5.3 Course of Values Recursion

5.3.1 The principle of complete induction. For every formula ¢[z], the
formula of complete induction on z for ¢ is the following one:

Va(Yy(y <z - ¢[y]) - ¢lz]) - Yop[z]. (1)

It is assumed here that the variable y is different from the induction variable
x and it does not occur freely in ¢. The induction formula ¢ may contain
additional variables as parameters.

5.3.2 Theorem The principle of complete induction holds for each formula.

Proof. The principle of complete induction 5.3.1(1) is reduced to mathemat-
ical induction as follows. Under the assumption that o is progressive:

Ya(Vy(y <o = ¢[y]) > ¢[z]), (1)

we first prove, by induction on n, the auxiliary property:

Vz(z<n— p[z]). (f2)

In the base case there is nothing to prove. In the induction step take any
z<n+1 and consider two cases. If z < n then we obtain ¢[z] by IH. If z=n
then by instantiating of (f;) with x := z we obtain

Vy(y <n— ¢ly]) = o[z].

Now we apply IH to get ¢[z].
With the auxiliary property proved we obtain that ¢[z] holds for every x
by instantiating of Vn(f,) with n:=2+1 and z := z. O

5.3.3 Integer division. Consider the following course of values recursive
definition on x of the integer division x + y:

z+0=0
r+y=0«y+0Ax<y
xry=(rry)ry+l<y+0rz>y.

We claim that
bba Y£0 > Ir(x=x+y-y+rAr<y). (1)

Verification. The property is proved by complete induction on z. Assume
y # 0, take any x and consider two cases. If x < y then we satisfy (1) with
substitution r := z since we clearly have

r=0-y+rx=c+y-y+z.



If x > y then x =y < x and thus from IH applied to = = y there is a number r
such that

wry=(x=y)+y-y+rar<y. (1)
Now we satisfy (1) with substitution r := r because
ooy -
= (@y)ry-y+y+r=
=((z=y)zy+l)y+r=a=y-y+r m

x:x4y+y(

5.3.4 Divisibility predicate. The binary divisibility predicate z |y is in-
troduced into PA explicitly by

x|y < Jzy=xz.
The predicate satisfies

bpa & | @
ea 2|y > ylz

azynylz—alz

(1)

(2)

3)
bpa O]z 2=0 (4)
tea [0 (5)
oa 1|2 (6)
bpaz|leox=1 (7)
az|yrx|y+l—-oax=1 (8)
bax|ynx|zox|ly+z (9)
bax|yrx|zoxly=2z (10)
a x|y >z |yz (11)
toa @ | Ty (12)
baz#0AY|z>y<a. (13)

5.3.5 Greatest common divisor. Consider the following recursive defini-
tion of the greatest common divisor function:

ged(0,y) =y
ged(z,y) = ged(y mod x,x) < x 0.

The definition of ged(x,y) is by course of values recursion on z with substi-
tution in parameter because

tpa +0—>ymodx < x.

The idea of the algorithm is based on the observation that



pa ©E0AZ|2 > 2|y < z|ymod . (1)
We claim that

a2 #0Vvy # 0> ged(z,y) |z Aged(z,y) |y (2)
ba (x20Vvy+0)Az|zanz|y—>2z<ged(a,y). (3)

Verification. (2): By complete induction on 2 with induction formula Vy (2).
Assume x # 0 v y # 0 and consider two cases. If x = 0 then y # 0 and the claim

ylonyly
follows from 5.3.4(5)(1). If  # 0 then by IH applied to y mod x < = we obtain
ged(y mod z, x) | y mod x A ged(y mod x, x) | .
From definition
ged(z,y) |y mod z A ged(z,y) | x.
From this and (1) we finally obtain
ged(z,y) [z A ged(z,y) [ y.

Note that the induction hypothesis is applied with x in place of y.
(3): By complete induction on z with induction formulas Vy (3). So assume
x #0 vy #0 holds and take any number z such that

zlznzly. (1)

We consider two cases. If = 0 then y # 0 and the claim z < y follows from
5.3.4(13). If « # 0 then by (1) we obtain from (},) that

z|lymodx A z|x.
Now by IH applied to y mod z < y we have
z < ged(y mod z, ) = ged(x, y).

Note that the induction hypothesis is applied with z in place of y. ]



