals. The conversion func-
tion M2B takes a mixed numeral into a binary numeral with the same de-
notation. The function is defined by recursion on the structure of mixed
numerals to satisfy:

298



M2B(0) ≡ 0
M2B(ρ0) ≡M2B(ρ)0
M2B(ρ1) ≡M2B(ρ)1
M2B(ρ1, ρ2) ≡ ρ⇐ Pb(M2B(ρ1),M2B(ρ2)) I ρ .

The function is clearly effectively computable.
The conversion function H(ρ) takes a mixed numeral and yields a mixed

numeral with the same denotation as H(ρ). The function T (ρ) is similar. The
functions satisfy the following:

H(0) ≡ 0
H(ρ1, ρ2) ≡ ρ1

H(ρ0) ≡ ρ1 ⇐ Hb(M2B(ρ)0) I ρ1

H(ρ1) ≡ ρ1 ⇐ Hb(M2B(ρ)1) I ρ1

T (0) ≡ 0
T (ρ1, ρ2) ≡ ρ2

T (ρ0) ≡ ρ1 ⇐ Tb(M2B(ρ)0) I ρ1

T (ρ1) ≡ ρ1 ⇐ Tb(M2B(ρ)1) I ρ1

and are clearly effectively computable.

11.4.5 Computability of clausal definitions. A clausally defined func-
tion f of T is reducible if for all mixed numerals ~ρ we have f(~ρ) I τ for a
mixed numeral τ and T ` f(~ρ) = τ .

Let T be an extension of S with a (guarded) clausal definition of f . Assume
that all clausally defined functions of S are reducible.

The mixed functions are computable over mixed numerals.

11.4.6 A memory model for mixed pumerals. A mixed numeral can
be represented in a memory of an electronic computer with a 32-bit words,
by a word whose lowest two bits serve as four tags distinguishing the four
kinds of mixed numerals.

We assign the tag 0 to represent the numerals which are pairs of the
form (ρ1, ρ2). A 32-bit number n with the tag 0 (note that n mod 4 = 0) is
interpreted as a pointer to a LISP-cell as in Par. 11.3.8. A word n with the
tag 1 represents the mixed numeral ρ0 by interpreting the number n− 1 as a
pointer to a word representing the mixed numeral ρ. Similarly, a word n with
the tag 2 represents the mixed numeral ρ1 by interpreting the number n− 2
as a pointer to a word representing the mixed numeral ρ. Finally, a word n
with the tag 3 represents the fourth kind of mixed numerals. Normally this
would be the single numeral 0. It is, however, advantageous to utilize the
remaining 30-bits of such words to store small natural numbers directly. This
means that the word represents the binary numeral denoting n÷ 4.

299



This representation of mixed numerals can be described purely in the
language of logic by defining the class of extended mixed numerals as the
smallest class of terms which contains decimal numerals denoting the numbers
n such that

n ≤ 1, 073, 741, 823 = 230 − 1 = 0130

holds and such that with each two extended mixed numerals ρ1 and ρ2 also the
terms ρ10 (provided ρ1 6≡ 0), ρ21, and (ρ1, ρ2) are extended mixed numerals.
Figure 11.1 shows the memory representation of the extended mixed numeral
(5, 10737418231)01.

2q
?

1q
?

0q
?

5 3 1q
?

1073741823 3

Fig. 11.1. Memory representation of the extended mixed numeral
(5, 10737418231)21

300



12. Data Types

Typed programming languages, especially the functional ones, are popular
for three reasons:

1. types naturally express properties of programs,
2. types permit good memory representation of data and the programs can

be efficiently compiled,
3. types are indispensable for a natural semantics of higher-order functions

(functionals).

The first reason for types is irrelevant for a programming language in-
tegrated with its own proof system (such as CL) because the formulas of
the language permit a simpler formulation and proofs of much more complex
properties than those expressible by typing. The remaining reasons for typing
are exteremely important and we discuss the second reason in this chapter
and the third one in Chapter 13.

However, there is a negative side to typing in a complication of syntax
and semantics. The usual approach to types is via many-sorted languages
and theories. The simple languages and semantics of LISP, PROLOG, and
CL are lost. We now propose a type system which enables us both to have
and eat the proverbial cake.

12.1 Pascal-Style Typing

Pascal was the first computer programming language whose data types sup-
ported good representation in memory.

