1.5 Backward Recursion

Backward Recursion and Primitive Recursion

1.5.1 Example. Consider the following definition of the binary function f:

$$f(x,y) = \begin{cases} g(y) & \text{if } x \ge b(y), \\ h(x, f(x+1, y), y) & \text{if } x < b(y). \end{cases}$$

We want to show that if g, h and b are p.r. functions then so is f. For that we shall define a new function f_1 by primitive recursion:

$$f_1(0,y) = g(y)$$

$$f_1(z+1,y) = h(b(y) \div (z+1), f_1(z,y), y).$$

We have

$$f(x,y) = f_1(b(y) \div x, y)$$

and since f_1 is primitive recursive we can take this identity as an alternative, explicit definition of f as a p.r. function.

Proof. The property is proved by induction on the difference $b(y) \dot{-} x$. So take any x, y and consider two cases. If $x \geq b(y)$ then $b(y) \dot{-} x = 0$ and thus

$$f(x,y) = g(y) = f_1(0,y) = f_1(b(y) \div x, y).$$

If x < b(y) then b(y) - (x+1) < b(y) - x and thus

$$f(x,y) = h(x, f(x+1,y), y) \stackrel{\text{IH}}{=} h(x, f_1(b(y) \dot{-} (x+1), y), y) =$$

$$= h(b(y) \dot{-} (b(y) \dot{-} (x+1) + 1), f_1(b(y) \dot{-} (x+1), y), y) =$$

$$= f_1(b(y) \dot{-} (x+1) + 1, y) = f_1(b(y) \dot{-} x, y).$$

Backward Recursion and Course of Values Recursion

1.5.2 Example. Consider the following definition of the binary function f:

$$f(x,y) = \begin{cases} g(y) & \text{if } x \ge b(y), \\ h(x, f(\sigma[x,y], y), y) & \text{if } x < b(y), \end{cases}$$

where $x < \sigma[x,y]$. We want to show that if g, h, b and σ are all primitive recursive then so is f.

For that we shall define a new function f_1 by course of values recursion:

$$f_1(0,y) = g(y)$$

$$f_1(z+1,y) = h(b(y) \div (z+1), f_1(\xi[z,y],y), y),$$

where

$$\xi[z,y] \equiv b(y) \div \sigma[b(y) \div (z+1),y].$$

The inequality $\xi[z,y] \leq z$ follows from

$$\xi[z,y] = b(y) \div \sigma[b(y) \div (z+1), y] \le b(y) \div ((b(y) \div (z+1)) + 1) \le b(y) \div (b(y) + 1 \div (z+1)) = b(y) \div (b(y) \div z) \le z$$

by noting that $\sigma[b(y) \dot{-} (z+1), y] \ge (b(y) \dot{-} (z+1)) + 1$. We have

$$f(x,y) = f_1(b(y) \div x, y)$$

and since f_1 is primitive recursive we can take this identity as an alternative, explicit definition of f as a p.r. function.

Proof. The property is proved by induction on the difference $b(y) \dot{-} x$. So take any x, y and consider two cases. If $x \geq b(y)$ then $b(y) \dot{-} x = 0$ and thus

$$f(x,y) = g(y) = f_1(0,y) = f_1(b(y) \div x, y).$$

If x < b(y) then $b(y) \doteq (x+1) < b(y) \doteq x$ and also

$$\xi[b(y) \dot{-} (x+1), y] = b(y) \dot{-} \sigma[b(y) \dot{-} (b(y) \dot{-} (x+1) + 1), y] =$$

$$= b(y) \dot{-} \sigma[b(y) \dot{-} (b(y) + 1 \dot{-} (x+1)), y] =$$

$$= b(y) \dot{-} \sigma[b(y) \dot{-} (b(y) \dot{-} x), y] = b(y) \dot{-} \sigma[x, y].$$

Therefore

$$f(x,y) = h(x, f(\sigma[x,y], y), y) \stackrel{\text{IH}}{=} h(x, f_1(b(y) \div \sigma[x,y], y), y) =$$

$$= h(x, f_1(\xi[b(y) \div (x+1), y], y), y) =$$

$$= h(b(y) \div (b(y) \div (x+1) + 1), f_1(\xi[b(y) \div (x+1), y], y), y) =$$

$$= f_1(b(y) \div (x+1) + 1, y) = f_1(b(y) \div x, y).$$