Coding of n-tuples and of Finite Sequences in Natural Numbers (Optimal Pairing Function)

Problems with Cantor's Pairing

The numbers $|x|_j$, $|x|_d$, and $|x|_b$ should be of the same **order**, i.e to differ only by constants.

This is not the case: For pair size n the minimal and maximal numbers min and max such that $n=|\min|_j=|\max|_j$ have $|\min|_d$ and $|\max|_d$ as listed:

p. size	$ min _d$	$ max _d$
1	1	1
2 3	1	2
3	2	3
4	3	6
5	3 3 4 5	11
6	4	21
7	5	41
8	6	82
9	7	163

Optimal pairing function

Solution define a **pairing** function x, y which keeps the numbers with the same pair size together, for instance, by **lexicographically ordering** the pairs:

$$0 < x, y$$

$$x_{1}, y_{1} < x_{2}, y_{2} \leftrightarrow |x_{1}, y_{1}|_{p} < |x_{2}, y_{2}|_{p} \lor$$

$$|x_{1}, y_{1}|_{p} = |x_{2}, y_{2}|_{p} \land$$

$$(x_{1} < x_{2} \lor x_{1} = x_{2} \land y_{1} < y_{2})$$

where $|0|_p = 0$ and $|(x,y)|_p = |x|_p + |y|_p + 1$ The function also satisfies:

$$(x,y) = (v,w) \to x = v \land y = w$$
$$v < (v,w) \land w < (v,w)$$
$$x = 0 \lor \exists v \exists w \, x = (v,w)$$

Pairing Discrimination

The basis for the **pairing** discrimination is the following property:

$$x = 0 \lor \exists! v \exists! w \, x = v, w$$

Concatenation and pair size can be thus programmed as:

$$x \oplus y = y \qquad \leftarrow x = 0$$

$$x \oplus y = v, w \oplus y \qquad \leftarrow x = v, w$$

$$|0|_p = 0$$

$$|x, y|_p = |x|_p + |y|_p + 1$$

These are **built** into CL and we write x++y and |x|.

Convention: Suppose that f is **ternary**. Then f(3,4,5,6,7) is abbreviation for f(3,4,(5,6,7)).