
7.3 Sorting of Lists

7.3.1 Introduction. In this section we will consider the problem of sort-
ing of lists. We will demonstrate the verification of two sorting algorithms:
insertion sort and merge sort. We start by introducing into PA some of the
specification predicates which are needed to specify and verify sorting algo-
rithms.

7.3.2 Lower bounds of lists. The predicate a ⪯ x holds if the number a

is a lower bound of the list x, i.e. we have a ≤ b for every element b of x. The
predicate is defined explicitly as primitive recursive by

a ⪯ x↔ ∀b(b ε x→ a ≤ b).

The predicate satisfies

⊢PA a ⪯ 0 (1)

⊢PA a ⪯ ⟨v,w⟩ ↔ a ≤ v ∧ a ⪯ w (2)

⊢PA a ≤ b ∧ b ⪯ x→ a ⪯ x (3)

⊢PA a ⪯ x⊕ y↔ a ⪯ x ∧ a ⪯ y (4)

⊢PA x ∼ y → a ⪯ x↔ a ⪯ y. (5)

Proof. (1): Obvious. (2): This follows from

a ⪯ ⟨v,w⟩ ⇔ ∀b(b ε ⟨v,w⟩ → a ≤ b)
7.1.13(2)
⇔ ∀b(b = v ∨ b ε w → a ≤ b) ⇔

⇔ a ≤ v ∧ ∀b(b ε w → a ≤ b) ⇔ a ≤ v ∧ a ⪯ w.

(3): Obvious. (4): This follows from

a ⪯ x⊕ y⇔ ∀b(b ε x⊕ y → a ≤ b)
7.1.13(3)
⇔ ∀b(b ε x ∨ b ε y → a ≤ b) ⇔

⇔ ∀b(b ε x→ a ≤ b) ∧ ∀b(b ε y → a ≤ b) ⇔ a ⪯ x ∧ a ⪯ y.

(5) Suppose that x ∼ y. We have

a ⪯ x⇔ ∀b(b ε x→ a ≤ b)
7.3.5(7)
⇔ ∀b(b ε y → a ≤ b) ⇔ a ⪯ y. ⊓⊔

7.3.3 Ordered lists. The predicate Ord(x) holds if x is an ordered list, i.e.
the elements of the list x are stored in x in increasing order. The predicate
is explicitly defined as primitive recursive by

Ord(x) ↔ ∀i∀j(i < j < L(x) → x[i] ≤ x[j]).

We list here some properties of ordered lists which we will use in sequel:



⊢PA Ord(0) (1)

⊢PA Ord ⟨v,w⟩↔ v ⪯ w ∧Ord(w). (2)

⊢PA Ord ⟨v,w⟩→ a ⪯ ⟨v,w⟩↔ a ≤ v. (3)

Proof. (1): Obvious. (2): This follows from

Ord ⟨v,w⟩⇔ ∀i∀j(i < j < L ⟨v,w⟩→ ⟨v,w⟩[i] ≤ ⟨v,w⟩[j])
(∗)
⇔

∀j(0 < j < L(w) + 1→ ⟨v,w⟩[0] ≤ ⟨v,w⟩[j]) ∧

∧ ∀i1∀j(i1 + 1 < j < L(w) + 1→ ⟨v,w⟩[i1 + 1] ≤ ⟨v,w⟩[j])⇔

∀j1(j1 + 1 < L(w) + 1→ v ≤ ⟨v,w⟩[j1 + 1]) ∧

∧ ∀i1∀j1(i1 + 1 < j1 + 1 < L(w) + 1→ w[i1] ≤ ⟨v,w⟩[j1 + 1])⇔

∀j1(j1 < L(w)→ v ≤ w[j1]) ∧

∧ ∀i1∀j1(i1 < j1 < L(w)→ w[i1] ≤ w[j1])⇔ v ⪯ w ∧Ord(w).

The step marked by (∗) is by case analysis on whether or not i = 0.
(3): If Ord ⟨v,w⟩ then v ⪯ w by (2) and thus, by 7.3.2(3), we have

a ≤ v → a ⪯ w. (�1)
We then obtain

a ⪯ ⟨v,w⟩
7.3.2(2)
⇔ a ≤ v ∧ a ⪯ w

(�
1
)
⇔ a ≤ v. ⊓⊔

7.3.4 Permutations. We wish to introduce into PA the binary predicate
x ∼ y holding if the list x is a permutation of the list y. For example:

⟨1,2,3,0⟩ ⟨2,1,3,0⟩ ⟨2,3,1,0⟩ ⟨1,3,2,0⟩ ⟨3,1,2,0⟩ ⟨3,2,1,0⟩

are all permutations of the three-element list ⟨1,2,3,0⟩. The standard math-
ematical definition uses a second-order concept (bijections over finite sets)
which is not expressible directly in first-order arithmetic. Our definition of
the predicate in PA is based on the following simple observation:

two lists are permutations precisely when every number has the same multiplicity

in either list.