12.1.1 Type predicates. Pascal-style types will be defined in UNFIN-
ISHED as codes of certain unary type predicates. By convention we write
x : T instead of T (x) and read it as the code of T is the type of x Not every
unary predicate is a type predicate. We will introduce in the following para-
graphs several kinds of syntactic restrictions on the clauses of type predicates
x : T which will guarantee that the value x can be efficiently represented in
computer memory.



Extension of a type predicate T is the set numbers x such that x : T
holds in the standard model of PA. Intension of T is the set of mixed nu-
merals which are canonical terms of type T . This will be precisely defined in
UNFINISHED

UNFINISHED Canonical terms of type T can be efficiently represented
in computer memory. In the following we will see that although extensions of
two type predicates T1 and T2 may overlap in that there is a mixed numeral
ρ such that ρ : T1 and ρ : T2, the intesions are different in that ρ has two
different memory representations.

UNFINISHED typing of generalized terms and of clausal definitions.
Additionally, a well-typed function or predicate can be reduced over mixed
numerals without the three reductions given in Par. 11.4.3 and which involve
conversion of representation.

12.1.2 Basic type predicates. Predicates N and Ch with explicit defini-
tions

x : N
x : Ch ← x < 256

are the basic type predicates. The code of N is the type of natural numbers
and the code of Ch is the type of characters.

In programming practice there will be additional basic types inluding
integers and floats.

12.1.3 Cartesian type predicates. Suppose that T1, . . .Tn are type pred-
icates. The unary type predicate explicitly defined by

(x1, . . . , xn) : T ← x : T1 ∧ . . . ∧ x : Tn

is the type predicate of cartesian product of codes of T1, . . . , Tn.
UNFINISHED The extension of T are exactly numbers x1, . . . , xn for

some x1, . . . , xn. those mixed numerals which can be written as n-tuples
ρ1, . . . , ρn.

Memory representation: UNFINISHED

12.1.4 List type predicates. Suppose that S is a type predicate. The
predicate

0 : T
x, y : T ← x : S ∧ y : T .

is the type predicate of lists of codes of S.

12.1.5 Fixed vector type predicates. Suppose that S is a type predicate
and c a constant. The predicate

0 : T
x, y : T ← x : S ∧ y : T .

302



is the type predicate of lists of codes of S.
UNFINISHED typing of definitions

12.2 ML-Style Typing

ML-style polymorphic typing is a higher-order calculus where variables and
arguments of predicates can range over types.

12.2.1 Type predicates with types as arguments. List types are best
viewed as higher-order predicates with types as arguments Instead of viewing
type predicates as unary we may permit additional argument. Consider as
an example the binary type predicate of lists List :

0 : List(t)
x, y : List(t)← x :: t ∧ y : List(t) .

We can view the binary predicate x :: t as a universal typing predicate where
the second argument t ranges over type predicates T in such a way that

x : T ↔ x :: T

holds.
For concrete type predicates t we can then consider x : List(t) to be a

unary predicate in x. For instance, x : List(N) and x : List(Ch) can be
viewed as type predicates which would have to be introduced in Pascal-style
typing by two definitions:

0 : ListN
x, y : ListN ← x : ListN ∧ y : ListN
0 : ListCh
x, y : ListCh ← x : ListCh ∧ y : ListCh .

12.2.2 Example of polymorphic typing. UNFINISHED

12.2.3 Vectors. Higher-order type predicates such as x : List(t) do need to
have their arguments restricted to types. Consider for instance, the ternary
predicate x : V1(n, t) of fixed vectors which for any number n and type t
behaves as the Pascal-like type array [0..n− 1] of t.

0 : V1(0, t)
x, y : V1(n+ 1, t)← x :: t ∧ y : V1(n, t) .

UNFINISHED discussion that they are lists but can be mapped into mem-
ory in a better way.

We can now introduce a binary typing predicate x : V2(t) of flexible vectors
with the definition

303



n, x : V2(t)← x : V1(n, t) .

UNFINISHED discussion and memory representation
UNFINISHED Without ontological commitment to types which would

get us outside of first-order theories we can treat types as codes of type
predicates. Universal functions in recursion theory. Assignment of indices,
choices are endless but we will for illustration purposes stick to one type
system with good mapping onto memory.

