Coding of n-tuples and of Finite Sequences in Natural Numbers

Motivation: Pairs of functions.

Consider the pairs of functions:

$$y > 0 \rightarrow x = (x \div y) \cdot y + (x \mod y)$$

 $n \le |a|_d \rightarrow a = Dr(n, a) * Tk(n, a)$

$$\begin{aligned} x \div y &= 0 & \leftarrow y > 0 \land x < y \\ x \div y &= (x \div y) \div y + 1 & \leftarrow y > 0 \land x \ge y \\ x \bmod y &= x & \leftarrow y > 0 \land x < y \\ x \bmod y &= (x \div y) \bmod y \leftarrow y > 0 \land x \ge y \end{aligned}$$

$$Dr(0,a) = a$$
 $Tk(0,a) = 0$
 $Dr(n+1,0) = 0$ $Tk(n+1,0) = 0$
 $Dr(n+1,a\mathbf{1}) = Dr(n,a)$ $Tk(n+1,a\mathbf{1}) = Tk(n,a)\mathbf{1}$
 $Dr(n+1,a\mathbf{2}) = Dr(n,a)$ $Tk(n+1,a\mathbf{2}) = Tk(n,a)\mathbf{2}$

In Pascal or C we would have two functions yielding **pairs**, i.e **records** (**structures**), $\langle x \div y, x \mod y \rangle$ and $\langle Dr(n,a), Tk(n,a) \rangle$ respectively.

Pairs in natural numbers

Suppose that we could define a binary function $\langle x, y \rangle$ over \mathbb{N} with the **pairing property**:

$$\langle x_1, y_1 \rangle = \langle x_2, y_2 \rangle \to x_1 = x_2 \land y_1 = y_2$$

which says that the function is an **injection** into \mathbb{N} . We could then define:

$$Dm(x,y) = \langle 0, x \rangle \qquad \leftarrow y > 0 \land x < y$$

$$Dm(x,y) = \langle q+1, r \rangle \leftarrow y > 0 \land x \ge y \land$$

$$Dm(x \div y, y) = \langle q, r \rangle$$

$$Split(0, a) = \langle a, 0 \rangle$$

 $Split(n+1, 0) = \langle 0, 0 \rangle$
 $Split(n+1, a\mathbf{1}) = \langle d, t\mathbf{1} \rangle \leftarrow Split(n, a) = \langle d, t \rangle$
 $Split(n+1, a\mathbf{2}) = \langle d, t\mathbf{2} \rangle \leftarrow Split(n, a) = \langle d, t \rangle$

With properties $Dm(x,y) = \langle x \div y, x \mod y \rangle$ and $Split(n,a) = \langle Drop(n,a), Take(n,a) \rangle$

Modified Cantor's Pairing function

 $Tr(n) = 1 + \sum_{i=0}^{n} i$ is called the **triangular** function. If we define:

$$\langle x, y \rangle = Tr(x+y) + x$$

then the function satisfies the pairing property:

$\langle x,y \rangle$	0	1	2	3	4	5	6	• • •
0	1	2	4	7	11	16	22	
1	3	5	8	12	17	23	30	• • •
2	6	9	13	18	24	31	39	• • •
3	10	14	19	25	32	40	49	• • •
4	15	20	26	33	41	50	60	• • •
5	21	27	34	42	51	61	72	• • •
6	28	35	43	52	62	73	85	• • •
:	:	:	:	i	:	:	:	

We write x;y instead of $\langle x,y\rangle$ and abbreviate a;(b;c), i.e. $\langle a,\langle b,c\rangle\rangle$, to a;b;c

We then have

$$x; y = \frac{(x+y)\cdot(x+y+1)}{2} + x + 1$$

We clearly have Tr(0) = 1 and Tr(n + 1) = Tr(n) + n + 1.

Also 0; y = Tr(y):

We wish to define a pair of **projection** functions Hd and Tl such that

$$z > 0 \rightarrow z = Hd(z)$$
; $Tl(z)$

For that we need the **inverse** Dg of Tr satisfying:

$$z > 0 \rightarrow Tr Dg(z) \leq z < Tr(Dg(z) + 1)$$

i.e. for positive z the number Dg(z) = d is the **diagonal** with z, i.e. the **smallest** d s.t. z < Tr(d+1).

Since x; y = Tr(x + y) + x = z > 0, we have x + y = Dg(z) and so z = Tr Dg(z) + xFor z > 0 we wish Hd(z) = x and Tl(z) = yWe thus define:

$$Hd(z) = z - Tr Dg(z)$$
 $Tl(z) = Dg(z) - Hd(z)$

The diagonal function

Monadic recursion (implied by the least d such that . . . from the previous slide) leads to a suboptimal definition of Dg. For a better definition we note that $2 \cdot Tr(n) = n^2 + n + 2$. Thus for z > 0 and Dg(z) = d from

$$Tr(d) \le z < Tr(d+1) = Tr(d) + d + 1$$

we get:

$$(2\cdot d+1)^2 + 7 = 8\cdot Tr(d) \le 8\cdot z \le 8\cdot (Tr(d)+d) = 4\cdot d^2 + 12\cdot d + 8 < (2\cdot d+3)^2 + 7$$
.

Hence

$$2 \cdot d + 1 \le [\sqrt{8 \cdot z \div 7}] < 2 \cdot d + 3$$

and so:

$$Dg(z) = d = ([\sqrt{8 \cdot z \div 7}] \div 1) \div 2$$

All we need now is an optimal definition of $[\sqrt{n}]$, say, by 4-adic discrimination.

Additional properties of pairing

We have x < x; y and y < x; y and also $0 \neq x$; y. Moreover

$$z = 0 \lor \exists! x \exists! y z = x; y$$

Thus 0 is the only **atom**, i.e. not in the range of the pairing function.

Every number $z \in \mathbb{N}$ is thus either 0 or **uniquely** z = x; y (with x, y < z) and so every number in \mathbb{N} can be uniquely written as a **pair numeral**, i.e. a term composed from 0 by a; b.

The **pair size** $|z|_j$ of z satisfies

$$|0|_j = 0$$
 $|x; y|_j = |x|_j + |y|_j + 1$

and it **counts** the number of **pairings** in the numeral for z.

Coding of finite sequences over $\mathbb N$

These represent the numbers 0, x; 0, x; y; 0, x; y; z; 0, and

 $x_1; x_2; \cdots; x_n; 0$ respectively.

The numbers, called **lists**, code the finite sequences ϵ (the **empty** sequence), x (**singleton** seq.), xy (two element seq.) xyz (three element seq.), and $x_1 x_2 \cdots x_n$ (n element seq.). There is one to one correspondence between \mathbb{N} and **lists**.

Concatenation of lists:

$$(x_1; ...; x_n; 0) \boxplus (y_1; ...; y_m; 0) = x_1; ...; x_n; y_1; ...; y_m; 0$$

Concatenation satisfies the recurrences:

$$0 \boxplus y = y \quad (v; w) \boxplus y = v; (w \boxplus y)$$