2.4 Primitive Recursion by Regular Minimalization

2.4.1 Alternative definition of u-recursive functions. The class of u-
recursive functions is generated from the identity functions I7*(Z) = z;, the
multiplication function zy, and from the characteristic function x <, y of the
comparision predicate x < y by composition and regular minimalization of
functions.

2.4.2 Lemma W-Recursive functions are closed under explicit definitions of
functions without constants.

2.4.3 Lemma WU-Recursive functions are closed under reqular minimaliza-
tion of the form f(Z) = wy[7[Z,y] = 1], where the term 7 is without constants.

2.4.4 Successor function is p-recursive. We have VzIyx <y and the
number x + 1 is the least such number y. Hence the successor function
S(x) =x +1 is p-recursive by the following regular minimalization:

S(x) = py[(z <. y) =1].

2.4.5 Unary constant functions are p-recursive. Clearly VzIyz <z +1
and 0 is the least such number y. Hence the zero function Z(z) =0 is p-
recursive function by the following regular minimalization:

Z(x) = uy[(w < S(z)) = 1].

We can now define all unary constant functions C,,(z) =m as p-recursive
functions by a series of explicit definitions (Cy = Z):

Cms1(x) = Cpp(z) + 1.

2.4.6 Lemma U-Recursive functions are closed under explicit definitions of
functions.

2.4.7 Lemma W-Recursive functions are closed under reqular minimaliza-

tion of the form f (%) = wy[7[Z,y] =1].

2.4.8 Boolean functions are p-recursive. The boolean functions —.x
and x A, y are [-recursive by explicit definitions:

(maz) = (z< 1)
(2 Axy) = (memay).

The remaining boolean functions are derived similarly as p(-recursive.



2.4.9 Comparision predicates are |-recursive. The binary predicates
x <y and x =y are U-recursive by explicit definitions of their characteristic
functions:

(z<4y) = (my<s )
(r=:y) = (T Yy As Y <S4 T).

2.4.10 Case discrimination function is p-recursive. The graph of the
case discrimination function D satisfies the following obvious property:

D(z,y,z)=vezcz+0rv=yve=0Av=2z.
We define D as p-recursive by regular minimalization:
D(z,y,2) =[(-2 = 0Ac v =0y Vaw =2 0A, v =0 2) = 1]

2.4.11 Lemma W-Recursive functions are closed under the operator of bounded
minimalization.

Proof. Let the (n+1)-ary function f be defined by bounded minimalization:
F(@,9) = wz <alg(=,9) = 1]

from a p-recursive function g. We clearly have
vagﬂz(z <z —>g(2,9) = 1)

since z + 1 is one of such numbers z. Hence the auxiliary (n+1)-ary function
h is defined by regular minimalization as a p-recursive function:

h(z, ) = puz[(2 <o v >0 g(2,9) = 1) = 1].

Note that h(z,¥) yields the smallest number z < « such that ¢g(z,7) = 1 holds
or x + 1 if there is no such number. We now define f by explicit definition as
a W-recursive function:

f(@,5) = D(((x,) <. ), h(,5),0)- 2

2.4.12 Lemma W-Recursive functions are closed under explicit definitions
of predicates with bounded formulas.

2.4.13 Lemma -Recursive functions are closed under definitions of func-
tions with bounded minimalization.

2.4.14 Lemma U-Recursive functions are closed under definitions of func-
tions with reqular minimalization of bounded formulas.



Proof. Consider a function f defined by regular minimalization

f(@) = ny[elz,y]]

from p-recursive functions and predicates. Here ¢ is a bounded formula. We
can define f by the following series of definitions:

P(y,) < ¢[Z,y]
(&) = py[P.(y, %) =1].

By Thm. 2.4.12 the characteristic function P, of the predicate P is p-recursive
and so is the function f. i

2.4.15 Addition is p-recursive. First note that if z # 0 then we have

rry=ze (z+y)z=22 o (z+y)z+ray+1=22 12y’ +1 =

= (zz+ 1) (yz+1) = (zy+1)22 + 1.

Addition can be thus derived as a p-recursive function by regular minimal-
ization of its graph:

v+y=pz[z=0A2=0Ay=0vz=0AS(22)S(yz) = S(S(zy)zz)].

2.4.16 Modified subtraction is |-recursive. The binary modified sub-
traction function = =y is (-recursive by bounded minimalization:

rry=uz<z[x=y+z].

2.4.17 Integer division is p-recursive. We define the integer division
function = +y as p-recursive by bounded minimalization:

r+y=pg<zfz<(g+1)y].

2.4.18 Pairing function is p-recursive. The modified Cantor pairing
function (x,y) is p-recursive by explicit definition:

(z,y)=(z+y)(z+y+1)+2+x+1.

2.4.19 Projection functions are p-recursive. Both projection functions
of the pairing function are p-recursive by bounded minimalization:

T (2) =y <z[Fz<zz=(y,2)]
o(x) =z <z[Jy<zx = (y,z)].

2.4.20 Lemma The unary iteration ny(x) of the second projection:



ny(z) =z
iy () = mymy (x)
is a W-recursive function.

Proof. Very hard. It will be supplied later. ]

2.4.21 Sequence length is p-recursive. We clearly have w5(z) = 0 and
thus YazInny (z) = 0. Hence, the function L(x) yielding the length of finite
sequences is [-recursive by regular minimalixzation:

L(x) = un[x () = 0],

2.4.22 Indexing function is p-recursive. The binary sequence indexing
function (), yielding the (i+1)-st element of the sequence x is a p-recursive
function by explicit definition

(z); = mmy().
2.4.23 Lemma U-Recursive functions are closed under primitive recursion.

Proof. Let the (n+1)-ary function f be defined by primitive recursion from
p-recursive functions g and h:

f(0.9) = 9(¥)
f(a: + 17@) = h(x,f(a:,gj),gj)

We will derive f as p-recursive with the help of its course of values function:
T(xvg) = <f(‘ra g)a f(l' - 17@)7 ceey f(2a g)a f(]-vg)v f(ng)ao)
The graph of the course of values function is (-recursive by explicit definition:

f(@,5) =5 L(s) =2+ 1A (), = 9(F) A
VU< (8),.(ye1) = h(u, (€). ,g)

The function f is p-recursive by regular minimalization of its graph and thus
the following explicit definition derives f as a p-recursive function:

f(@,9) = (f(,9)),- o
2.4.24 Theorem U-Recursive functions are primitively recursively closed.

Proof. The class of p-recursive functions contains the successor function
S(xz)=x+1 and the zero function Z(z)=0 by Par. 2.4.4 and Par. 2.4.5,
respectively, and it is closed under primitive recursion by Thm. 2.4.23. ]



