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Abstract

Despite the relevance of much of Jakob von Uexküll ’s work to artificial
intelli gence and the cognitive sciences, it was largely ignored until the mid-
1980s. Since then, much research has been devoted to the study of embodied
autonomous agents (robots) and artificial li fe. Such systems are typically said
to ‘ learn’ , ‘develop’ and ‘evolve’ in interaction with their environments. It
could be argued that these self-organizing properties solve the problem of
symbol or representation grounding in artificial intelli gence research, and thus
place autonomous agents in a position of semiotic interest.  Here we discuss
the relevance and implications of Jakob von Uexküll ’s theory of meaning to
the study of artificial organisms and their use of representation and sign
processes. Furthermore, we contrast his position with more mechanistic views,
and examine the relation to recent theories of embodied cognition and its
biological basis, in particular the work of Maturana and Varela. Finally, we
address the issue of whether and to what extent artificial organisms are
autonomous and capable of semiosis.
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1. Introduction

Much research in cognitive science, and in particular artificial intelli gence (AI) and

artificial li fe (ALife), has since the mid-1980s been devoted to the study of so-called

autonomous agents. These are typically robotic systems situated in some environment

and interacting with it using sensors and motors.  Such systems are often self-organizing

in the sense that they artificially learn, develop and evolve in interaction with their

environments, typically using computational learning techniques, such as artificial

neural networks or evolutionary algorithms. Due to the biological inspiration and

motivation underlying much of this research (cf. Sharkey and Ziemke 1998),

autonomous agents are often referred to as ‘artificial organisms’ , ‘artificial li fe’ ,

‘animats’ (short for ‘artificial animals’) (Wilson 1985), ‘creatures’ (Brooks 1990) or

‘biorobots’ (Ziemke and Sharkey 1998). These terms do not necessarily all mean exactly

the same; some of them refer to physical robots only, whereas others include simple

software simulations. But the terms all express the view that the mechanisms referred to

are substantially different from conventional artifacts and that to some degree they are

‘ li fe-like’ in that they share some of the properties of li ving organisms. Throughout this

paper this class of systems will be referred to as ‘artificial organisms’ or ‘autonomous

agents/robots’ interchangeably.

The key issue addressed in this paper concerns the semiotic status and relevance of

such artificial organisms. The question is whether and to what extent they are

autonomous and capable of semiosis. This is not straightforward since semiosis is often

considered to necessarily involve living organisms. Morris (1946), for example, defines

semiosis as “a sign-process, that is, a process in which something is a sign to some
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organism”. Similarly, Jakob von Uexküll1 considered signs to be “of prime importance

in all aspects of li fe processes” (T. von Uexküll 1992), and made a clear distinction

between organisms, which as autonomous subjects respond to signs according to their

own specific energy, and inorganic mechanisms, which lack that energy, and thus

remain heteronomous (for a more detailed discussion see the following section ).

Mechanisms can, of course, be involved in sign processes, in particular computers

and computer programs2. They are, however, typically considered to lack ‘f irst hand

semantics’ , i.e. “ intrinsic meaning” (Harnad 1990) or “contents for the machine" (Rylatt

et al. 1998), and to derive their semantics from the fact that they are programmed,

observed and/or interpreted by humans. Andersen et al. (1997) have argued in detail that

computers/programs, when it comes to semiosis, fall somewhere in between humans

and conventional mechanisms, but that they ultimately derive their semiotic ‘capacities’

from the interpretation of their designers and users. The major difference, they argued,

was that living systems are autopoietic, i.e. self-creating and -maintaining, whereas

machines are not (this issue will be discussed in detail l ater). Hence, their “ tentative

conclusion" was that

... the difference between human and machine semiosis may not reside in the

particular nature of any of them. Rather, it may consist in the condition that

machine semiosis presupposes human semiosis and the genesis of the former

can be explained by the latter. (Andersen et al. 1997: 569)

                                                          
1 To avoid confusion between Jakob von Uexküll and his son Thure, we will t hroughout the paper refer to
both authors by first and last name, or to the former as ‘von Uexküll ’ and to the latter as ‘T. von Uexküll '.
2 Sebeok, for example, writes (in personal communication cited by T. von Uexküll (1982)) that “ the
criterial feature of living entities, and of machines programmed by humans, is semiosis” .
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Cognitive science and AI research has in fact since its beginning in the 1950s been

dominated by the so-called computer metaphor for mind, i.e. the view that the human

mind is very much like a computer program. This has led decades of traditional AI

research to fall i nto the internalist trap (Sharkey and Jackson 1994) of focusing solely

on disembodied computer programs and internal representations supposed to ‘mirror’ a

pre-given external reality (cf. Varela et al. 1991), while forgetting about the need for

grounding and embedding these in the world they were actually supposed to represent.