Thus we can define the predicate explicitly by

x ∼ y ↔ ∀a#a (x) =#a (y) .

Note that from 7.2.10(3) we get

⊢PA x ∼ y↔ ∀a(a ε x→#a (x) =#a (y)) ∧ ∀a(a ε y →#a (x) =#a (y)).

Consequently, the predicate x ∼ y is primitive recursive.



7.3.5 Basic properties of permutations. First note the predicate x ∼ y

constitutes an equivalence relation which is reflexive, symmetric and transi-
tive. This is expressed in that order by

⊢PA x ∼ x (1)

⊢PA x ∼ y → y ∼ x (2)

⊢PA x ∼ y ∧ y ∼ z → x ∼ z. (3)

Congruence properties of permutations are expressed by

⊢PA x ∼ y → ⟨a,x⟩ ∼ ⟨a, y⟩ (4)

⊢PA x ∼ y → L(x) = L(y) (5)

⊢PA x1 ∼ y1 ∧ x2 ∼ y2 → x1 ⊕ x2 ∼ y1 ⊕ y2 (6)

⊢PA x ∼ y ∧ a ε x→ a ε y. (7)

There is one cancellation law, namely:

⊢PA x1 ⊕ ⟨a,x2⟩ ∼ y1 ⊕ ⟨a, y2⟩↔ x1 ⊕ x2 ∼ y1 ⊕ y2. (8)

Finally, we have also the following recurrent properties of permutations:

⊢PA x ∼ 0↔ x = 0 (9)

⊢PA x ∼ ⟨v,w⟩↔ ∃z1∃z2(x = z1 ⊕ ⟨v, z2⟩ ∧w ∼ z1 ⊕ z2). (10)

In the sequel we will use these properties without explicitly referring to them.

Proof. Properties (1)–(3) hold trivially. Property (4) follows directly from the
definition. Properties (6)–(9) follow from the properties of the multiplicity
function (see Par. 7.2.10).

(10): In the direction (→) assume x ∼ ⟨v,w⟩. Then v ε x by (7) and thus,
by 7.1.13(4), we have x = z1 ⊕ ⟨v, z2⟩ for some z1, z2. Now it suffices to apply
(8) to get w ∼ z1 ⊕ z2. The reverse direction (←) follows from (8).

(5): This is proved as ∀y(5) by structural induction on the list x. The
base case is straightforward. In the induction step, when x = ⟨v,w⟩ for some
v,w, take any y such that ⟨v,w⟩ ∼ y. By (10), there are lists z1, z2 such that
y = z1 ⊕ ⟨v, z2⟩ and w ∼ z1 ⊕ z2. We then obtain

L ⟨v,w⟩ = L(w) + 1 IH
= L(z1 ⊕ z2) + 1 = L(z1) +L(z2) + 1 =

= L(z1) +L ⟨v, z2⟩ = L(z1 ⊕ ⟨v, z2⟩).

Note that the induction hypothesis is applied with z1 ⊕ z2 in place of y. ⊓⊔



Insertion Sort

7.3.6 Introduction. The simplest sorting algorithm is insertion sort which
takes order O(L(x)2) time to sort a list x. Insertion sort works on a non-
empty list by recursively sorting its tail and then inserts its first element into
the sorted list.

7.3.7 Insertion. At the heart of insertion sort algorithm is the insertion
function Insert(a,x) which takes an ordered list x and yields a new one by
inserting the element a into it. The function satisfies

⊢PA Insert(a,x) ∼ ⟨a,x⟩ (1)

⊢PA Ord(x) → Ord Insert(a,x) (2)

and it is defined by structural recursion on the list x as a p.r. function:

Insert(a,0) = ⟨a,0⟩
Insert(a, ⟨v,w⟩) = ⟨a, v,w⟩ ← a ≤ v

Insert(a, ⟨v,w⟩) = ⟨v, Insert(a,w)⟩ ← a > v.

