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THE PROBLEM OF REPRESENTING INFORMATION

Cognitive science aims at understanding how information is represented and processed
in different kinds of agents, biological as well as artificial. The research has two overarching
goals. One is explanatory: By studying the cognitive activities of humans and other animals,
one formulates theories of different kinds of cognition. The theories are tested either by
experiments or by computer simulations. The other goal is constructive: By building artifacts
like chess-playing programs, robots, animats, etc, one attempts to construct systems that can
solve various cognitive tasks. For both kinds of goals, a key problem is how the information
used by the cognitive system is to be modelled in an appropriate way.

Within cognitive science, there are currently two dominating approaches to the problem
of representing information. (I prefer to talk about representing information rather than
representing knowledge, since this term is much more natural for the conceptual and
subconceptual forms of representation. Furthermore, the term is much less philosophically
loaded). The symbolic approach starts from the assumption that cognitive systems should be
modelled by Turing machines. The second approach is connectionism, which models
cognitive systems by artificial neuron networks. Both of these approaches have their
advantages and disadvantages. They are often presented as competing paradigms, but since
they attack cognitive problems on different levels, they should rather be seen as
complementary methodologies.

However, as I shall argue, there are aspects of cognitive phenomena for which neither
symbolism nor connectionism seem to offer appropriate modelling tools. In this article, I will
advocate a third form of representing information that is based on using geometric structures
rather than symbols or connections between neurons. I shall call it conceptual representations
since I believe that the essential aspects of concept formation should be described on this
level. Again, conceptual representations should not be seen as competing with symbolic or
connectionistic representations. Rather, the three kinds can be seen as three levels of
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representations of cognition. Or, since all levels may be present in one system, they may as
well be called perspectives.

The main thesis in this paper is that all three levels are needed in order to cover the
problems of representation one faces when explaining cognitive phenomena and when
building artificial agents. In particular, I submit that the conceptual level is necessary to
explain how symbolic representations can arise from connectionist, or, more generally,
subconceptual, representations.

After presenting and criticising the symbolic and connectionists representations, I shall
outline a theory of conceptual spaces as a particular framework for representing information
on the conceptual level. The theory of conceptual spaces should not primarily be seen as an
empirical theory, but as a tool for constructing representations in artificial systems.
However, I believe that it also makes some sense in relation to what is known about
representations in biological systems. Finally, I shall argue that the three different forms of
representations are connected with different computational methodologies.

SYMBOLIC REPRESENTATIONS

Computationalism

The outline of the symbolic paradigm of representing information to be presented here
will not be explicitly found in the works of any particular author. It forms an implicit
methodology for most research in AI. The classical soureces are the works of Newell and
Simon.1 More recently, a defense of the general reasoning can be found, for example, in the
writings of Jerry Fodor and Zenon Pylyshyn.2,3,4 Since the position is well-known, a
sketch of the most relevant features will suffice for my purposes.

According to the paradigm, the atoms of representations are symbols which combine to
form meaningful expressions. Here I am referring to the traditional sequential kind of
computer programs with “explicit” symbol representations and not to parallel distributed
processing which may use “intrinsic” representations.5 Such systems and their
representations will be discussed below.

Within the symbolic tradition there are two main application areas that go hand in hand:
one is modelling logical inferences and the other is syntactical parsing. When the symbols
are used for modelling logical inference, the expressions represent propositions and they
stand in various logical relations to each other. Information processing involves above all
computations of logical consequences. In brief, a cognitive agent is seen as a kind of logic
machine that operates on sentences from some formal language.

The central tenet of the symbolic paradigm is that representing and processing
information essentially consists of symbol manipulation.6 The manipulations of symbols are
performed without regards to the semantic content of the symbols.

The symbols can be concatenated to form expressions in a language of thought –
sometimes called Mentalese. The content of a sentence in Mentalese is a belief or a thought of
an agent. The different sentential or propositional attitudes in the cognitive states of a person
are connected via their logical or inferential relations. Pylyshyn writes: “If a person believes
(wants, fears) P, then that person’s behavior depends on the form the expression of P takes
rather than the state of affairs P refers to ... ”.7 In applications within AI, first order logic
has been the dominating inferential system, but in other areas more general forms of
inference, like those provided by inductive logic or decision theory, have been utilized.

Processing the information contained in a cognitive state consists in computing the
consequences of the sentential attitudes, using some set of inference rules. The following
quotation from Fodor is a typical formulation of the symbolic paradigm:
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“Insofar as we think of mental processes as computational (hence as formal operations defined on
representations), it will be natural to take the mind to be, inter alia, a kind of computer. That is,
we will think of the mind as carrying out whatever symbol manipulations are constitutive of the
hypothesized computational processes. To a first approximation, we may thus construe mental
operations as pretty directly analogous to those of a Turing machine.”8

Similarly, the Chomsky tradition in linguistics focuses on the syntax of language.
Language is seen as strings of formal symbols that can be processed by different kinds of
automata, of which the Turing machine is the most advanced. The main operations are
parsing of a string of symbols according to a (recursive) set of recursive grammatical rules,
and, conversely, generation of strings according to the grammatical rules.

