
Compilation of Terms to Programs for a

Stack Machine

59



Stack Machine

Instructions:

push(n): the number n goes to stack s

load(n): the element (s)n is pushed on the

stack

incri: (s)0 := (s)0 + 1

decri: (s)0 := (s)0
.−1

pair: (s)1 := (s)1, (s)0 and pop.

headi: (s)0 := H(s)0
taili: (s)0 := T (s)0
call(q); p: stack is r, v, s1; new stack is p, r, v, s1
and r is executed; Note p is return address.

q should end with ret(2)

ifi(q1, q2); p: stack is v, s1; new stack p, s1. q1
or q2 is executed according to whether v > 0 or

not. Both programs should end with ret(0).

ret(n): stack is (w, q, s1)⊕s2 where L(s1) = n;

new stack is w, s2, saved return address q is

executed.

60



Interpreter for the Stack Machine

Run(p, s) = v is a (partial) function interpreting

the program p - which is a list of instructions -

for the stack machine on the stack s. At then

end: Run(0, v, s) = v it yield the value v at the

top of the stack.

We wish to write a compiler Comp(i, b) = p

taking a functional term b and yielding a pro-

gram p evaluating b.

Suppose that f(v) = a, Comp(0, a) = q and b

is a part of a then the situation during the ex-

ecution will be Run(p, s⊕ (c, q, v, t)

where i is the offset on the stack: L(s) = i

containing already computed intermediate re-

sults of the body a.

61



Compilation versus Interpretation

For a function f(v) = a we wish that the com-

piled program q = Comp(0, a) satisfies the fol-

lowing:

Run(q, (c, q, v,0)) = [r]va

Note the initial offset 0 when the execution

of q starts.

The general situation for a subterm b of a is:

Run(Comp(L(s), b)⊕ p, s⊕ (c, q, v, t)) =

Run(p, ([b]vr, s)⊕ (c, q, v, t))

62



Finite Sets

63



Coding of Finite Sets

There are many ways of coding of finite sets

of natural numbers as natural numbers.

Probably the simplest one is as powersets:

The empty set ∅ is coded by 0 and for n > 0

we code by bits:

{s1, . . . , sn} as
n∑

i=1

2si

Note that si can again code a set.

However, the numbers coding relatively small

sparse sets, say {2,106,3·109}, are very large.

64



Coding of finite sets by ordered lists

The problem of sparse sets is solved by coding

the sets as lists x without repetition:

∀y∀z∀v∀a∀b(x = y ⊕ (a, z ⊕ (b, v)) → a 6= b)

For instance, increasing lists x are without

repetition:

Set(x) ↔ ∀y∀z∀a∀b(x = y ⊕ (a, b, z) → a < b)

For list membership predicate a ε x such that

a ε x ↔ ∃y∃z x = y ⊕ (a, z)

we have for sets x:

x = y ⊕ (a, z) ∧ b ε y ∧ c ε z → b < a < c

If Set(x) and a 6ε x then the insertion satisfies

x ∪ {a} = y ↔ ∃v∃w(x = v ⊕ w ∧ y = v ⊕ (a, w) ∧
∀b ε v(b < a) ∧ ∀b ε w(a < b))

65


