
A Minimal Stack Machine

51



Stack Discipline

Recall that this means that an n-ary function f

computed on a stack s expects its arguments

on the stack and on return replaces them by

its result yielding a new stack t:

s = a1, . . . , an, u ⇒ t = f(a1, . . . , an), u

Here the stack s is not coded on a Turing

tape but it is a list of numbers, where for

1 ≤ i ≤ n we have ai = (s)i−1 for a two place

list indexing function satisfying:

(a, s)0 = a (a, s)i+1 = (s)i

The element (s)0 = H(s) is on the top of the

stack. Note that we have

(s)n = H

n︷ ︸︸ ︷
T · · ·T (s)

52



Minimal Turing Complete Stack Machine

expects a program, which is a list of instruc-

tions which modify a stack of natural num-

bers. Such a machine is Turing complete iff

any numerical function computable on a Tur-

ing machine can be computed on the stack

machine

Note that by the Thesis of Church we cannot

compute more functions than those computed

by Turing machines.

Instructions:

Push: pushes 0 the stack: s ⇒ 0, s

Pop: removes the top from the stack: a, s ⇒ s

Incri: increases the i-th element by 1:

s =
i︷︸︸︷· · · , a, s1 ⇒ t =

i︷︸︸︷· · · , a + 1, s1
Decri(p): if (s)i > 0 decreases the i-th ele-

ment by 1 and performs p;Decri(p). It does

nothing otherwise.

53



Bootstrapping of the minimal machine

We can do (s)i := 0, i.e. clear the i-th ele-

ment on s by

Decri(Push;Pop)

We can do (s)i := (s)j, i.e. non-destructively

assign, the j-th element of s to j-th one by:

(s)i := 0;Push;Decrj+1(Incr0; Incri+1);

Decr0(Incrj+1);Pop

We can do If (s)i > 0 then p else q by

Push; Incr0;Push; (s)0 := (s)i+2;

Decr0((s)0 := 0; p+2; (s)1 := 0);

Decr1(q
+2);Pop;Pop

where p+2 is like p but with every stack index

increased by two. For instance;

p = Incr3; (s)6:=(s)8 ⇒ p+2 = Incr5; (s)8:=(s)10

54



Coding of Terms and Their Denotations

55



Turing complete terms

Instead of using the minimal stack machine

we will study a stack machine for the com-

putation of functional terms which are the

minimal set of expressions formed from: the

variable V and decimal numerals n by Incr(a),

Decr(a), Head(a), Tail(a), Pair(a, b), If(a, b, c),

Apply(a, b), and R(a) where a, b, and c are pre-

viously constructed functional terms.

We can show that every Turing computable

function f can be computed by evaluating a

functional term for f .

Instead of evaluating n-ary functions f we will

work with their unary contractions 〈f〉(x) such

that

〈f〉(x) = f((x)0, . . . , (x)n−1)

Thus f(x1, . . . , xn) = 〈f〉(x1, . . . , xn,0)

56



Explanatation of functional terms

Functional terms have two variables V stand-

ing for the single argument v of 〈f〉(v) = r and

R which stands for the body, i.e. the func-

tional term, r of 〈f〉. Thus R(a) occurring

within a stands for the recursive call 〈f〉(a).

The functional term Add t for the function

〈Add〉(x) = (x)0 + (x)1 is

If(Var(0),

IncrRPair(DecrVar(0),Pair(Var(1),0)),

Var(1))

where Var(i) abbreviates the term

Head
i︷ ︸︸ ︷

Tail · · ·Tail(V )

accessing the i + 1-st variable of f .

57



Denotation of functional terms

A functional term a denotes (has as its value,

evaluates to) a number in an assignment of

a number v to the variable V and a functional

term r to the variable R.

We thus have a three-place denotation func-

tion [a]vr yielding the value of a. We have

[Add t]3,2,0
Add t = 5

The term Apply(a, b) stands for the applica-

tion of the function with the functional term

a to the argument denoted by the term b:

[Apply(a, b)]vr = [a]
[b]vr
a

Note: the denotation function is only a partial

function because it has no value when the

recursion does not terminate.

58


