
7.2 Operations on Lists

7.2.1 Introduction. In this section we are concerned with the problem of
specification and verification of various useful simple operations over lists.
We will show how the algorithms can be implemented by using structural
recursion and how their specification properties can be proved by the corre-
sponding induction principles.

7.2.2 Map. The operation Mapf(x) applies an unary function f to each
element of the list x:

⊢PA LMapf(x) = L(x) (1)

⊢PA i < L(x)→Mapf(x)[i] = f(x[i]) (2)

The mapping is defined by structural list recursion as a p.r. function in f by

Mapf(0) = 0
Mapf ⟨v,w⟩ = ⟨f(v),Mapf(w)⟩.

Verification. (1): By a straightforward structural list induction.
(2): By structural induction on the list x as ∀i(2). In the base case there

is nothing to prove. In the induction step, when x = ⟨v,w⟩ for some v,w, take
any i s.t. i < L ⟨v,w⟩ = L(w) + 1 and consider two cases. If i = 0 then

Mapf ⟨v,w⟩[0] = ⟨f(v),Mapf(w)⟩[0] = f(v) = f(⟨v,w⟩[0]).

If i = j + 1 for some j then j < L(w) and we thus obtain

Mapf ⟨v,w⟩[j + 1] = ⟨f(v),Mapf(w)⟩[j + 1] =Mapf (w)[j]
IH
=

= f(w[j]) = f(⟨v,w⟩[j + 1]).

Note that the induction hypothesis is applied with j in place of i. ⊓⊔

7.2.3 List modification. The ternary function x[i ∶= a] takes a list x and
yields a new list with the i-th element replaced by a (starting from 0):

⊢PA i < L(x)→ L(x[i ∶= a]) = L(x) (1)

⊢PA i < L(x)→ x[i ∶= a][i] = a (2)

⊢PA i < L(x) ∧ j < L(x) ∧ j ≠ i→ x[i ∶= a][j] = x[j]. (3)

Note that the properties do not specify the value x[i ∶= a] for i ≥ L(x).
The list modification x[i ∶= a] is defined by primitive recursion on i with

substitution in the parameter x as a p.r. function:

x[0 ∶= a] = ⟨a,w⟩← x = ⟨v,w⟩
x[i + 1 ∶= a] = ⟨v,w[i ∶= a]⟩← x = ⟨v,w⟩.



Note that the second parameter does not change in the recursion.

Verification. We show here only the proof of the last property for the previous
ones can be proved similarly.

Property ∀x∀j(3) is proved by induction on the index i. In the base case
take any x, j such that 0 < L(x), j < L(x) and j ≠ i. Then it must be x = ⟨v,w⟩
and j = j1 + 1 for some v,w, j1. We then have

⟨v,w⟩[0 ∶= a][j1 + 1] = ⟨a,w⟩[j1 + 1] = w[j1] = ⟨v,w⟩[j1 + 1].

In induction step take any x, j such that i + 1 < L(x), j < L(x) and j ≠ i + 1.
Then it must be x = ⟨v,w⟩ for some v,w. From i + 1 < L⟨v,w⟩ = L(w) + 1 we
obtain i < L(w). We consider two subcases. It j = 0 then

⟨v,w⟩[i + 1 ∶= a][0] = ⟨v,w[i ∶= a]⟩[0] = v = ⟨v,w⟩[0].

It j = j1 + 1 for some j1, then j1 ≠ i and j1 < L(w). We now obtain

⟨v,w⟩[i + 1 ∶= a][j1 + 1] = ⟨v,w[i ∶= a]⟩[j1 + 1] = w[i ∶= a][j1]
IH
=

= w[j1] = ⟨v,w⟩[j1 + 1].

Note that IH is applied respectively with w or j1 in place of x or j. ⊓⊔

7.2.4 Take and drop. The function Take(n,x) yields the initial segment
of a list x of the length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x) → LTake(n,x) = n (1)

⊢PA n ≤ L(x) → ∃y x = Take(n,x)⊕ y (2)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Take(0, x) = 0
Take(n + 1, ⟨v,w⟩) = ⟨v,Take(n,w)⟩.