The material basis for the symbolic processes, be they logical, linguistic or of a more
general psychological nature, is irrelevant to the description of their results. The inference
rules of logic and the electronic devices which conform to these rules are seen to be
analogous to the workings of the brain. In brief, the mind is thought to be a computing
device, which generates symbolic sentences as inputs from sensory channels, performs
logical operations on these sentences, and then transforms them into linguistic or non-
linguistic behaviors as output.

The limitations of symbolic representations

After this outline of the position, I will now turn to the limitations of the
representational power of the symbolic approach. One of the major problems encountered in
the classical form of AI is the frame problem.9,10 It was hoped that if we could formulate the
knowledge necessary to describe the world and the possible actions in a suitable symbolic
formalism, then by coupling this world description with a powerful inference machine one
could construct an artificial agent capable of planning and problem solving. The frame
problem can be defined as the problem of specifying in symbolic formalism what changes
and what stays constant in the particular domain where the agent is acting.

It soon turned out, however, that describing actions and their consequences led to a
combinatorial explosion. The main problems are connected with describing what in the
world remains unaffected when a particular action is performed. Some changes are relevant
for the planning, others totally irrelevant. Propositional representations are not well suited
for representing causal connections. One of the main reasons for this is that it does not
provide any natural way to separate different domains of information (this point will be
elaborated below).

The frame problem is connected to the fact that the central bearers of the symbolic
representations based on first order languages are the predicates of the language. These
predicates are supposed to be given to the system. Stewart says: “In the computational
paradigm, symbolic representations are theoretical primitives so that it is not really possible
to study their evolutionary emergence, because there are no conceptual categories available
for specifying the situation before symbols came into being.”11 However, a successful
system must be able to learn radically new properties from its interactions with the world,
and not only form new combinations of the given predicates. So a crucial question for a
theory of cognitive representation is: where do new predicates come from?

Furthermore, not only is there a problem of describing the genesis of predicates, but
their development in a cognitive system is not easily modelled on the symbolic level. Even
after an agent has learned a concept, the meaning of the concept very often changes as a
result of new experiences. In the symbolic mode of representation, there has been no
successful way of modelling the dynamics of concepts. The fact that artifical neuron
networks can adapt their categorizations to new experiences has been claimed as an
advantage of the networks over symbolic systems, but I believe that the conceptual level is
the right one to handle this kind of process.
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Most adherents of the symbolic paradigm are semantic realists in the sense that the
“meaning” of a predicate or a sentence is determined by mapping it to the external world (or,
to make it even more remote from a cognitive system, to a plethora of possible worlds). The
world (and the mapping) is assumed to exist independently of any relation to a cognitive
subject. A clear example of this position is given by Fodor: “If mental processes are formal
[symbolic], then they have access only to the formal properties of such representations of the
environment as the senses provide. Hence, they have no access to the semantic properties of
such representations, including the property of being true, of having referents, or, indeed,
the property of being representations of the environment”12 and “We must now face what
has always been the problem for representational theories to solve: what relates internal
representations to the world? What is it for a system of internal representations to be
semantically interpreted?”13 These problems arise for the symbolic paradigm because it
operates with a realist semantics that presume external representations.

This view on the semantics of the symbols makes it difficult to explain how the
meanings of the predicates change during the cognitive development of an agent. Semantic
realists are more or less obliged to assume that the meanings of symbols are fixed. In a
sense, this view of semantics is inherited from the model theory of mathematical logic. For
mathematical concepts, however, we never have the problem of adapting concepts to new
encounters with reality.

Another problem for the symbolic approach is highlighted by Harnad.14 He asks the
following questions: “How can the semantic interpretation of a formal symbol system be
made intrinsic to the system, rather than just parasitic on the meanings in our heads? How
can the meanings of the meaningless symbol tokens, manipulated solely on the basis of their
(arbitrary) shapes, be grounded in anything but other meaningless symbols?” This problem
he calls the symbol grounding problem. He says: “But the problem of connecting up with the
world in the right way is virtually coextensive with the problem of cognition itself.” The
symbol grounding problem can be argued to be an artifact of the symbolic position. In the
same vein, Stewart says:

“[…] since linguistic symbols emerge from the precursors of the semiotic signals of animal
communication, they always already have meaning, even before they acquire the status of
symbols. On this veiw, formal symbols devoid of meaning are derivative, being obtained by
positively divesting previously meaningful symbols of their significance. Quite concretely, this
process occurred historically in the course of the history of axiomatic mathematics from Euclid to
Hilbert. From this point of view, the “symbol-grounding problem” of computation cognitive
science looks rather bizarre and somewhat perverse: why go to all the bother of divesting “natural
symbols” of their meaning, and then desperately trying to put it back, when it would seem so
simple to leave them as they are!”15

These problems have been swept under the carpet within the symbolic tradition. And
among those who have addressed the problem no satisfactory solution has been provided.