Verification. (1): By structural induction on the list x. The base case is ob-
vious. In the induction step when x = ⟨v,w⟩ we consider two cases. If a ≤ v
then the claim follows directly from the definition. Otherwise a > v and then

Insert(a, ⟨v,w⟩) ∼ ⟨v, Insert(a,w)⟩ IH∼ ⟨v, a,w⟩ ∼ ⟨a, v,w⟩.

As a simple consequence of (1) and 7.3.2(5) we get the following

⊢PA b ⪯ Insert(a,x) ↔ b ≤ a ∧ b ⪯ x. (�1)
(2): By structural induction on the list x. The base case is straightforward.

In the induction step, when x = ⟨v,w⟩ for some v,w, assume Ord ⟨v,w⟩ and
consider two cases. If a ≤ v then we have

Ord Insert(a, ⟨v,w⟩) ⇔ Ord ⟨a, v,w⟩
7.3.3(2)
⇔ Ord ⟨v,w⟩ ∧ a ⪯ ⟨v,w⟩.

The last follows from assumptions by 7.3.3(3). If a > v then we have

Ord Insert(a, ⟨v,w⟩) ⇔ Ord ⟨v, Insert(a,w)⟩
7.3.3(2)
⇔

Ord Insert(a,w) ∧ v ⪯ Insert(a,w)
(�

1
)
⇔ Ord Insert(a,w) ∧ v ≤ a ∧ v ⪯ w.

The last follows from assumptions and IH. ⊓⊔

7.3.8 Insertion sort. The function Isort(x) recursively sorts the tail of an
non-empty list and then inserts its first element into the sorted one. The
function satisfies



⊢PA Isort(x) ∼ x (1)

⊢PA Ord Isort(x) (2)

and it is defined by structural list recursion as a p.r. function:

Isort(0) = 0
Isort ⟨v,w⟩ = Insert(v, Isort(w)).

Verification. (1): By structural list induction. The base case is straightfor-
ward and the induction step follows from

Isort ⟨v,w⟩ ∼ Insert(v, Isort(w))
7.3.7(1)
∼ ⟨v, Isort(w)⟩ IH∼ ⟨v,w⟩.

(2): By structural list induction. The base case follows from 7.3.3(1). In
the induction step, when x = ⟨v,w⟩ for some v,w, assume Ord ⟨v,w⟩. Then
Ord(w) by 7.3.3(2) and we get from IH:

Ord Isort(w)
7.3.7(2)
⇒ Ord Insert(v, Isort(w)) ⇒ Ord Isort ⟨v,w⟩. ⊓⊔

Merge Sort

7.3.9 Introduction. More efficient sorting algorithm than insertion sort
is merge sort which takes order O(L(x) lgL(x)) time to sort a list x The
algorithm sorts a list by dividing it into two roughly equal parts. Each part
is then recursively sorted and the resulting lists are merged into one list.

Our implementation uses the discrimination on whether or not L(x) ≤ 1.
As we have

⊢PA L(x) ≤ 1↔ (π2(x) =∗ 0) = 1,

the evaluation of the variant L(x) ≤ 1 takes constant time provided the
expression π2(x) =∗ 0 is taken as its characteristic term.

7.3.10 Splitting the list into two halves. The function Split(x) divides
a list into two lists: the length of the first one is at most one more than the
length of the second. The function satisfies

⊢PA ∃y∃z Split(x) = ⟨y, z⟩ (1)

⊢PA Split(x) = ⟨y, z⟩→ x ∼ y ⊕ z (2)

⊢PA Split(x) = ⟨y, z⟩→ (L(y) = L(z)∨L(y) = L(z)+ 1) (3)

and it is defined by course of values recursion with measure L(x) as a p.r.
function by

Split(x) = ⟨x,0⟩ ← L(x) ≤ 1



Split(x) = ⟨⟨u, y⟩, ⟨v, z⟩⟩ ← L(x) > 1 ∧ x = ⟨u, v,w⟩ ∧ Split(w) = ⟨y, z⟩.

Verification. (2): By induction with measure L(x) as ∀y∀z(2). Take any y, z

such that Split(x) = ⟨y, z⟩ and consider two cases. The case when L(x) ≤ 1
is obvious. So suppose that L(x) > 1. Then x = ⟨u, v,w⟩ for some u, v,w. By
(1) there are y1, z1 such that Split(w) = ⟨y1, z1⟩. By definition ⟨u, y1⟩ = y and
⟨v, z1⟩ = z. We then obtain

⟨u, v,w⟩ IH∼ ⟨u, v, y1 ⊕ z1⟩ ∼ ⟨u, y1⟩⊕ ⟨v, z1⟩ ∼ y ⊕ z.

