2.4 Primitive Recursion by Regular Minimalization

- **2.4.1 Alternative definition of** μ -recursive functions. The class of μ -recursive functions is generated from the identity functions $I_i^n(\vec{x}) = x_i$, the multiplication function xy, and from the characteristic function $x <_* y$ of the comparision predicate x < y by composition and regular minimalization of functions.
- **2.4.2 Lemma** μ -Recursive functions are closed under explicit definitions of functions without constants.
- **2.4.3 Lemma** μ -Recursive functions are closed under regular minimalization of the form $f(\vec{x}) = \mu y[\tau[\vec{x}, y] = 1]$, where the term τ is without constants.
- **2.4.4 Successor function is \mu-recursive.** We have $\forall x \exists y \ x < y$ and the number x+1 is the least such number y. Hence the successor function S(x) = x+1 is μ -recursive by the following regular minimalization:

$$S(x) = \mu y [(x <_* y) = 1].$$

2.4.5 Unary constant functions are μ -recursive. Clearly $\forall x \exists y \ x < x + 1$ and 0 is the least such number y. Hence the zero function Z(x) = 0 is μ -recursive function by the following regular minimalization:

$$Z(x) = \mu y [(x <_* S(x)) = 1].$$

We can now define all unary constant functions $C_m(x) = m$ as μ -recursive functions by a series of explicit definitions $(C_0 = Z)$:

$$C_{m+1}(x) = C_m(x) + 1.$$

- **2.4.6 Lemma** μ -Recursive functions are closed under explicit definitions of functions.
- **2.4.7 Lemma** μ -Recursive functions are closed under regular minimalization of the form $f(\vec{x}) = \mu y[\tau[\vec{x}, y] = 1]$.
- **2.4.8 Boolean functions are \mu-recursive.** The boolean functions $\neg_* x$ and $x \wedge_* y$ are μ -recursive by explicit definitions:

$$(\neg_* x) = (x <_* 1)$$
$$(x \land_* y) = (\neg_* \neg_* xy).$$

The remaining boolean functions are derived similarly as μ -recursive.

2.4.9 Comparision predicates are \mu-recursive. The binary predicates $x \le y$ and x = y are μ -recursive by explicit definitions of their characteristic functions:

$$(x \le_* y) = (\neg_* y <_* x)$$

 $(x =_* y) = (x \le_* y \land_* y \le_* x).$

2.4.10 Case discrimination function is \mu-recursive. The graph of the case discrimination function D satisfies the following obvious property:

$$D(x, y, z) = v \leftrightarrow x \neq 0 \land v = y \lor x = 0 \land v = z.$$

We define D as μ -recursive by regular minimalization:

$$D(x, y, z) = \mu v [(\neg_* x =_* 0 \land_* v =_* y \lor_* x =_* 0 \land_* v =_* z) = 1].$$

2.4.11 Lemma μ -Recursive functions are closed under the operator of bounded minimalization.

Proof. Let the (n+1)-ary function f be defined by bounded minimalization:

$$f(x, \vec{y}) = \mu z \le x [g(z, \vec{y}) = 1]$$

from a μ -recursive function g. We clearly have

$$\forall x \forall \vec{y} \exists z (z \le x \to g(z, \vec{y}) = 1)$$

since x + 1 is one of such numbers z. Hence the auxiliary (n+1)-ary function h is defined by regular minimalization as a μ -recursive function:

$$h(x, \vec{y}) = \mu z [(z \le_* x \to_* g(z, \vec{y}) =_* 1) = 1].$$

Note that $h(x, \vec{y})$ yields the smallest number $z \le x$ such that $g(z, \vec{y}) = 1$ holds or x+1 if there is no such number. We now define f by explicit definition as a μ -recursive function:

$$f(x, \vec{y}) = D((h(x, \vec{y}) \le x), h(x, \vec{y}), 0).$$

- **2.4.12 Lemma** μ -Recursive functions are closed under explicit definitions of predicates with bounded formulas.
- **2.4.13 Lemma** μ -Recursive functions are closed under definitions of functions with bounded minimalization.
- **2.4.14 Lemma** μ -Recursive functions are closed under definitions of functions with regular minimalization of bounded formulas.