The problems concerning the formation and dynamics of predicates become most
pressing when one scrutinizes the attempts within the symbolic tradition to explain inductive
inferences. The most ambitious project of analyzing induction during this century has been
that of the logical positivists. Inductive inferences were important for them, since such
inferences were necessary for their verificationist aims. The basic objects of study for them
were sentences in some more or less regimented language. Ideally, the language was a
version of first order logic where the atomic predicates represented observational properties.
These observational predicates were taken as primitive, unanalysable notions. The main tool
used when studying the symbolic expressions was logical analysis.

However, it became apparent that the methodology of the positivists led to serious
problems in relation to the problem of induction. The most famous ones are Hempel’s16

“paradox of confirmation” and Goodman’s17 “riddle of induction.” What I see as the root of
the troublesome cases is that if we use logical relations alone to determine which inductions
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are valid, the fact that all predicates are treated on a par induces symmetries which are not
preserved by our understanding of the inductions: “Raven” is treated on a par with “non-
raven,” “green” with “grue” etc. What we need is a non-logical way of distinguishing those
predicates that may be used in inductive inferences from those that may not.

There are several suggestions for such a distinction in the literature. One idea is that
some predicates denote “natural kinds” or “natural properties” while others don’t, and it is
only the former that may be used in inductive reasoning. Natural kinds are normally
interpreted realistically, following the Aristotelian tradition, and thus assumed to represent
something that exists in reality independently of human cognition. However, when it comes
to inductive inferences it is not sufficient that the properties exist out there somewhere, but
we need to be able to grasp the natural kinds by our minds. In other words, what is needed
to understand induction, as performed by humans, is a conceptualistic analysis of natural
properties.

Even though AI researchers have had some success in their attempts to mechanize
induction, it is clear that their methodology suffers from the same general problems as the
symbolic level in general. The enigmas of induction that have been unearthed by Goodman,
Hempel and others are also applicable to the induction programs in recent mainstream AI.

Trying to capture inductive inferences by an algorithm also highlights some of the
general limitations of the symbolic representations. The programs work by considering the
applicability of various logical combinations of the atomic predicates. But the epistemological
origin of these predicates is never discussed. Even though AI researchers are not actively
defending the positivist methodology, they are following it implicitly by treating certain
predicates as observationally, or at least externally, given. However, the fact that the atomic
predicates are assumed as granted from the beginning means that much inductive processing
has already been performed.

The core of the problem, it seems to me, is that the symbolic level is insufficient for
handling the problems of induction and similarity. We not only want to know how
observational predicates should be combined in the light of inductive evidence, but, much
more importantly, how the basic predicates are established in the first place. This problem
has, more or less, been neglected by the logical positivists. Logical analysis, the prime tool
of positivism, is of no avail for these forms of concept formation. In brief, the symbolic
approach to induction sustains no creative inductions, no genuinely new knowledge, and no
conceptual discoveries. To do this, we have to go below the symbolic level.

In my opinion, the symbolic paradigm has a very limited applicability. For most areas
of representation and information processing, including semantic representation, it is
positively misleading. I do not claim that the symbolic paradigm is totally without value: if
one is trying to imitate natural language understanding, it is necessary to use some linguistic
structures, for example, in order to be able to analyse the grammar of the input. But even in
this symbol-oriented area we encounter problems when it comes to providing a semantics for
the linguistic expressions. According to the symbolic approach, the content of an expression
in a natural language would be represented by an expression in Mentalese. But this would
basically be a translation from one language to another and it would not help us understand
how the expression gets its meaning.

THE SUBCONCEPTUAL LEVEL

Connectionism

Connectionist systems, also called artifical neuron networks (ANNs), consist of large
numbers of simple but highly interconnected units (“neurons”). The units process
information in parallel, in contrast to most symbolic models where the processing is serial.



6

(The distinction between serial and parallel processing is not, in itself, crucial for the
representational powers of a model.) There is no central control unit for the network, but all
neurons “act” as individual processors. Hence connectionist systems are examples of parallel
distributed processes (PDP).18

Each unit receives activity, both excitatory and inhibitory, as input; and transmits
activity to other units according to some function (normally non-linear) of the inputs. The
behavior of the network as a whole is determined by the initial state of activation and the
connections between the units. The inputs to the network also change the “weights” of the
connections between units according to some learning rule. Typically, the change of
connections is much slower than changes in activity values. The units have no memory of
themselves, but earlier inputs may be represented indirectly via the changes in weights they
have caused. In the literature one finds several different kinds of connectionist models that
can be classified according to their architecture or their learning rules.

According to connectionism, cognitive processes should not be represented by symbol
manipulation, but by the dynamics of the patterns of activities in ANNs.

Representations in connectionist and related systems

Palmer19 introduces a distinction between intrinsic and extrinsic representation.
Representation is intrinsic when the representing relation has the same inherent constraints as
its represented relation. For example, if the age of a class of objects is represented by the
height of rectangles, the structure of the represented relation (age) is intrinsic in the
representing relation (height). In contrast, representing age by numbers is an extrinsic
representation since the structure of the digit sequences does not have the same structure as
the represented relation. Intrinsic representations resemble what they represent. In contrast,
extrinsic representations must be accompanied by a rule which specifies how the
representation is to be interpreted – such a rule provides the “meaning” of the representation.
Representations in connectionist systems are generally intrinsic, while in symbolic models
they are, almost by definition, extrinsic.