Hence, for cognitive scientists the use of embodied, situated agents offers an alternative,

bottom-up approach to the study of intelli gent behavior in general, and internal

representation and sign usage in particular.

Artificial organisms, unlike computer programs equipped with robotic capacities of

sensing and moving, do interact with their environments, and they appear to do so

independently of interpretation through external users or observers.  Moreover, such

systems are often self-organizing, i.e. they ‘ learn’ , ‘develop’ and ‘evolve’ in interaction

with their environments, often attempting to mimic biological processes. Several

examples of this type of self-organization in artificial organisms will be discussed

throughout this paper. The sign processes and functional circles by which artificial

organisms interact with their environments are therefore typically self-organized, i.e. the

result of adaptation in interaction with an environment, rather than programmed or built -

in by a designer, and thus often not even interpretable to humans (cf. Prem 1995).

Hence, unlike computer programs, their genesis typically cannot be explained with

reference to human design and interpretation alone. Thus it has been argued that

autonomous agents are, at least in theory, capable of possessing ‘f irst hand semantics’
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(e.g., Harnad 1990; Brooks 1991b; Franklin 1997; Bickhard 1998). Their semiotic and

epistemological interest, it is held, arises because unlike conventional machines, their

use of signs and representations is self-organized, and thus, as for li ving systems, largely

private and typically only meaningful to themselves. Many researchers therefore no

longer draw a strict line between animals and autonomous robots. Prem (1998), for

example, refers to both categories as ‘embodied autonomous systems’ , and does not at

all distinguish between living and non-living in his discussion of semiosis in such

systems. We have previously discussed this distinction in an examination of the

biological and psychological foundations of modern autonomous robotics research

(Sharkey and Ziemke 1998). In that paper we investigated differences between the

‘embodiment’ of li ving and non-living systems, and their implications for the possibilit y

of cognitive processes in artifacts. In this paper the issues are further analyzed with

reference to Jakob von Uexküll ’s theory of meaning.

As a result of the new orientation towards agent-environment interaction and

biologically inspiration, the work of Jakob von Uexküll ’s work by some researchers has

been recognized as relevant to the study of robotics, ALife and embodied cognition.

Examples are the works of Brooks (1986a, 1991a), Emmeche (1990, 1992, this volume),

Prem (1996, 1997, 1998), Clark (1997), and our own recent work (Sharkey and Ziemke

1998, 2000; Ziemke 1999b). However, a detailed analysis and discussion of von

Uexküll ’s theory, its relation to and implications for recent theories in AI and cognitive

science, is still l acking; hence, this is what we aim to provide in this paper. We believe

that von Uexküll ’s theory can contribute significantly to the field by deepening the
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understanding of the use of signs and representations in li ving beings and clarifying the

possibiliti es and limitations of autonomy and semiosis in artificial organisms.

The scene is set in the next section in a discussion of the contrasting positions of

Jacques Loeb and Jakob von Uexküll on the differences between organisms and

mechanisms. This leads into a discussion of attempts by AI to endow mechanisms with

some of the mental and behavioral capacities of li ving organisms. Moreover, the history

of different approaches to AI is discussed with an emphasis on the connections to issues

in semiotics, and in particular the relation to von Uexküll ’s work.  The following section

then takes this a step further by detaili ng the issues involved in the self-organization of

artificial organisms through adaptation of sign processes using computational evolution

and learning techniques. Then there will be a discussion of how artificial organisms

interact with objects and other agents in their environment by means of sign processes,

and how this distinguishes them from the conventional mechanisms discussed by von

Uexküll .  In the penultimate section von Uexküll ’s theory is compared to the closely

related work of Maturana and Varela on the biology of cognition.  Using both these

theoretical frameworks, we further examine the role of the living body in the use of

signs/representations. Finally, we consider the implications of not having a living body

for the possibilit y and limitations of autonomy and semiosis in artificial organisms.