Higher-order typing even without functionals. We can deal with the prob-
lem by intensionality. The value of extensionality is diminished when types
are used for intensional reasons such as computation.

304



13. Functional Programming



306



14. Modular Programming

14.1 Extraction of Programs from Proofs



14.1.1 Postfix machine. Our next task is the proof of correctness of a sim-
ple postfix machine evaluating numeric terms. The machine is represented by
a binary function Run(p,m) where p is a postfix program and m a list rere-
senting memory words. The memory is used as a stack with (m)0 addressing
its top.

The instructions of the machine are: .... as in the text including also the
predicate Program...

The instruction LOAD(i) pushes the contents of the i-th memory cell, i.e.
of (m)i to the top of the stack thus modifying the memory from m to (m)i,m.
We can view the memory as composed of a stack part s and a variable part
v, i.e. m = s ⊕ v. The stack part s is used to hold the subterms of the
term being evaluated by the program p. When the memory is addressed by
LOAD(L(s) + i) then the i-th element of the valuation v, i.e. (v)i is accessed
which gives the value to the i-th variable xi.

A numeric term t is compiled into a program p by a binary function
Comp(j, t) = p. The program p evaluating t expects the length of the stack
part of the memory, i.e. L(s), to be j and compiles the program p to access
the values of variables of t in the memory with the offset j. The compiler is
defined by the clauses:

Comp(j,xi) = LOAD(j + i), 0
Comp(j, n̄) = PUSH (n), 0
Comp(j, t1 + t2) = Comp(j, t1)⊕ Comp(j + 1, t2)⊕ (ADD , 0)
Comp(j, t1× t2) = Comp(j, t1)⊕ Comp(j + 1, t2)⊕ (MULT , 0) .

The reader will note that in the third clause the first argument t1 of t1 + t2
is compiled with the offset j while the second argument t2 is compiled with
the offset j + 1 because the top of the stack at the start of the execution of
the program for t2 will hold the denotation (value) of the term t1.

..............Now come the clauses for the binary function Run(p, s) (The
function Eval is not needed at all because the correctness theorem is

Term(t)→ Run(Comp(0, t), v) = [[t]]v

which follows from the lemma

Term(t)→ ∀p∀sRun(Comp(L(s), t)⊕ p, s⊕ v) = Run(p, [[t]]v, s⊕ v) .

308



References

1. J. Barwise. An Introduction to First-Order Logic. In Handbook of Mathematical
Logic, J. Barwise ed., North-Holland Publishing Co, 1977.

2. E. W. Beth. The Foundations of Mathematics. North Holland 1959.
3. G. Boolos and R. Jeffrey, Computability and Logic, Cambridge University Press,

Cambridge, 1974.
4. M. Davis, Computability and Unsolvability, McGraw Hill, New York, 1958.
5. S. Feferman. Theory of Finite Type Related to Mathematical Practice, In Hand-

book of Mathematical Logic, J. Barwise ed., North-Holland Publishing Co, 1977.
6. K. Gödel, Üeber formal unentscheidbare Sätze der Principia Mathematica und

verwandter Systeme I, Monatshefte Math. Phys. vol. 38 (1931) pages 173-198.
7. M. J. Gordon, R. Milner, C. P. Wadsworth, Edinburgh LCF. Lecture Notes in

Computer Science, vol 78. Springer, Berlin 1979.
8. P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer

Verlag, 1993.
9. D. Hilbert, P. Bernays. Grundlagen der Mathematik. Springer 1970.

10. N. D. Jones. Computability and Complexity from a Programming Perspective.
MIT Press, 1997.

11. L. Kirby, Paris J. Accessible independence results for PA. Bulletin. London
Math. Soc. 14 (1982) p 225-285.

12. J. Komara, P. J. Voda. Syntactic Reduction of Predicate Tableaux to Proposi-
tional Tableaux. Workshop on Theorem Proving and Analytic Tableaux, May
1995. Lecture Notes in Artificial Intelligence vol 918, Springer Verlag 1995.

13. J. Komara, P. J. Voda. On Quasitautologies. Workshop on Theorem Proving
and Analytic Tableaux, May 1997. Lecture Notes in Artificial Intelligence vol.
1227, Springer Verlag 1997.