Connectionist systems have become popular among psychologists and cognitive
scientists since they seem to be excellent tools for building models of associationist theories.
And networks have been developed for many different kinds of tasks, including vision,
language processing, concept formation, inference, and motor control. Among the
applications, one finds several that traditionally were thought to be typical symbol processing
tasks. In favor of the neural networks, it is claimed by the connectionists that these models
do not suffer from the brittleness of the symbolic models and that they are much less
sensitive to noise in the input.

Given that we are focussing on the representational aspects of cognitive systems, let us
then consider the information on the subconceptual level. How do we distill sensible
information from what is received by a set of receptors? Or, in other words, how do we
make the transition from the subconceptual to the conceptual and the symbolic levels? These
questions point to the representation problems that occur on the subconceptual level.

The basic problem is that the information received by the receptors is too rich and
unstructured. What is needed is some way of transforming and organizing the input into a
form that can be handled on the conceptual or linguistic level. There are several methods for
treating this kind of problem. Within the area of ANNs, there are systems which are
developed to perform this kind of dimensionality reduction, e.g., Kohonen’s20 self-
organising networks.

What are then the drawbacks of using neural networks of the type described here for
information representation? A fundamental epistemological problem is that even if we know
that the network has learned to categorize the input in the right way, we may not be able to
describe what the emerging network represents. This kind of level problem is ubiquitous in
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applications of neural networks for learning purposes. The upshot is that a future theory of
neural networks must somehow bridge the gap of going from the subconceptual level to the
conceptual level. We may account for the information provided at the subconceptual level in
term of a dimensional space with some topological structure, but there is no general recipe
for determining the conceptual meaning of the dimensions of the space.

THE CONCEPTUAL LEVEL

Conceptual spaces

A crucial question for any theory of representation is how concepts should be modelled.
On the symbolic level, basic concepts are not modelled, just named by the basic symbols.
Then names of more complex concepts are constructed by compositions, logical or
syntactical, of the simple names. And when it comes to connectionist systems, concepts are
often represented implicitly in such systems, as was argued in the previous section. The
primary motivation for introducing a conceptual level is to provide tools for explicit
representations of basic concepts. These representations will be taken to be the references of
the symbols. It is natural to view the conceptual level as being between the symbolic and the
subconceptual levels.

When attacking the problem of representing concepts, an important aspect is that the
concepts are not independent of each other but can be structured into domains: Spatial
concepts belong to one domain, concepts for colors to a different domain, kinship relations
to a third, concepts for sounds to a fourth, and so on.

The central claim of this paper is that the notion of a conceptual space is a fruitful way
of modelling such domains. A conceptual space consists of a number of quality dimensions.
As examples of quality dimensions one can mention temperature, weight, brightness, pitch
and the three ordinary spatial dimensions height, width and depth. I have chosen these
examples because they are closely connected to what is produced by our sensory
receptors.21 The spatial dimensions height, width and depth as well as brightness are
perceived, by the visual sensory system, pitch by the auditory system, temperature by
thermal sensors and weight, finally, by the kinesthetic sensors. However, there are also
quality dimensions that are of an abstract non-sensory character. The primary function of the
quality dimensions is to represent various “qualities” of objects. They form the “framework”
used to assign properties to objects and to specify relations between them.

The dimensions are taken to be independent of symbolic representations in the sense
that we and other animals can represent the qualities of objects, for example when planning
an action, without presuming an internal language or another symbolic system in which these
qualities are expressed. In other words, the dimensions are the building blocks of
representations on the conceptual level. The quality dimensions should be seen as abstract
representations used as a modelling factor in describing mental activities of organisms, and
sometimes also activities of artificial systems. They are thus not required to have any
immediate physical realisation.

The notion of a dimension should be understood literally. It is assumed that each of the
quality dimensions is endowed with a certain structure. For most of the examples of quality
dimensions, these structures will be of a geometric nature (in some cases they are topological
or orderings). As a first example to illustrate such a structure, I will take the dimension of
“time”. In science, time is a modelled as a one-dimensional structure which is isomorphic to
the line of real numbers. If “now” is seen as the zero point on the line, the future
corresponds to the infinite positive real line and the past to the infinite negative line.

This representation of time is not universal, but is to some extent culturally dependent,
so that other cultures have a different time dimension as a part of their cognitive structure.
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For example, in some cultural contexts, time is viewed as a circular structure. There is thus
no unique way of choosing a dimension to represent a particular quality, but in general a
wide array of possibilities.

Another example is the dimension of “weight” which is one-dimensional with a zero
point, and thus isomorphic to the half-line of non-negative numbers. A basic conceptual
constraint on this dimension is that there are no negative weights.