Note the default Take(n + 1,0) = 0.
The function Drop(n,x) removes the initial segment of a list x of the

length n provided n ≤ L(x). The function satisfies

⊢PA n ≤ L(x)→ LDrop(n,x) = L(x) � n (3)

⊢PA n ≤ L(x)→ ∃y x = y ⊕Drop(n,x) (4)

and it is defined by primitive recursion on n with substitution in parameter
as primitive recursive by

Drop(0, x) = x
Drop(n + 1, ⟨v,w⟩) = Drop(n,w).



Note the default Drop(n + 1,0) = 0.
Usually we intend to apply both operationsTake(n,x) and Drop(n,x) only

in cases when n ≤ L(x). We can take the following properties as alternative
programs for computing the functions in such cases:

⊢PA n ≤ L(x) → Take(n,x) = case
n = 0⇒ 0

n =m + 1⇒ let x = ⟨v,w⟩ in ⟨v,Take(n,w)⟩
end.

⊢PA n ≤ L(x)→ Drop(n,x) = case
n = 0⇒ x

n =m + 1⇒ let x = ⟨v,w⟩ in Drop(n,w)
end.

Note that both programs share the same condition of regularity

⊢PA n ≤ L(x) ∧ n =m + 1 ∧ x = ⟨v,w⟩→ w < x ∧m ≤ L(w)

which is trivially satisfied.

Verification. (1): This is proved by induction on n as ∀x(1). The base case
is obvious. In the induction step take any x such that n + 1 ≤ L(x). Then
x = ⟨v,w⟩ for some v,w, where n ≤ L(w). We obtain

LTake(n + 1, ⟨v,w⟩) = L ⟨v,Take(n,w)⟩ = LTake(n,w) + 1 IH
= n + 1.

Note that the induction hypothesis is applied with w in place of x.
(2): By induction on n as ∀x(2). In the base case it suffices to take y ∶= x

since Take(0, x)⊕ x = 0⊕ x = x. In the induction step assume n + 1 ≤ L(x).
Then x = ⟨v,w⟩ for some v,w. Since n ≤ L(w) we get from IH applied with
w in place of x that w = Take(n,w)⊕ y for some y. We then have

⟨v,w⟩ = ⟨v,Take(n,w)⊕ y⟩ = ⟨v,Take(n,w)⟩⊕ y = Take(n + 1, ⟨v,w⟩)⊕ y.

The remaining properties (3) and (4) are proved similarly. ⊓⊔

7.2.5 Zip and unzip. The function Zip(x, y) takes two lists of the same
length and yields a list of pairs of the corresponding elements. The function
satisfies

⊢PA L(x) = L(y)→ LZip(x, y) = L(x) (1)

⊢PA L(x) = L(y) ∧ i < L(x)→ Zip(x, y)[i] = ⟨x[i], y[i]⟩ (2)

and it is defined by list recursion with substitution in parameter as a primitive
recursive function:

Zip(0,0) = 0
Zip(⟨v1,w1⟩, ⟨v2,w2⟩) = ⟨⟨v1, v2⟩,Zip(w1,w2)⟩.



The function Unzip(z), the inverse of Zip, takes a list of pairs to a pair of
lists. The function satisfies

⊢PA L(x) = L(y)→ Unzip Zip(x, y) = ⟨x, y⟩ (3)

and it is defined by list recursion as a primitive recursive function:

Unzip(0) = ⟨0,0⟩
Unzip(⟨v1, v2⟩,w) = ⟨⟨v1,w1⟩, ⟨v2,w2⟩⟩← Unzip(w) = ⟨w1,w2⟩.

Property ∀y(1) is proved by list induction on x. In the base case take any y

and assume L(0) = L(y). Then y = 0 and we are done since LZip(0,0) = L(0)
from the definition. In the inductive case when x = ⟨v1,w1⟩ take any y and
assume L ⟨v1,w1⟩ = L(w1) + 1 = L(y). Then y = ⟨v2,w2⟩ for some v2 and w2,
and thus L(w1) = L(w2). We have

LZip(⟨v1,w1⟩, ⟨v2,w2⟩) = L ⟨⟨v1, v2⟩,Zip(w1,w2)⟩ = LZip(w1,w2) + 1 =

= L(w1) + 1 = L ⟨v1,w1⟩.