2. Organisms versus Mechanisms

Many of the ideas discussed in modern autonomous robotics and ALife research can

already be found in biological and psychological discussions from the late nineteenth

and early twentieth century. Jacques Loeb (1859-1924) and Jakob von Uexküll (1864-
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1944) represented the discontent felt by a number of biologists about anthropomorphic

explanations and they both were influential in developing a biological basis for the study

of animal behavior, although in very different ways. After Darwin’s (1859) book, The

origin of species, comparative psychology had attempted to find a universal key which

resulted in the breaking down of the distinction between humans and other species.

This led to the attribution of human-like mental qualiti es to other vertebrates and even

invertebrates. In stark contrast to this anthropomorphic approach, Loeb developed

scientifically testable mechanistic theories about the interaction of organism and

environment in the creation of behavior. Von Uexküll , on the other hand, theorized

about organism-environment interaction in terms of subjective perceptual and effector

worlds, and thus contradicted anthropomorphic as well as purely mechanistic

explanations. What united Loeb and von Uexküll was the goal find a way to explain the

behavioral unity of organisms, and their environmental embedding, based on their

biology; in their individual approaches, however, they differed substantially.

2.1 Mechanistic theor ies

Loeb (1918) derived his theory of tropisms (directed movement towards or away

from stimuli ) by drawing lessons from the earlier scientific study of plants where

considerable progress had been made on directed movement through geotropism

(movement with respect to gravity) (Knight 1806) and phototropism (movement with

respect to light) (De Candolle 1832). Strasburger (1868) really set the ball rolli ng for

animal behavior in a study of the movements of unicellular organisms towards light

which he labelled phototaxis to distinguish the locomotory reactions of freely moving

organisms from the phototropic reactions of sedentary plants. The study of chemotaxis
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came soon afterwards (e.g., Pfeffer 1883) to describe attractions of organisms to

chemicals. Although Loeb wanted to explain the behavior of higher organisms, those

with nervous systems, he continued to use the term tropism rather than taxis to stress

what he saw as the fundamental identity of the curvature movements of plants and the

locomotion of animals in terms of forced movement.

2.2 Umwelt and counterwor ld

Von Uexküll strongly criti cized the purely mechanistic doctrine “that all li ving

beings are mere machines” (von Uexküll 1957) in general, and Loeb’s work in particular

(e.g., von Uexküll 1982), for the reason that it overlooked the organism's subjective

nature, which integrates the organism’s components into a purposeful whole. Thus,

although his view is to some degree compatible with Loeb’s idea of the organism as an

integrated unit of components interacting in solidarity among themselves and with the

environment, he differed from Loeb in suggesting a non-anthropomorphic psychology in

which subjectivity acts as an integrative mechanism for agent-environment coherence.

The mechanists have pieced together the sensory and motor organs of animals,

li ke so many parts of a machine, ignoring their real functions of perceiving and

acting, and have gone on to mechanize man himself. According to the

behaviorists, man's own sensations and will are mere appearance, to be

considered, if at all , only as disturbing static. But we who still hold that our

sense organs serve our perceptions, and our motor organs our actions, see in

animals as well not only the mechanical structure, but also the operator, who

is built i nto their organs as we are into our bodies.  We no longer regard
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animals as mere machines, but as subjects whose essential activity consists of

perceiving and acting. We thus unlock the gates that lead to other realms, for

all that a subject perceives becomes his perceptual world and all that he does,

his effector world. Perceptual and effector worlds together form a closed unit,

the Umwelt. (von Uexküll 1957: 6; first emphasis added)

Von Uexküll (1957) used the now famous example of the tick to ill ustrate his

concept of Umwelt and his idea of the organism's embedding in its world through

functional circles (see Figure 1). It is three such functional circles in “well -planned

succession” which coordinate the interaction of the tick as a subject (and meaning-

utili zer) and a mammal as its object (and meaning-carr ier):

•  (1) The tick typically hangs motionless on bush branches. When a mammal

passes by closely its skin glands carry perceptual meaning for the tick: the

perceptual signs (Merkzeichen) of butyric acid are transformed into a

perceptual cue (Merkmal) which triggers effector signs (Wirkzeichen) which

are sent to the legs and make them let go so the tick drops onto the mammal,

which in turn triggers the effector cue (Wirkmal) of shock.

• (2) The tactile cue of hitting the mammal's hair makes the tick move around

(to find its host’s skin).

• (3) The sensation of the skin's heat triggers the tick's boring response (to drink

its host's blood).
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Figure 1: The functional circle according to Jakob von Uexküll .  Adapted from von

Uexküll (1957).