It should be noted that some quality “dimensions” have only a discrete structure, that is,
they merely divide objects into disjoint classes. Two examples are classifications of
biological species and kinship relations in a human society. However, even for such
dimensions one can distinguish a simple geometric structure. For example, in the
phylogenetic classification of animals, it is meaningful to say that birds and reptiles are more
closely related than reptiles and crocodiles.

In previous writings on conceptual spaces,22,23,24 I have used the example of the
perceptual color space to illustrate a more structured set of quality dimensions. However,
one can also find related spatial structures for other sensory qualities. For example, consider
the quality dimension of pitch, which is basically a continuous one-dimensional structure
going from low tones to high. This representation is directly connected to the
neurophysiology of pitch perception. The cochlea of the inner ear functions so that high
frequency tones stimulate receptor cells at the base of the cochlea, and lower tones stimulate
cells higher up in the spiral. In this way the positions in the cochlea map, in a logarithmic
fashion, the frequencies of the sounds received by the ear. Thus acoustic frequency is
spatially coded in the nervous system. This is a paradigm example of an intrinsic
representation in the sense of Palmer.

Apart from the basic frequency dimension of tones, we can find some interesting
further structure in the mental representation of tones. Natural tones are not simple sinusoidal
tones of only one frequency, but constituted of a number of higher harmonics. The timbre of
a tone is determined by the relative strength of the higher harmonics of the fundamental
frequency of the tone. An interesting perceptual phenomenon is “the case of the missing
fundamental.” If the fundamental frequency is removed by artificial methods from a complex
tone, the pitch of the tone is still perceived as that corresponding to the removed
fundamental.25 Apparently, the fundamental frequency is not indispensable for pitch
perception, but the perceived pitch is determined by a combination of the lower harmonics.

Thus, the harmonics of a tone are essential for how it is perceived. This entails that
tones which share a number of harmonics will be perceived to be similar. The tone that
shares the most harmonics with a given tone is its octave, the second most similar is the
fifth, the third most similar is the fourth and so on. This additional “geometric” structure on
the pitch dimension, which can de derived from the wave structure of tones, provides the
foundational explanation for the perception of musical intervals.26

For another example of sensory space representations let me mention that the human
perception of taste appears to be generated from four distinct types of receptors: salt, sour,
sweet, and bitter. Thus the quality space representing tastes could be described as a 4-
dimensional space. One such model was proposed by Henning in 1916,27 who suggested
that gustatory space could be described as a tetrahedron as in figure 1.

For most kinds of dimensions it will be possible to talk about distances. The similarity
of two objects can therefore be defined via the distance between their representing points in
the space. Thus conceptual spaces provide us with a natural way of representing similarities,
which has turned out to be very difficult to handle on the symbolic level.
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Figure 1. Henning’s proposal for the structure of gustatory space.

A property can then be represented as a region of a conceptual space. The use of
regions heavily exploits the geometric or topological structure of the spaces. Furthermore an
object can be represented as a point in a conceptual space. Such a point may belong to
several of the regions that represent properties. In this way the object is directly represented
as having a number of properties. A concept can be defined as a just a property, i.e., a
region of a space or as a set of properties from different dimensions.

One of the main applications of the theory is to use conceptual spaces for representing
the semantics of symbolic expression. The meanings of different kinds of expressions will
be defined in terms of different constructions of elements from the spaces. Since these
constructions will be dependent on the structure of the underlying quality dimensions, it
follows that the assignment of meanings to the expressions on the symbolic level is far from
arbitrary. On the contrary, the semantics (and to some extent even the grammar) of the
linguistic constituents will be severely constrained by the underlying structure. This is
anathema for the Chomskian tradition within linguistics, but, as a matter of fact, it is one of
the central tenets of the recently developed cognitive linguistics.28,29

The advantages of the conceptual level

What are the advantages of focussing on the conceptual level and using conceptual
spaces as a tool for representing information? With regard to the problems for symbolic
representations that were presented earlier it should first be noted that conceptual spaces will
solve the symbol grounding problem. The symbols are given meaning by being connected to
various constructions in the spaces. The resulting semantics are of a cognitive kind since,
unlike a realist semantics, it does not presume any objects outside the cognitive structure to
determine the meaning of the expressions of language. The external world only enters the
picture when the truth or validity of the expressions are to be evaluated.

Conceptual spaces can also provide a better way of representing learning in general and
concept formation in particular than what can be achieved on the symbolic level. Many of the
problems of induction that are created by the symbolic approach dissolve into thin air when
analysed on the conceptual level.30 Similarly, the problem of how transducers work
becomes a non-problem since no transducers are needed for the information represented in
conceptual spaces.