(1),(3): This is proved similarly. ⊓⊔

7.3.11 Merging two ordered lists into one. The function Merge(x, y)
merges two ordered lists into one ordered list. The function satisfies

⊢PA Merge(x, y) ∼ x⊕ y (1)

⊢PA Ord(x) ∧Ord(y)→ Ord Merge(x, y) (2)

and it is defined by course of values recursion with measure L(x)+L(y) as a
p.r. function by

Merge(0, y) = y
Merge(⟨v1,w1⟩,0) = ⟨v1,w1⟩
Merge(⟨v1,w1⟩, ⟨v2,w2⟩) = ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩ ← v1 ≤ v2
Merge(⟨v1,w1⟩, ⟨v2,w2⟩) = ⟨v2,Merge(⟨v1,w1⟩,w2)⟩ ← v1 > v2.

Verification. (1): By course of values induction with measure L(x) + L(y).
We consider two cases. The case when either x = 0 or y = 0 is straightforward.
So suppose x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some v1,w1, v2,w2. If v1 ≤ v2 then
we have

Merge(⟨v1,w1⟩, ⟨v2,w2⟩) ∼ ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩
IH
∼

∼ ⟨v1,w1 ⊕ ⟨v2,w2⟩⟩ ∼ ⟨v1,w1⟩⊕ ⟨v2,w2⟩.

The subcase when v1 < v2 has a similar proof.
As a simple consequence of (1) and 7.3.2(5) we get

⊢PA a ⪯Merge(x, y) ↔ a ⪯ x ∧ a ⪯ y. (�1)
(2): By course of values induction with measure L(x) + L(y). Assume

Ord(x) and Ord(y), and consider two cases. If x = 0 or y = 0 then the
property holds trivially. So suppose x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some
v1,w1, v2,w2. If v1 ≤ v2 then we have



Ord Merge(⟨v1,w1⟩, ⟨v2,w2⟩) ⇔ Ord ⟨v1,Merge(w1, ⟨v2,w2⟩)⟩
7.3.3(2)
⇔

Ord Merge(w1, ⟨v2,w2⟩) ∧ v1 ⪯Merge(w1, ⟨v2,w2⟩)
(�

1
)
⇔

Ord Merge(w1, ⟨v2,w2⟩) ∧ v1 ⪯ w1 ∧ v1 ⪯ ⟨v2,w2⟩.

The last follows from IH and from assumptions by 7.3.3(2) and 7.3.3(3). The
subcase when v1 < v2 is similar. ⊓⊔

7.3.12 Merge sort. The function Msort(x) sorts a list by dividing it into
two equal parts. Each part is then recursively sorted and the resulting lists
are merged together. The function Msort(x) satisfies

⊢PA Msort(x) ∼ x (1)

⊢PA Ord Msort(x) (2)

and it is defined by course of values recursion with measure L(x) as a p.r.
function by

Msort(x) = x← L(x) ≤ 1
Msort(x) =Merge(Msort(y),Msort(z)) ← L(x) > 1 ∧ Split(x) = ⟨y, z⟩.

Its conditions of regularity

⊢PA L(x) > 1 ∧ Split(x) = ⟨y, z⟩→ L(y) < L(x) (3)

⊢PA L(x) > 1 ∧ Split(x) = ⟨y, z⟩→ L(z) < L(x) (4)

follows from 7.3.5(5) and 7.3.10(2)(3).

Verification. (1): By course of values induction with measure L(x). We con-
sider two cases. The case when L(x) ≤ 1 is obvious. So suppose L(x) > 1. By
7.3.10(1) there are y, z such that Split(x) = ⟨y, z⟩. Note that L(y) < L(x) and
L(z) < L(x) by (3),(4). We have

Msort(x) ∼Merge(Msort(y),Msort(z))
7.3.11(1)
∼

∼Msort(y)⊕Msort(z) IH∼ y ⊕ z
7.3.10(2)
∼ x.

(2): By course of values induction with measure L(x). We consider two
cases. The case when L(x) ≤ 1 is obvious. So suppose L(x) > 1. By 7.3.10(1)
there are y, z such that Split(x) = ⟨y, z⟩. Note that L(y) < L(x) and L(z) <
L(x) by (3),(4). We have by IH

Ord Msort(y) ∧Ord Msort(z)
7.3.11(2)
⇒ Ord Merge(Msort(y),Msort(z))⇒

⇒ Ord Msort(x). ⊓⊔