Von Uexküll did not deny the physical/chemical nature of the organism’s

components and processes, i.e. his view should not, as sometimes done, be considered

vitalistic3 (cf. Emmeche 1990, this volume; Langthaler 1992). He ‘admitted’ that the

tick exhibits “ three successive reflexes” each of which is “elicited by objectively

demonstrable physical or chemical stimuli ” . But he pointed out that the organism’s

components are forged together to form a coherent whole, i.e. a subject, that acts as a

behavioral entity which, through functional embedding, forms a “systematic whole”

with its Umwelt.

                                                          
3 Langthaler (1992), with reference to T. von Uexküll , points out that von Uexküll ’s view, although often
associated with vitalism, should really be considered a ‘ third position’ combining elements of both
mechanism and vitalism.  In a similar vein Emmeche (this volume) argues that von Uexküll ’s theory, as
well as modern biosemiotics in general, should be considered a kind of qualitative organicism.
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We are not concerned with the chemical stimulus of butyric acid, any more

than with the mechanical stimulus (released by the hairs), or the temperature

stimulus of the skin. We are solely concerned with the fact that, out of the

hundreds of stimuli radiating from the qualiti es of the mammal's body, only

three become the bearers of receptor cues for the tick. ...What we are dealing

with is not an exchange of forces between two objects, but the relations

between a living subject and its object. ... The whole rich world around the tick

shrinks and changes into a scanty framework consisting, in essence, of three

receptor cues and three effector cues - her Umwelt. But the very poverty of this

world guarantees the unfaili ng certainty of her actions, and security is more

important than wealth. (von Uexküll 1957: 11f.)

As T. von Uexküll (1997b) pointed out, the model of the functional circle contains all

the elements which are part of a sign process, and whose interaction forms the unity of a

semiosis: an organism is the subject (or interpreter), certain environmental signals play

the role of signs (or interpretanda), and the organism's biological condition determines

the behavioral disposition (or interpretant). The object (interpretatum), on the other

hand, can be harder to identify using common sign-theoretic concepts, since for the

organism, e.g. the tick, it does not necessarily exist as an abstract entity, e.g. ‘a

mammal’ , but might only have temporary existence as different semiotic objects and the

bearer of varying meanings, e.g. three different ones in the tick’s case. Hence, von

Uexküll sometimes referred to the sign processes in the nervous system as a “mirrored

world” (Uexküll 1985; cf. also T. von Uexküll et al. 1993), but pointed out that by that
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he meant a “counterworld” , not a 1:1 reflection of the external environment. Thus he

wanted to emphasize that

… in the nervous system the stimulus itself does not really appear but its place

is taken by an entirely different process which nothing at all to with events in

the outside world. This process can only serve as a sign which indicates that in

the environment there is a stimulus which has hit the receptor but it does not

give any evidence of the quality of the stimulus. (Uexküll 1909:192)4

T. von Uexküll et al. (1993) also point out that the notion of ‘ counterworld’ should

not be equated with a ‘mirror’ in the narrow sense of a reflection of the environment.

They further elaborate  that

… in this phenomenal universe [of the counterworld], the objects of the

environment are represented by schemata which are not, as in a mirror,

products of the environment, but rather ‘ tools of the brain’ ready to come into

operation if the appropriate stimuli are present in the outside world. In these

schemata, sensory and motor processes are combined … to from complex

programs controlli ng the meaning-utili zing … behavioral responses. They are

retrieved when the sense organs have to attribute semiotic meanings to stimuli .

(T. von Uexküll et al. 1993: 34)

Hence, T. von Uexküll (1992: 308) concludes that an “essential problem, which he

[Jakob von Uexküll ] has solved through the model of a circular process, is the

relationship between sign and behavior (perception and operation)".
                                                          
4 We here use the translation given by T. von Uexküll et al. (1993), who translate the original German
term “Zeichen” as “sign” , rather than “ token” as in the earlier translation given in Uexküll (1985).
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2.3 Autonomy

The key difference between mechanisms and living organisms is, according von

Uexküll , the autonomy of the living. Following the work of Müller (1840), he pointed

out that “each living tissue differs from all machines in that it possesses a ‘specific’ li fe-

energy in addition to physical energy” (von Uexküll 1982: 34), which allows it to react

to different stimuli with a ‘self-specific’ activity according to its own “ego-quality” (Ich-