The theory of conceptual spaces may also indicate a direction where a solution to the
frame problem can be ferreted out. The starting point is to separate the information to be
represented into domains. The combinatorial explosion of symbolic representations of a
changing world is a result of not keeping symbolic information about different domains
separated.
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One notion that is severly downplayed by the symbolic representations is that of
similarity. However, I submit that judgements of similarity are central for a large number of
cognitive processes. Such judgements reveal the dimensions of our perceptions and their
structures. Quine discusses similarity and its relation to that of a natural kind.31 He notes that
it “is immediately definable in terms of kind; for things are similar when they are two of a
kind.” Furthermore, he says about similarity that we

“cannot easily imagine a more familiar or fundamental notion than this, or a notion more
ubiquitous in its application. On this score it is like the notions of logic: like identity, negation,
alternation, and the rest. And yet, strangely, there is something logically repugnant about it. For
we are baffled when we try to relate the general notion of similarity significantly to logical
terms”.32

As another sign of the importance of the conceptual level, I submit that most of
scientific theorizing takes place at this level. Determining the relevant dimensions involved in
the explanation of a phenomenon is a prime scientific activity. And once the conceptual space
for a theory has been established, theories, in the form of equations, that connect the
dimensions can be proposed and tested.33

Even if the advantages of representations on the conceptual level are considerable in
comparison to symbolic representations, a defender of the connectionist approach may
question whether this level is really needed. Could it not be that artifical neuron networks are
sufficient to solve the representational problems? After all there are several kinds of
networks, e.g., Kohonen networks, where information is represented in a dimensional
structure, very much like it would be represented in a conceptual space.

It is true that ANNs learn about similarities but, in general, they do so very slowly and
only after excessive training. One way of making the networks more efficient is to build in
structural constraints when setting up the architecture of the network. However, this often
means that information about the relevant domains or other dimension generating structures
are added perforce to the network. In other words, this strategy presumes the conceptual
level in the very construction of the network.

A related important feature of representations in terms of conceptual spaces is that
information must be sorted into domains. On the constructive side, it was argued above that
the frame problem may be circumvented by keeping track of domain-relevant information.
And on the explanatory side, one can note that when we make an observation of an object or
event it is located in space and time, the object has a particular color and shape, etc. Domains
are ubiquitous in descriptions of cognitive processes. Furthermore, there is ample support
from neurophysiology and neuropsychology for domain-specificity in the brain.34

A central feature of our cognitive mechanisms is that we assign properties to the objects
that we observe. This functions as a way of abstracting away from redundant information
about objects. Kirsch says the following about the necessity of such a mechanism:

”This capacity to predicate is absolutely central to concept-using creatures. It means that the
creature is able to identify the common property which two or more objects share and to entertain
the possibility that other objects also possess that property. That is, to have a concept is, among
other things, to have a capacity to find an invariance across a range of contexts, and to reify that
invariance so that it can be combined with other appropriate invariances.”35

As has been noted above, neither symbolism nor connectionism supports domain-
specificity (even though artificial neural networks in general presume that the domain of the
inputs is given). It should also be noted that in many semantic theories the notion of a
domain is taken for granted, but no analysis is given. The conceptual level of representation
will thus provide the underpinnings for this assumption.

In a sense, an artificial neuron network can also be seen as a multi-dimensional
representation, where the activity of each neuron is considered to be a dimension. This way
of looking at artificial neuron networks is sometimes called the state space approach.36,37

However, when the artificial neuron network is viewed from a concpetual level, the
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information is seen as represented in a small number of dimensions. Jumping between two
levels of representation, one can thus say that with the aid of the processes in the artificial
neuron network, a considerable reduction of the number of dimensions represented has taken
place.38 Another way of describing such a reduction of dimensions is to say that the multi-
dimensional input to an artificial neuron network (or to a sensory organ) is filtered into a
(small) number of domains. This results in what psychologists call a generalisation of the
input.

Even though he is not always consistent, Smolensky writes as if the mental
representation takes place only on the conceptual level:

“[C]onnectionist cognitive architecture is intrinsically two-level: semantic interpretation is carried
out at the level of patterns of activity while the complete, precise, and formal account of mental
processing must be carried out at the level of individual activity values and connections. Mental
processes reside at a lower level of analysis than mental representations.”39

Summing up the comparison between the three levels of representation, one can say that
the conceptual level serves as an intermediary scale between the coarse symbolic and the
fine-grained connectionist representations. Without making any ontological commitment of
new entities, one can say that the conceptual dimensions “emerge” from self-organising
neural systems (or in artificial neuron networks). Furthermore, in order to avoid the
grounding problem, symbolic representations presume a conceptual level which provides the
meanings of the symbols.

If one looks at biological cognitive systems from an evolutionary point of view, the
cognition of the simplest animals can only be described, in a meaningful way, on the
subconceptual level. For such systems, models based on ANNs may indeed be the most
appropriate. For more advanced animals, in particular mammals and birds, it is clear that
there are sophisticated mechanisms of concept formation and learning. In my opinion, these
mechanisms are best modelled on the conceptual level. As regards the symbolic level, I
submit that it is only in humans that we find cognition that is clearly based on symbolic
representations in the sense that thinking is based on the manipulation of symbols in a rule-
governed manner. It is debatable whether other primates can engage in symbolic thinking of
this kind. Thus the three levels represent a rough classification of the evolution of the
cognitive capacities of animals.