14. J. Komara, P. J. Voda. Theorems of Péter and Parson in Computer Program-
ming. Computer Science Logic Conf. (CSL-98), Brno The Czech Rep. 1998.
Lecture Notes in Computer Science vol 1584, Springer Verlag 1999.

15. J. Komara, P. J. Voda. Towards Provably Correct Programming.
www.fmph.uniba.sk/˜voda. April 2000.

16. J. Komara. Specification and Verification of Computer Programs.
http://dent.ii.fmph.uniba.sk/˜voda/cl.html. May 2001.

17. R. Milner, A Theory of Type Polymorphism in Programming. J. Comput. Sys-
tem Sci. 17 (1978) 348-375.

18. J. C. Mitchell. Type Systems for Programming Languages. In Handbook of
Theoretical Compute Science (vol B), J. van Leeuwen ed., Elsevier 1990.

19. Ch. Okasaki. Breadth-First Numbering: Lessons from a Small Exercise in Algo-
rithm Design International Conference on Functional Programming, september
2000.

20. R. Péter. Konstruktion nichtrekursiver Funktionen. Math. Ann. vol 111 (1935),
pages 42-60.



21. H. E. Rose. Subrecursion: Functions and Hierarchies. Number 9 in Oxford
Logic Guides. Clarendon Press, Oxford, 1982.

22. H. Schwichtenberg, Eine Klassifikation der ε0-rekursiven Funktionen,
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 17,
(1971), pp. 91-74.

23. J. R. Shoenfield. Mathematical Logic, Addison-Wesley, 1967.
24. R. M. Smullyan First-Order Logic. Springer, 1968.
25. W. W. Tait. Intensional interpretation of functionals of finite type. J. of Sym-

bolic Logic, 32:198–212, 1967.
26. G. Takeuti. Proof Theory. North-Holland, 1975.
27. A. S. Troelstra. Aspects of Constructive Mathematics. In Handbook of Mathe-

matical Logic, J. Barwise ed., North-Holland Publishing Co, 1977.
28. P. J. Voda. Subrecursion as a basis for a feasible programming language, in

L. Pacholski and J. Tiuryn, editors, Proceedings of CSL’94, number 933 in
LNCS Springer Verlag, 1995, pages 324-338.

29. S. S. Wainer. A classification of the ordinal recursive functions, Archiv für
mathematische Logik und Grundlagen Forschung, vol. 13, 1970, pp. 136-153.

310


	Preface
	Why the Theory of Programming in Peano Arithmetic?
	Effectively Computable Functions
	Imperative vs. Declarative Programming
	Arguments in Favor of Natural Numbers
	Bootstrapping of PA
	Clausal Extensions of PA
	Limits of Provably Recursive Definitions in PA
	Computation of Clausal Definitions
	Data Types
	Intensional Functionals
	Issues Open to Further Research

	Part I. First-Order Logic and Peano Arithmetic
	First-Order Languages
	Language of First-Order Logic

	Propositional Logic
	Tautologies
	Propositional Tableaux
	Admissible Expansion Rules
	Tautological Consequence
	Tableaux with Axioms

	Identity Logic
	Some Syntactic Concepts
	Quasitautological Consequence
	Identity Tableaux

	Quantification Logic
	Some Syntactic Concepts
	Logical Consequence
	Quantification Tableaux

	First-order Theories
	Theorems of Predicate Calculus
	Extensions of Theories
	Extensions by Explicitly Defined Predicates
	Skolem Extensions
	Extensions by Contextually Defined Functions
	Extensions by Definitions

	Peano Arithmetic
	Basic Theorems in PA
	Extensions of PA
	Introduction of Basic Predicates into PA
	Introduction of Basic Functions into PA
	The Lattice of Divisibility

	Recursive Bootstrapping of PA
	Exponentiation Function
	Primitive Recursion
	Suitable Pairing Function
	Course of Values Recursion with Measure

	Proof Theory of PA

	Part II. Computer Programming
	Clausal Language
	Clausal Definitions
	Regular Clausal Definitions
	The Strength of Clausal Definitions

	Computation of Clausal Programs
	Computation over Monadic Numerals
	Computation over Binary Numerals
	Computation over Pair Numerals
	Computation over Mixed Numerals

	Data Types
	Pascal-Style Typing
	ML-Style Typing

	Functional Programming
	Modular Programming
	Extraction of Programs from Proofs

	References


