
Recursively defined functions

10

Monadic discrimination

For the successor function

S(x) = x + 1 ≡ x′ we have:

x = 0 ∨ ∃!y x = S(y)

Note that y is the uniquely determined pre-

decessor of x:

Pr(x) = if x =

0→ 0

S(y)→ y

As clauses:

Pr(x) = 0← x = 0

Pr(x) = y ← x = S(y)

or even simpler (writing x+1 instead of S(x)):

Pr(0) = 0

Pr(x + 1) = x

11

Recursive definition of addition

Plus(x, y) = if x =

0→ y

z + 1→ Plus(z, y) + 1

As clauses

Plus(x, y) = 0 ← x = 0

Plus(x, y) = Plus(z, y) + 1← x = z + 1

or even simpler:

Plus(0, y) = 0

Plus(x + 1, y) = Plus(x, y) + 1

12

Recursive definition of multiplication

Mul(x, y) = if x =

0→ 0

z + 1→ Plus(Mul(z, y), y)

As clauses

Mul(x, y) = 0 ← x = 0

Mul(x, y) = Plus(Mul(z, y), y)← x = z + 1

or even simpler:

Mul(0, y) = 0

Mul(x + 1, y) = Plus(Mul(x, y), y)

13

Recursive definition of modified
subtraction

We wish Sub(x, y) ≡ x .− y such that

x ≥ y → y + (x .− y) = x

and 0 otherwise.

x .− y = if y =

0 → x

z + 1→ if x =

0→ 0

w + 1→ w .− z

As clauses

x .− y = x ← y = 0

x .− y = 0 ← y = z + 1 ∧ x = 0

x .− y = w .− z ← y = z + 1 ∧ x = w + 1

or simpler (note the left to right discrimination
order)

x .−0 = x

x .−(y + 1) = 0 ← x = 0

x .−(y + 1) = w .− y ← x = w + 1

14

Recursive definition of division by

repeated subtraction

We wish Div(x, y) ≡ x÷ y such that

y > 0→ ∃r(r < y ∧ x = (x÷ y)·y + r)

x÷ y = if

y = 0→ 0

y > 0 → if

x < y → 0

x ≥ y → (x .− y)÷ y + 1

where x < y = if y .−x = 0→ 0; z + 1→ 1

x < y ← y .−x = z + 1

In clauses:

x÷ y = 0 ← y = 0

x÷ y = 0 ← y > 0 ∧ x < y

x÷ y = (x .− y)÷ y + 1← y > 0 ∧ x ≥ y

15

Greatest common divisor according to

Euclid

gcd(x, y) | x, y ∧ ∀z(z | x, y → z ≤ gcd(x, y))

where x | y ↔ ∃z x·z = y.

gcd(x, y) = if

y = 0→ x

y > 0 → gcd(x, x mod y)

In clauses

gcd(x, y) = x ← y = 0

gcd(x, y) = gcd(y, x mod y)← y > 0

16

Measures for recursion

Not every recursive ‘definition’ defines a func-

tion. There is no f satisfying:

f(x) = f(x + 1) + 1

If for an n-ary recursively defined f(~x) there

is an n-ary measure function µ(~y) such that

for every recursive call f(~s) in the definition we

have µ(~s) < µ(~x), i.e. the recursion descends

in µ, then there is a unique f satisfying the

recursive equation.

17

Measures for the previous recursive

definitions

Plus(x, y) has the measure µ(x, y) = x.

Mul(x, y) has the measure µ(x, y) = y

Sub(x, y) has the measure µ(x, y) = x but also

µ(x, y) = y.

Div(x, y) has the measure µ(x, y) = x.

gcd(x, y) has the measure µ(x, y) = y.

With measures µ(x, y) = x we say that the

recursion descends in x.

With measures µ(x, y) = y we say that the

recursion descends in y.

18