Ton), e.g. a muscle with contraction or the optic nerve with sensation of light. Hence,

each living cell perceives and acts, according to its specific perceptual or receptor signs

and impulses or effector signs, and thus the organism’s behaviors “are not mechanically

regulated, but meaningfully organized” (von Uexküll 1982: 26). The operation of a

machine, on the other hand, is purely mechanical and follows only the physical and

chemical laws of cause and effect. Furthermore, von Uexküll (1928:180)5 referred to

Driesch, who pointed out that all action is a mapping between individual stimuli and

effects, depending on an historically created basis of reaction (Reaktionsbasis), i.e. a

context-dependent behavioral disposition (cf. Driesch 1931). Mechanisms, on the other

hand, do not have such an historical basis of reaction, which, according to von Uexküll ,

can only be grown - and there is no growth in machines. Von Uexküll (1928: 217)

further elaborates that the rules machines follow are not capable of change, due to the

fact that machines are fixed structures, and the rules that guide their operation, are not

their ‘own’ but human rules, which have been built i nto the machine, and therefore also

can be changed only by humans, i.e. mechanisms are heteronomous (cf. also T. von

Uexküll 1992). Machines can therefore, when they get damaged, not repair or regenerate

                                                          
5 All our translations from German sources have been carried out by the first author (who is a native
speaker).
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themselves. Living organisms, on the other hand, can, because they contain their

functional rule (Funktionsregel) themselves, and they have the protoplasmic material,

which the functional rule can use to fix the damage autonomously. This can be

summarized by saying that machines act according to plans (their human designers’) ,

whereas li ving organisms are acting plans (von Uexküll 1928: 301).

This is also closely related to what von Uexküll described as the “principal difference

between the construction of a mechanism and a living organism”, namely that “ the

organs of li ving beings have an innate meaning-quality, in contrast to the parts of

machine; therefore they can only develop centrifugally” :

Every machine, a pocket watch for example, is always constructed

centripetally. In other words, the individual parts of the watch, such as its

hands, springs, wheels, and cogs, must always be produced first, so that they

may be added to a common centerpiece.

In contrast, the construction of an animal, for example, a triton, always starts

centrifugally from a single cell , which first develops into a gastrula, and then

into more and more new organ buds.

In both cases, the transformation underlies a plan: the ‘watch-plan’ proceeds

centripetally and the ‘ triton-plan’ centrifugally. Two completely opposite

principles govern the joining of the parts of the two objects. (von Uexküll

1982: 40)
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In a later section we will discuss in detail the relation between von Uexküll ’s theory

and Maturana and Varela’s (1980, 1987) more recent work on autopoiesis and the

biology of cognition.

2.4 Mechanistic and cybernetic models

Although von Uexküll and others presented strong arguments against the mechanistic

view, a number of researchers during the first half of the 20th began to build machines

to test mechanistic hypotheses about the behavior of organisms. Beside the work of

Loeb, inspiration was taken in particular from Sherrington’s (1906) work on reflexes

and even earlier work on taxis (see Fraenkel and Gunn (1940) for an overview of 19th

century research on different forms of taxis). Loeb (1918) himself described a

heliotropic machine6 constructed by J.J. Hammond and held that:

... the actual construction of a heliotropic machine not only supports the

mechanistic conception of the voliti onal and instinctive actions of animals but

also the writer’s theory of heliotropism, since the theory served as the basis in

the construction of the machine. (Loeb 1918)

One of the most impressive early examples of research on artificial organisms came

from Grey Walter (1950, 1951, 1953), who built his two electronic tortoises, Elmer and

Elsie, of the species Machina speculatrix between 1948 and 1950. Among other things,

they exhibited phototaxis and ‘hunger’ ; they re-entered their hutch to recharge their

batteries as required.  This work combines and tests ideas from a mixture of Loeb’s

                                                          
6 A number of similar examples, built i n the first half of the 20th century, has been discussed by Slukin
(1954).
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tropisms and Sherrington’s reflexes7. Although Loeb is not explicitl y mentioned in the

book, the influence is clear, not least from the terms positive and negative tropisms.

Grey Walter's electromechanical creatures were equipped with two ‘sense reflexes’ ; a

littl e artificial nervous system built from a minimum of miniature valves, relays,

condensers, batteries and small electric motors, and these reflexes were operated from

two ‘receptors’ : one photoelectric cell , giving the tortoises sensitivity to light, and an

electrical contact which served as a touch receptor. Elmer and Elsie were attracted

towards light of moderate intensity, repelled by obstacles, bright light and steep

gradients, and never stood still except when re-charging their batteries. They were

attracted to the bright light of their hutch only when their batteries needed re-charging.