Property ∀x∀y(2) is proved by induction on i. In the base case take any x

and y such that 0 < L(x) = L(y). Then x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some
v1,w1, v2,w2. Clearly L(w1) = L(w2) and thus we obtain

Zip(⟨v1,w1⟩, ⟨v2,w2⟩)[0] = (⟨⟨v1, v2⟩,Zip(w1,w2)⟩) [0] =

= ⟨v1, v2⟩ = ⟨⟨v1,w1⟩[0], ⟨v2,w2⟩[0]⟩.

In the inductive case take any x and y such that i + 1 < L(x) = L(y). Then
x = ⟨v1,w1⟩ and y = ⟨v2,w2⟩ for some v1,w1, v2,w2. Clearly i < L(w1) = L(w2)
and thus we obtain

Zip(⟨v1,w1⟩, ⟨v2,w2⟩)[i + 1] = (⟨⟨v1, v2⟩,Zip(w1,w2)⟩) [i + 1] = Zip(w1,w2)[i] =

= ⟨w1[i],w2[i]⟩ = ⟨⟨v1,w1⟩[i + 1], ⟨v2,w2⟩[i + 1]⟩.

Property ∀y(3) is proved by list induction on x and is left to the reader.

7.2.6 Interval. The binary function [m..n) returns the list of numbers
from m to n − 1 if m < n; the list is empty if m ≥ n. The function satisfies

⊢PA L [m..n) = n �m (1)

⊢PA i +m < n→ [m..n)[i] =m + i (2)

and it is defined by recursion with measure n �m as a p.r. function by

[m..n) = 0←m ≥ n

[m..n) = ⟨m, [m + 1 .. n)⟩←m < n.

Note that this is an example of function definition by backward recursion.



We usually intend to apply the operation [m..n) only in cases whenm ≤ n.
For that we can take the following property as an alternative (conditional)
program for computing the function:

⊢PA m ≤ n → [m..n) = case
m = n⇒ 0

m ≠ n⇒ ⟨m, [m + 1 .. n)⟩
end

Its condition of regularity

⊢PA m ≤ n ∧m ≠ n→ n � (m + 1) < n �m ∧m + 1 ≤ n

is trivially satisfied. Note that the program does not terminate for m > n.

Verification. (1): By induction with measure n �m. Take any m,n and con-
sider two cases. If m ≥ n then L [m..n) = L(0) = 0 = n �m. If m < n then
m <m + 1 ≤ n and we obtain

L [m..n) = L ⟨m, [m + 1 .. n)⟩ = L [m + 1 .. n) + 1
IH
= n � (m + 1) + 1 = n �m.

(2): This is proved by induction with measure n �m as ∀i(2). Take any
m,n, i such that i +m < n and consider two cases. If i = 0 then we have

[m..n)[0] = ⟨m, [m + 1 .. n)⟩[0] =m =m + 0.

If i = j + 1 for some j then j + (m + 1) = j + 1 +m < n and thus

[m..n)[j + 1] = ⟨m, [m + 1 .. n)⟩[j + 1] = [m + 1 .. n)[j] IH
=

=m + 1 + j =m + (j + 1).

Note that the induction hypothesis is applied with j in place of i. ⊓⊔

7.2.7 List minimum. The function Minl(x) yields the minimal element of
a non-empty list. The function satisfies

⊢PA x ≠ 0→Minl(x) ε x (1)

⊢PA x ≠ 0 ∧ a ε x→Minl(x) ≤ a (2)

and it is defined by list recursion as a p.r. function:

Minl ⟨v,0⟩ = v
Minl ⟨v,w⟩ =min(v,Minl(w))← w ≠ 0.

Note the default Minl(0) = 0.
We usually intend to apply the operation Minl(x) only in cases when

input lists are non-empty. For that we can take the following property as an
alternative (conditional) program for computing list minimum:



⊢PA x ≠ 0→Minl(x) = let x = ⟨v,w⟩ in
case

w = 0⇒ v

w ≠ 0⇒min(v,Minl(w))
end.

