Binary Search Trees

75



Binary trees

A labelled binary tree is either empty: e or a

triple lL where n € N and [, » are binary trees.
T

We code binary trees by constructors

e=F=0,0 %ENCZ(%,Z,T)Z].,TL,Z,T‘.
T

The following format holds of (codes of) bi-
nary trees:

Bt(e)

Bt <l|i’r> — N(n) A Bt(1) A Bt(r)

76



Basic operations on binary trees

t|, yields the number of nodes in a binary tree:

*, =0

n

Uy + |7y + 1

[]r b

For t a binary tree = €t holds iff x is a label in

t:

Bt(t) - x et <« InIlIr(t = TA
(t=nVxelVzer))

n
r

Note that any clausal definition of the predi-
cate will have to search the whole tree.

7’



Traversals of binary trees

A traversal of a binary tree ¢t is a function
which forms a list out of the nodes of ¢.

Preorder, Inorder, and Postorder are func-
tions which traverse first left and then right
subtrees. Labels are written out in that order
before, in the middle, after the traversals.
For instance

Inorder (e) =0

Inorder (%) = Inorder(l) ® (n, Inorder(r))

r

78



Subtree predicate

For binary trees s, t we say s IS a subtree of
t and write s [y t, when

sLpe«—s=we

n
slpy—<<s=—VsLplVsLyr
[]r []r

79



Binary Search Trees

We define the predicate Bst(t) to hold of binary
search trees as follows:

Bst(t) < Bi(t) A ‘v’n‘v’l‘v’r(% Cyt —
T

Vm(m eyl — m < n) A

Vm(mepr — m >mn))

We could use also the equivalent definition:

Bst(t) < Bt(t) A SetInorder(t)

Binary search trees can be used to implement
finite sets in a more optimal way than lists.

80



