7.2.17 Theorem (Rice-Shapiro). For every $n \geq 1$ and every class \mathcal{F} of n-ary partially computable functions, if the problem $\varphi_e^{(n)} \in \mathcal{F}$ is semidecidable then the following holds for every n-ary partially computable function f:

$$f \in \mathcal{F}$$
 iff there is a finite $\theta \subseteq f$ such that $\theta \in \mathcal{F}$.

Proof. Take any n-ary partially computable function $f \in \mathcal{F}$. Suppose by contradiction that for every finite $\theta \subseteq f$ we have $\theta \notin \mathcal{F}$. Consider the (n+3)-ary partially computable function g defined by

$$g(e,x,t,\vec{y}) \simeq \begin{cases} \bot & \text{the computation of } \varphi_e(x) \text{ converges in } \le t \text{ steps,} \\ f(\vec{y}) & \text{otherwise.} \end{cases}$$

By the s-m-n theorem there is a primitive recursive function k(e, x) such that

$$\varphi_{k(e,x)}^{(n)}(\vec{y}) \simeq g(e,x,y_1,\vec{y}).$$

It is easy to see that $\varphi_{k(e,x)}^{(n)} \subseteq f$ and

$$W_e(x) \to \varphi_{k(e,x)}^{(n)}$$
 is finite
$$\neg W_e(x) \to \varphi_{k(e,x)}^{(n)} = f.$$

This yields

$$\neg W_e(x) \leftrightarrow \varphi_{k(e,x)}^{(n)} \in \mathcal{F}^{(n)}$$

and thus the predicate $\neg W_e(x)$ is semicomputable. Contradiction.

In the proof of the reverse implication, assume by contradiction that there is a finite $\theta \in \mathcal{F}$ such that $\theta \subseteq f$ for an *n*-ary partially computable function $f \notin \mathcal{F}$. Consider the (n+2)-ary partially computable function g defined by

$$g(e, x, \vec{y}) \simeq \begin{cases} f(\vec{y}) & \text{if } \theta(\vec{y}) \downarrow \text{ or } \varphi_e(x) \downarrow, \\ \bot & \text{otherwise.} \end{cases}$$

By the s-m-n theorem there is a primitive recursive function k(e, x) such that

$$\varphi_{k(e,x)}^{(n)}(\vec{y}) \simeq g(e,x,\vec{y}).$$

It is easy to see that we have

$$W_e(x) \to \varphi_{k(e,x)}^{(n)} = f$$

 $\neg W_e(x) \to \varphi_{k(e,x)}^{(n)} = \theta.$

Consequently

$$\neg W_e(x) \leftrightarrow \varphi_{k(e,x)}^{(n)} \in \mathcal{F}^{(n)}$$

and thus the predicate $\neg W_e(x)$ is semicomputable. Contradiction.

Exercise. Prove Rice's theorem from the Rice-Shapiro theorem. (*Hint.* Consider the cases $\emptyset^{(n)} \in \mathcal{F}^{(n)}$ and $\emptyset^{(n)} \notin \mathcal{F}^{(n)}$ separately.).