Connections to neuroscience

When constructing an artificial agent, the suitability of a particular form of
representation cannot be decided merely on the basis of how similar problems are solved in
biological agents. Nevertheless, I consider data from neuroscience and psychology to be
relevant when evaluating different ways of representing information. The prime use of the
theory of conceptual spaces is for representing information when constructing artificial
systems, and thus the theory is not primarily empirical. Nevertheless, I believe it is possible
to connect it to some theories in the neurosciences. One reason for this comparison is that the
information processing involved in sensorimotor control seems to be much more
fundamental for the cognitive functioning of the human brain than the processes involved in
symbolic manipulations. Consequently, I see it as an advantage for the theory of conceptual
spaces that it can highlight the philosophical implications of neuroscientific research in this
area. The symbolic paradigm is much weaker in this respect.

A first thing to note is that the cortex abounds in topographic maps, whereby
neighborhood relations at the sensory periphery are preserved in the arrangement of neurons
in various “deeper” CNS regions.40,41 For example, one finds “retinotopic” maps in the
lateral geniculate nuclei which are arranged in six layers, each layer arranged in a topographic
representation of the retina; there are “somatotopic” maps representing sensory positions on
the body; and there are “tonotopic” maps where the orderly mapping of neurons with sound
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frequencies is preserved from the cochlea to diverse areas of the auditory cortex. Another
interesting aspect of these maps is that most of them preserve the modularity of the senses, in
the way that distinct types of receptor neurons are sensitive to different features of our
environment and these features are kept distinct in the maps higher up in the projection
system. On this point, Stein and Meredith write:

“At each successive level in the central nervous system the visual, somatosensory, and auditory
representations occupy spatially distinct regions that are defined functionally and anatomically
(i.e., cytoarchitectonically). At the cortical level, and in most regions of the thalamus, the domain
of an individual sensory modality consists of distinct maps. The map (or maps) of a single
sensory modality in, for example, primary sensory cortex is distinguished from the map in
extraprimary cortext it abuts by mirror-image reversals in receptive field progressions, significant
changes in receptive field properties, differences in afferent/efferent organization, and/or by
specialization for different submodality characteristics. In cortex the interposition of “association”
areas further segregates the representations of the different sensory modalities.”42

Further support for my comparison can be gained from Gallistel, who in his excellent
book on learning mechanisms in biological systems, devotes an entire chapter to “Vector
spaces in the nervous system.” He writes:

“The purpose of this chapter is to review neurophysiological data supporting the hypothesis that
the nervous system does in fact quite generally employ vectors to represent properties of both
proximal and distal stimuli. The values of these representational vectors are physically expressed
by the locations of neural activity in anatomical spaces of whose dimensions correspond to
descriptive dimensions of the stimulus. The term vector space, which refers to the space defined by
a system of coordinates, has a surprisingly literal interpretation in the nervous system. The
functional architecture of many structures that process higher-level sensory inputs is such that
anatomical dimensions of the structure correspond to descriptive dimensions of the stimulus.
There is reason to think that this correspondence is not fortuitous; rather, it is a foundation for the
nervous system’s capacity to adapt its output to the structure of the world that generates its
inputs.”43

COMPUTATIONAL ASPECTS

The symbolic approach to information representation is intimately connected to the
classical view of computation. On this view, computations are defined by the Turing
machine paradigm. According to Church’s thesis everything that can be computed with
symbols can be computed on a (universal) Turing machine. However, this is not all there is
to computation since the thesis is based on the assumption that all information is
symbolically represented. And this is exactly what is being questioned by the connectionist
and the conceptual approaches to information representation.

If we look at the methods used in the “symbol crunching” of traditional AI, a clearly
dominating feature of the algorithms is that they implement some form of rule following. The
rules can be logical axioms as in an automated theorem prover, they can be syntactic rules as
in a parsing program, or they can be of a cognitively more general type as in the ACT*44 and
SOAR45 architectures. The computational methods are very often based on some heuristics
for searching in tree-like structures.

The computational methodology of connectionism is quite different from that of the
symbolic approach. As is argued by e.g. van Gelder46 and Smolensky,47 connectionist
systems can be seen as special cases of dynamical systems. A dynamic system can in general
be described by a set of possible states of the system, for example all the possible
combinations of activities of the neurons in an ANN, and a dynamics for these states, for
example a set of differential equations, that describe how the system changes from one state
to another. Smolensky explicitly says that connectionism
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“is committed to the hypothesis that mental representations are vectors partially specifying the
state of a dynamical system (the activities of units in a connectionist network), and that mental
processes are specified by the differential equations governing the evolution of that dynamical
system.

[…]

The connectionist systems I will advocate hypothesize models that are not an implementation but
rather a refinement of the Classical symbolic approach; these connectionist models hypothesize a
truly different cognitive architecture, to which the Classical architecture is a scientifically
important approximation.”48

The computations performed by connectionist systems are of a different nature (at least
when described on the subconceptual level). It is common to point out that neural computing
is distributed and parallel, instead of sequential as in a Turing machine. More important is
that what goes on in a network can be described as a combination of a fast process of
spreading of activities between the neurons and a slow learning process of adjusting the
weights of connections between the neurons. Even though each single neuron follows a
simple rule for its firing (normally a function of the sum of its inputs) and some rule for
updating its weights, this is not an example of rule-following in the sense described above
for the the symbolic systems.