Its condition of regularity

⊢PA x ≠ 0 ∧ x = ⟨v,w⟩ ∧w ≠ 0→ w < x ∧w ≠ 0

is trivially satisfied.

Verification. (1),(2): By a straightforward structural list induction on x. ⊓⊔

7.2.8 Deleting elements from lists. The function Delall(a,x) removes
all occurrences of a in the list x. The function satisfies

⊢PA b ε Delall(a,x)↔ b ε x ∧ b ≠ a (1)

and it is defined by list recursion on x as a primitive recursive function:

Delall(a,0) = 0
Delall(a, ⟨v,w⟩) = Delall(a,w) ← a = v
Delall(a, ⟨v,w⟩) = ⟨v,Delall(a,w)⟩← a ≠ v.

Property (1) is proved by list induction on x. The base case when x = 0 is
straightforward since Delall(a,0) = 0. In the inductive case when x = ⟨v,w⟩
consider two case. If a = v then we have

b ε Delall(a, ⟨v,w⟩)⇔ b ε Delall(a,w)⇔ b ε w ∧ b ≠ a⇔

(b = v ∨ b ε w) ∧ b ≠ a⇔ b ε ⟨v,w⟩ ∧ b ≠ a.

If a ≠ v then we have

b ε Delall(a, ⟨v,w⟩)⇔ b ε v,Delall(a,w)⇔ b = v ∨ b ε Delall(a,w)⇔
b = v ∨ b ε w ∧ b ≠ a⇔ (b = v ∨ b ε w) ∧ b ≠ a⇔ b ε ⟨v,w⟩ ∧ b ≠ a.

7.2.9 Filter. Let A(x) be arbitrary but fixed unary predicate. The function
FilterA(x) removes all elements from a list which do not satisfy the predicate.
The function satisfies

⊢PA a ε FilterA(x)↔ a ε x ∧A(a) (1)

and it is defined by structural list recursion as a p.r. predicate in A:

FilterA(0) = 0
FilterA ⟨v,w⟩ = ⟨v,FilterA(w)⟩← A(v)
FilterA ⟨v,w⟩ = FilterA(w) ← ¬A(v).



Verification. Property (1) is proved by structural induction on the list x. The
base case is obvious. In the induction step, when x = ⟨v,w⟩ for some v,w, we
consider two cases. If A(v) then we have

a ε FilterA ⟨v,w⟩⇔ a ε ⟨v,FilterA(w)⟩⇔ a = v ∨ a ε FilterA(w)
IH

⇔

a = v ∨ a ε w ∧A(a)
(∗)
⇔ (a = v ∨ a ε w) ∧A(a)⇔ a ε ⟨v,w⟩ ∧A(a).

The equivalence marked by (∗) is by case analysis on whether or not a = v.
The case when A(v) does not hold is similar. ⊓⊔

7.2.10 Multiplicity. The binary function #a (x) counts the number of oc-
currences of the element a in the list x. This is called the multiplicity of a in
x. The function satisfies

⊢PA #a⟨b,0⟩ = (a =∗ b) (1)

⊢PA #a (x⊕ y) =#a (x) +#a (y) (2)

and it is defined by structural list recursion as a p.r. function:

#a (0) = 0
#a⟨v,w⟩ = (a =∗ v) +#a (w).

We have also

⊢PA a ε x↔#a (x) ≠ 0. (3)

⊢PA x = 0↔ ∀a#a (x) = 0. (4)

Verification. (1): Directly from definition.
(2): By structural induction on the list x. The base case is obvious. The

induction step follows from

#a (⟨v,w⟩⊕ y) =#a⟨v,w ⊕ y⟩ = (a =∗ v) +#a (w ⊕ y) IH
=

= (a =∗ v) +#a (w) +#a (y) =#a⟨v,w⟩ +#a (y) .

(3): By a straightforward structural induction on the list x.
(4): By a simple case analysis on whether or not the list x is empty. ⊓⊔


