12 Arithmetical Hierarchy

12.1 Introduction. We will study properties of the following index sets:

$$Tot = \{e \mid \varphi_e \text{ is total}\} = \{e \mid W_e = \mathbf{N}\}$$

$$Inf = \{e \mid W_e \text{ is infinite}\}$$

$$Con = \{e \mid \varphi_e \text{ is total and constant}\}$$

$$Fin = \{e \mid W_e \text{ is finite}\}$$

$$Comp = \{e \mid W_e \text{ is computable}\}$$

- **12.2 Exercise.** Prove that Tot, Inf and Con are Π_2 sets.
- 12.3 Exercise. Prove that Fin is Σ_2 .
- **12.4 Exercise.** Prove that *Comp* is Σ_3 . *Hint.* Use Post's theorem.
- **12.5 Definition.** The set A is many-one reducible (m-reducible for short) to the set B, written $A \leq_{\mathrm{m}} B$, if there is a computable function f such that $x \in A \leftrightarrow f(x) \in B$ for every number x.

The sets A and B are many-one equivalent (m-equivalent for short), written $A \equiv_{\mathbf{m}} B$, if $A \leq_{\mathbf{m}} B$ and $B \leq_{\mathbf{m}} A$.

- **12.6 Exercise.** Prove that if A is Σ_n (Π_n) and $B \leq_m A$ then B is Σ_n (Π_n).
- **12.7 Exercise.** Prove that Tot is Π_2 -complete, i.e. prove $A \leq_{\mathrm{m}} Tot$ for every Π_2 set A.
- **12.8 Exercise.** Prove that $Tot \equiv_{\mathbf{m}} Inf \equiv_{\mathbf{m}} Con$. Hint. Use Kleene's s-m-n theorem.
- **12.9 Exercise.** Prove that Tot, Inf and Con are not Σ_2 sets.
- 12.10 Exercise. Prove that Fin is not Π_2 .