6.1 Dyadic Words

6.1.1 Arithmetization of word domains with two elements. Consider
the two-elements alphabet X' = {1,2}. We can code words over X with the
help of dyadic successors functions explicitly defined by:

r1=2x+1 x2 =2z + 2.

It is not difficult to see that every natural number has a unique represen-
tation as a dyadic numeral which are terms built up from the constant 0
by applications of dyadic successors. This is called dyadic representation of
natural numbers.

Consider, for instance, the first eight words from the sequence of words over
the alphabet X' which is ordered first on the length and then within the same
length lexicographically: @,1,2,11,12,21,22,111. The corresponding dyadic
numerals are shown in Fig. 6.1. Arithmetization is so straightforward that,
from now on, we will usually identify dyadic words with their code numbers.

0=0
01=2x0+1=1x2"=1
02=2x0+2=2x2"=2
011=2x(2x0+1)+1=1x2"+1x2°=3
012=2x(2x0+1)+2=1x2'+2x20=4
021=2x(2x0+2)+1=2x2"+1x2%=5
022=2x(2x0+2)+2=2x2"+2x2"=6
0111=2x (2x (2x0+1)+1)+1=1x22+1x2' +1x2°=7

Fig. 6.1 Dyadic representation of natural numbers

6.1.2 The principle of dyadic case analysis. We have
pa 2=0Vv3Iyxr=y1vIyz=y2.

6.1.3 The principle of dyadic induction. For every formula p[z], the
formula of dyadic induction on x for ¢ is the following one:

o[0] A Va(d[z] > ¢[x1]) A Va(g[z] > o[x2]) - Vo[z].

The formula ¢ may contain additional variables as parameters.

6.1.4 Theorem The principle of dyadic induction holds for each formula.



Proof. Dyadic induction is reduced to complete induction as follows. Assume

¢[0] (1)
Va(¢[z] - ¢[x1]) (2)
Va(olz] - olz2]) (f3)

and prove by complete induction on x that ¢[x] holds for every z. We consider
three cases. If 2 = 0 then ¢[0] follows from the assumption (t,). If x = y1 for
some y then, since y < x, we have ¢[y] from IH and we get ¢[y1] from (},).
The case when = = y2 for some y is proved similarly. ]

6.1.5 Dyadic length. The dyadic length function L (x) yields the num-
ber of dyadic successors in the dyadic numeral denoting the number x. The
function is the arithmetization of the word function taking a dyadic word and
yielding its length. The function is defined by parameterless dyadic recursion:

L(0)=0
L(z1)=L(z)+1
L(z2)=L(z)+1.

This is a correct definition because recursion decreases the argument since
we clearly have x < 1 and = < x2. The function satisfies the following

tpa L(z)=0<-2=0 (1)
pa L(z) =n 2" <z+1<2™ (2)

Proof. (1): By a straighforward dyadic case analysis.
(2): By induction on n with induction formula Vz (2). In the base take
any x and we have

1
L)=090=0e1<a+1<2=20 <ol

In the inductive case take any number x and consider three cases. If £ =0
then the claim follows from the following two simple facts: L(0) =0+ n+1
and 2"t £1=0+1. If 2 = y1 for some y then we have

L(yl):n+1©L(y)+1:n+l©L(y):n22"§y+1<2”+1c»

< 2" <(y+1) <22 o 2 <1 41 <22

If x = y2 for some y then we have

L(yz):n+1@L(y)+1=n+1@L(y):n22"§y+1<2"+1<:>

= 2" <2(y+1)+1<22"! = 2" cya 41 <22 o



6.1.6 Dyadic concatenation. The binary dyadic concatenation function
x * y is the arithmetization of the word function concatenating two dyadic
words. The function is defined by dyadic recursion on y:

zx0=z
xxyl=(x*y)l
xxy2=(x*y)2.

The function satisfies the following properties:
kpr*y:xQL(y)+y (1)
paZrxy=02=0Ay=0 ()
pa Oxy =1y (3)
oa (T *y) xz =2 (y*2) (4)
a L(z*y)=L(x)+L(y). ()

Proof. (1): By dyadic induction on y. In the base case when y = 0 we have
zx0=x=22"+0=22"0 4.

The induction step for y1 follows from

wryl=(zxy)1 T (22® 4 y)1 = 28O 4y = g2l ) 4y

The other induction step is proved similarly.
(2): By a straightforward dyadic case analysis on y.
(3): By a straightforward dyadic induction.
(4): By dyadic induction on z. In the base case we have

(x*y)*O:x*yzx*(y*O),

In the inductive step for z1 we have

(x*y)*zlz((x*y)*2)115(;v*(y*z))lzx*(y*z)lzx*(y*zl).

The other induction step is proved similarly.
(5): By a straightforward dyadic induction on y. i

6.1.7 Dyadic reversal. The function Rev is the arithmetization of the
word function reverting the order of the elements of dyadic words. The func-
tion is defined by dyadic recursion as follows:

Rew(0) =0
Rev(x1) =01 » Rev(x)
Rev(x2) = 02 » Rev(x).



The function has the following properties:

tpa Rev(z) =0« 2 =0 (1)
tea Rev(z *y) = Rev(y) * Rev(z) (2)
tea Rev Rev(z) = (3)
pa Jyx = Rev(y) (4)
tpa Rev(z) = Rev(y) >z =y (5)
tpa L Rev(z) = L (). (6)

Proof. (1): By dyadic case analysis with the help 6.1.6(2).
(2): By dyadic induction on y. In the base case we have

6.1.6(3)

Rev(x x 0) = Rev(x) 0 * Rev(x).

In the inductive case for y1 we have

Rev(z + y1) = Rev((z * y)1) = 01 » Rev(z * y) '
01 = (Rev(y) » Rev(z)) 6150 (01 * Rev(y)) = Rev(z) = Rev(y1) » Rev(x).

The other induction case is proved similarly.
(3): By dyadic induction on z. The base case follows directly from defini-
tion. In the inductive case for 1 we have

Rev Rev(x1) = Rev(01 + Rev(z)) 2 Rew Rev(x) » Rev(01) Ty %01 =21.

The other induction case is proved similarly.
(4),(5): Directly from (3). (6): By a straightforward dyadic induction with
the help 6.1.6(5). m]

6.1.8 Cancellation laws for dyadic concatenation. We have

ba L*2=Y*x2—>T =Y (1)

bpa Z2*XT=2xYy>T =Y. (2)

Proof. (1): By dyadic induction on z. The base case follows directly from
definition. In the inductive case for z1 we have

IH
xrzl=y*xz1=> (x*x2)1=(y*2)l=>x*x2=y*xz2=>x=y.

(2): Tt follows from

6.1.7(2
zxx=2z%y= Rev(zzx)=Rev(z*y) 2

1.7
Rev(x) » Rev(z) = Rev(y) « Rev(z) g Rev(z) = Rev(y) -LI® x=y. i