Even though it is difficult to specify a uniform computational method for the many
different kinds of articifial neuron networks, different kinds of pattern recognition or pattern
transformation are important for such systems. The patterns are not determined by a set of
explicit exact rules as in the symbolic systems, but rather decided by various kinds of
approximations and optimizations. An important aspect is that all these decisions are made at
a very local level - there is no central processing unit.

Turning next to computations on the conceptual level, the central mathematical notion
on this level is that of a vector. On the representational role of vectors, Gallistel writes:

”In saying that a vector is ordered, we indicate that the position in the string matters; the string
<2,7> is not equivalent to the string <7,2> Whether a set of numbers or physical quantities is a
vector cannot be determined from an analysis of the set itself. This classification depends on the
use made of the numbers. Loosely speaking, if the numbers enter into computational operations –
for example, vector addition – that generates different outputs for different orderings of the
numbers, then the input sets are vectors.”49

Objects are represented by vectors in conceptual spaces and properties of objects are
represented by regions of spaces. Consequently, the computations on the conceptual level
will focus on vector calculations, using matrix multiplications, etc. The geometrical
properties of the vectors will confer their basic representational capacities. Again, it is very
unnatural to view such calculation as examples of rule following. However, in contrast to
connectionist systems, the represented features are generally of a holistic rather than a
distributed character.

Another methodological feature that clearly distinguishes the conceptual level from the
symbolic is that relations of similarity will play a crucial role. Similarity between objects or
properties will be represented by distances in spaces. Churchland and Sejnowski make a
similar point, even though they write about an “activation space” in an ANN:

“An activation space will also be a similarity space, inasmuch as similar vectors will define
adjacent regions in space. This means that similarity between objects represented can be reflected
by similarity in their representations, that is, proximity of positions in activation space.
Similarity in representations is thus not an accidental feature, but an intrinsic and systematic
feature. It is, consequently, a feature exploitable in processing. Nearby vectors can cancel small
differences and highlight similarities, thereby allowing the network to generalize as well as
distinguish.”50
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Such a notion of a distance is difficult to model in a natural way in a symbolic system.
In a connectionist system distances may appear as an emergent feature, but is hard to model
on a neuronal level.

Within connectionism, the state of activities of an ANN is often represented as a vector
(for example, in the quotation from Churchand and Sejnoswki above). However, this kind
of vector representation is, in general, different from the one studied on the conceptual level.
The activation vector of an ANN is of the same dimension as the number of neurons, while
on the conceptual level, the representational space is normally of a low dimension.
Furthermore, the metrics of the spaces on the conceptual level are in general simple in
comparison to the very complex distance metrics that is employed by an ANN after it has
been trained. On the conceptual level, the irrelevant information has been filtered out, while
the activation vectors describing the state of an ANN contain a lot of noise and other
redundancies from the input. This double interpretation of “vector” is a source of
equivocation. However, in some of his writings, P. M. Churchland seems to be aware of the
double interpretation of vectors:

”Distribution and redistribution of representations gives an informational fan-out, and this is
relevant to the question of how precise representing is possible with rather coarse units. Coming
at this problem from another angle, distribution means that subsets of information can be pulled
out and relocated with relevant information of other representations, then to be further convolved.
Consider, for example, that 3-D information is implicitly carried (one might say buried) in the
output from the retinal ganglion cells. How can the information be extracted and made usable? An
efficient and fast way to do this is to distribute and redistribute the information, to convolve the
representations through the living matrix of synapses, until it shows up on our recording
electrodes as a cell tuned to stimulus velocity in a specific direction, or to an illusory boundary, or
to a human face. Topographic mapping then is a means whereby vector coding can bring to heel
the problem of assembling relevant information. As Kohonen’s 1984 model showed, in a
competitive learning net, the system will self organize so that nearby vectors map onto nearby
points of the net, assuming that the connections are short range. That the brain avails itself of this
organization is not so much a computational necessity as a wiring economy. Far from being
inconsistent with topographic mapping, vector coding exploits it.”51

CONCLUSION

It is generally claimed that the symbolic and the connectionist paradigms are
incompatible. Some of the most explicit arguments for this position have been put forward
by Smolensky52 and Fodor and Pylyshyn.53 In my opinion, the two methods are not
incompatible, but they arise from modelling a cognitive system on different scales or from
different perspectives. The relation between the symbolic and conceptual levels on the one
hand and the connectionist level on the other hand is that connectionism deals with the “fast”
behavior of a dynamic system, while the conceptual and symbolic structures may emerge as
“slow” features of such a system. The upshot is that one and the same system, depending on
the perspective adopted, can be seen as both an associationist mechanism and as a conceptual
space which, in turn, provides a grounding for a symbolic system. Thus, by changing from
one perspective to the other, conceptual representations and symbolic inferences can be seen
as emerging from dynamic processes in a connectionist system. The pivotal point is that
there is no need to distinguish between two or three kinds of systems – the different
perspectives can be adopted on a single information processing system.
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