Proof. Consider a function f defined by regular minimalization

$$f(\vec{x}) = \mu y [\varphi[\vec{x}, y]]$$

from μ -recursive functions and predicates. Here φ is a bounded formula. We can define f by the following series of definitions:

$$P(y, \vec{x}) \leftrightarrow \varphi[\vec{x}, y]$$
$$f(\vec{x}) = \mu y [P_*(y, \vec{x}) = 1].$$

By Thm. 2.4.12 the characteristic function P_* of the predicate P is μ -recursive and so is the function f.

2.4.15 Addition is μ -recursive. First note that if $z \neq 0$ then we have

$$x + y = z \Leftrightarrow (x + y)z = z^2 \Leftrightarrow (x + y)z + xyz^2 + 1 = z^2 + xyz^2 + 1 \Leftrightarrow$$
$$\Leftrightarrow (xz + 1)(yz + 1) = (xy + 1)z^2 + 1.$$

Addition can be thus derived as a μ -recursive function by regular minimalization of its graph:

$$x + y = \mu z \Big[z = 0 \land x = 0 \land y = 0 \lor z \neq 0 \land S(xz)S(yz) = S\big(S(xy)zz\big) \Big].$$

2.4.16 Modified subtraction is \mu-recursive. The binary modified subtraction function $x \div y$ is μ -recursive by bounded minimalization:

$$x - y = \mu z \le x[x = y + z].$$

2.4.17 Integer division is \mu-recursive. We define the integer division function $x \div y$ as μ -recursive by bounded minimalization:

$$x \div y = \mu q \le x[x < (q+1)y].$$

2.4.18 Pairing function is \mu-recursive. The modified Cantor pairing function $\langle x, y \rangle$ is μ -recursive by explicit definition:

$$(x,y) = (x+y)(x+y+1) \div 2 + x + 1.$$

2.4.19 Projection functions are μ -recursive. Both projection functions of the pairing function are μ -recursive by bounded minimalization:

$$\pi_1(x) = \mu y < x[\exists z < x \, x = \langle y, z \rangle]$$

$$\pi_2(x) = \mu z < x[\exists y < x \, x = \langle y, z \rangle].$$

2.4.20 Lemma The unary iteration $\pi_2^n(x)$ of the second projection:

$$\pi_2^0(x) = x$$
 $\pi_2^{n+1}(x) = \pi_2 \pi_2^n(x)$

is a μ -recursive function.

Proof. Very hard. It will be supplied later.

2.4.21 Sequence length is \mu-recursive. We clearly have $\pi_2^x(x) = 0$ and thus $\forall x \exists n \pi_2^n(x) = 0$. Hence, the function L(x) yielding the length of finite sequences is μ -recursive by regular minimalizzation:

$$L(x) = \mu n [\pi_2^n(x) = 0].$$

2.4.22 Indexing function is \mu-recursive. The binary sequence indexing function $(x)_i$ yielding the (i+1)-st element of the sequence x is a μ -recursive function by explicit definition

$$(x)_i = \pi_1 \pi_2^i(x).$$

2.4.23 Lemma μ -Recursive functions are closed under primitive recursion.

Proof. Let the (n+1)-ary function f be defined by primitive recursion from μ -recursive functions g and h:

$$f(0, \vec{y}) = g(\vec{y})$$

$$f(x+1, \vec{y}) = h(x, f(x, \vec{y}), \vec{y}).$$

We will derive f as μ -recursive with the help of its course of values function:

$$\overline{f}(x, \vec{y}) = \langle f(x, \vec{y}), f(x-1, \vec{y}), \dots, f(2, \vec{y}), f(1, \vec{y}), f(0, \vec{y}), 0 \rangle.$$

The graph of the course of values function is μ -recursive by explicit definition:

$$\begin{split} \overline{f}(x,\vec{y}) &= s \leftrightarrow L(s) = x + 1 \land (s)_{x-0} = g(\vec{y}) \land \\ \forall u < x \ (s)_{x \doteq (u+1)} &= h \big(u, (s)_{x \doteq u}, \vec{y} \big). \end{split}$$

The function \overline{f} is μ -recursive by regular minimalization of its graph and thus the following explicit definition derives f as a μ -recursive function:

$$f(x, \vec{y}) = (\overline{f}(x, \vec{y}))_0$$
.

2.4.24 Theorem μ -Recursive functions are primitively recursively closed.

Proof. The class of μ -recursive functions contains the successor function S(x) = x + 1 and the zero function Z(x) = 0 by Par. 2.4.4 and Par. 2.4.5, respectively, and it is closed under primitive recursion by Thm. 2.4.23.