Compilation of Terms to Programs for a
Stack Machine

59

Stack Machine

Instructions:

push(n): the number n goes to stack s
load(n): the element (s), is pushed on the
stack

Incr;: (S)O L= (S)O +1

decr;: (s)g:=(s)g=>1

pair: (s)1 := (s)1,(s)p and pop.

head;: (S)O L= H(S)Q

tail;: (S)O L= T(S)O

call(q); p: stack is r,v, s1; new stack is p,r, v, s1
and r is executed; Note p is return address.
g should end with ret(2)

iIf;(q1,q9>); p: stack is v,sq1; new stack p,s1. q¢1
or go Is executed according to whether v > 0 or
not. Both programs should end with ret(0).
ret(n): stack is (w,q,s1)Ds> where L(s1) = n;
new stack is w,so, saved return address q is
executed.

60

Interpreter for the Stack Machine

Run(p,s) = v is a (partial) function interpreting
the program p - which is a list of instructions -
for the stack machine on the stack s. At then
end: Run(0,v,s) = v it yield the value v at the
top of the stack.

We wish to write a compiler Comp(i,b) = p
taking a functional term b and yielding a pro-
gram p evaluating b.

Suppose that f(v) = a, Comp(0,a) = q and b
is a part of a then the situation during the ex-
ecution will be Run(p,s ® (¢, q,v,1)

where i is the offset on the stack: L(s) = ¢
containing already computed intermediate re-
sults of the body a.

61

Compilation versus Interpretation

For a function f(v) = a we wish that the com-
piled program g = Comp(0, a) satisfies the fol-
lowing:

Run(q, (¢,q,v,0)) = [r]g

Note the initial offset O when the execution
of ¢ starts.

The general situation for a subterm b of a is:

Run(Comp(L(s),b) ®p,s ® (c,q,v,t)) =
Run(p, ([b]7,s) @ (c,q,v,1))

62

Finite Sets

63

Coding of Finite Sets

There are many ways of coding of finite sets
of natural numbers as natural numbers.

Probably the simplest one is as powersets:
The empty set () is coded by 0 and for n > 0
we code by bits:

n

{s1,...,8p} as) 2%

i=1
Note that s; can again code a set.

However, the numbers coding relatively small
sparse sets, say {2,10°,3.107}, are very large.

64

Coding of finite sets by ordered lists

The problem of sparse sets is solved by coding
the sets as lists = without repetition:

VyVzVovavb(e =y ® (a,z P (b,v)) — a #= b)

For instance, increasing lists z are without
repetition:

Set(x) «— VyVzVaVb(x =y ® (a,b,z) — a < b)
For list membership predicate a € x such that

acx <« Jydze =y D (a, z)

we have for sets z:

r=yP(a,z) AN\beyNhcez—b<a<c

If Set(x) and a &z then the insertion satisfies

zU{a} =y Fw(z=vPwAy=v& (a,w) A
Vbev(b<a) AVbe w(a < b))

65

