Propositional Logic II
(syntax)

Objective: to find a better method for testing
tautologies than truth table method

Solution: to generalize the problem to sets
(possibly infinite) of formulas.

88

Satisfaction relations for sets of
propositional formulas

For T a set of formulas and v a valuation (both
possibly infinite), we say that v satisfies T, in
writing IZZ"; T, iff for all A €T we have I:Z"; A.

We define =T = {-~A | A € T}. If not] =T
then v does not refute 7. This means l:g A
for some A €T

We say that S is a propositional (tautologi-
cal) consequence of T, in writing T F, S, iff
for all v such that) T" we do not have F} =S,
i.e. no v satisfying 7T refutes S

The special case when T F, {A} is the most
important relation in mathematical logic. We
write T F, A instead of Tk, {A} and say that
A tautologically follows from T

89

Compactness theorem for propositional
consequence

T E, S iff there are finite T/ C T and S’ C S s.t.
T E, S,

have T' E, S’ iff

Note that T F, 0 iff T is unsatisfiable, i.e. for
all v there is A €T s.t. Fj —A.

Also, 0 E, S iff S is non-refutable, i.e. for all
v there is A€ S5 s.t. F) A.

Also, not 0 Ep)

Also, 0 F, {A} iff A is tautology.

We will study this in more detail in Logic II.

90

Observations leading to better tests for
tautological consequence

If 7" and S consist only of propositional vari-
ables then T E, S iff TNS # ()

If L € Sthen Tk, Siff T F, S\ {L}
If L €T then T Fp S

If (A— B) € S then
TE,Sifft TU{A}F, SU{B} iff
TU{A}Fp, S\{A — B} U{B}

If (A— B) €T then

TE,Siff TU{B}Fp,Sand T F, SU{A} iff
T\{A— B}U{B}Fp S and
T\{A— B} E, SU{A}

91

Arithmetization

For finite sets T and S we can arithmetize the
predicate T'F, S by defining in CL:

t Fp s < Vou(
Va(a et —F, a) — Ja(a e s —F, a))

The properties from the previous slide can be
then used to define by a clausal definition a
fourplace predicate Seq(t,v, s, w) taking lists of
formulas ¢, s and lists of numbers v, w such
that

Seq(t,v, s, w) <t ® Map pe(v) Fp s ® Map pe(w)

Note that the lists v and w store the indices :
of propositional variables PZ-’ encountered in t
and s respectively.

We then define

Taut(a) < Seq(0,0, (a,0),0)

92

Seq(0,v,0,w) —vNw>0

Seq(0,v, (P2, s),w) «— Seq(0,v, s, (1, w))

Seq(0,v, (L®, s),w) — Seq(0,v, s, w)

Seq(0,v, (a —*b,s),w) «— Seq((a,0),v, (b,s),w)

Seq((P?,t),v, s, w) — Seq(t, (7,v),s,w)

Seq((L®, 1), v, s, w)

Seq((a —®* b, t),v,s,w) «— Seq((b,t),v,s,w) A
Seq(t,v, (a,s),w)

How to derive clauses for other connectives?
By using them on both sides of Seq and sim-
plifying. We note that when we replace in the
first four clauses the first O by s we have more
general properties of Seq then the four clauses.
For instance, for —®a in the consequent we
have: Seq(t,v, (—=%a,s),w) iff
Seq(t,v, (a —* L®, s),w) iff Seq((a,t),v, (L® s),w)
iff Seq((a, s),v,s,w)
For —®a in the antecedent we have:
Seq((—=®a,t),v,s,w) iff Seq((a —* L% t),v,s, w)
iff Seq((L®,t),v,s,w) and Seq(t,v, (a,s),w) iff
Seq(t,v, (a,s),w)

93