These archetypes of biologically inspired robotics exhibited a rich set of varying

behaviors, including “goal finding” , “self-recognition” and “mutual recognition” (Grey

Walter 1953).

Although much of this work ran somewhat counter to von Uexküll ’s sharp critique of

the mechanistic doctrine, these early mechanistic and cybernetic attempts at building

forms of what is now called ALife were, in their general technical conception,

nevertheless to some degree compatible with his view of the interaction between

organism and environment (cf. also Emmeche, this volume). In particular, organisms

were modeled/constructed as embedded in their environment by means of functional

circles, i.e. (seemingly) intelli gent behavior was viewed as the outcome of a continual

interaction between organism and environment in bringing forth effective behavior, and

                                                          
7 Nowadays the term reflex is reserved for movements that are not directed towards the source of
stimulation whereas taxis and tropism are used to denote movements with respect to the source of
stimulation.
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signs were viewed as playing a functional role in this interaction. This is not to say that

there are no significant differences between von Uexküll ’s and the mechanists’ positions

(as discussed above, of course there are), but as we will see in the following section,

these two views are actually significantly closer to each other than either of them is to

the approach to the study of intelli gent behavior that most AI research was taking during

the 1950-1980s, in particular its strict distinction and separation between internal

representations and external world.

3. AI: From Ar tificial Organisms to Computer Programs and
Back

The endeavor of AI research can be characterized as the attempt to endow

mechanisms with some of the mental and behavioral capacities of li ving organisms.

Thus, the early work on artificial organisms discussed in the previous section could be

seen as a forerunner of the field of AI, which began to form under that name in the mid-

1950s. Somewhat ironically, however, AI research almost completely ignored that early

biologically motivated work for about 30 years. As we will see in the next subsection,

AI researchers, initially focusing on mental capacities, turned to the computer as a

model of mind instead. It was not until the mid-1980s that parts of the AI community

returned to its roots and began to focus on behavior and agent-environment interaction

again, as will be discussed in detail l ater.

A much debated concept in AI research and the other cognitive sciences has always

been the notion of representation as the connection between agent and world. How

exactly cognitive representation ‘works’ , has been, as we will see in the following, a

topic of controversy. Although the different notions of representation and their usage
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largely overlap with different semiotic notions of signs and their usage, semiotics has

had relatively littl e direct impact on cognitive science and AI research. Unfortunately

there has been less interaction between the disciplines than one might expect given the

common interest in signs and representations. We will here refer to signs and

representations as roughly similar and interchangeable notions, and particularly focus on

the development of the notion of representation in AI.

3.1 Cognitivism and the computer metaphor for mind

During the 1940s and 1950s a growing number of researchers, li ke von Uexküll ,

discontent with behaviorism as the predominant paradigm in the study of mind and

behavior, became interested in the mind’s internal processes and representations, whose

study behaviorists had rejected as being unscientific. This revived the central idea of

cognitive psychology, namely that the brain possesses and processes information. This

idea can be found in the much earlier work of Willi am James (1892). Craik, however, in

his 1943 book, The Nature of Explanation, was perhaps the first to suggest that

organisms make use of explicit knowledge or world models, i.e. internal representations

of the external world:

If the organism carries a “small -scale model” of external reality and of its own

possible actions within its head, it is able to try out various alternatives,

conclude which is the best of them, react to future situations before they arise,

utili ze the knowledge of past events in dealing with the present and future, and

in every way to react in a much fuller, safer, and more competent manner to

the emergencies which face it. (Craik 1943)
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Craik had littl e to say about the exact form of the internal representations or the

processes manipulating them (cf. Johnson-Laird 1989). However, he was fairly specific

about what he meant by a ‘model’ , namely something that is much closer to a ‘mirror’

of external reality than von Uexküll ’s notion of a ‘counterworld’ .

By a model we .. mean any physical or chemical system which has a similar

relation-structure to that of the processes it imitates. By ‘relation-structure’ I

[mean] … the fact that it is a physical working model which works in the same

way as the processes it parallels, in the aspects under consideration at any

moment.” (Craik 1943: 51)

At the same time computer technology became increasingly powerful. Researchers

began to realize the information processing capabiliti es of computers and liken them to

those of humans. Taken to extremes, this analogy echoes one of the central tenets of

cognitivism, which considers cognition to be much like a computer program that could

be run on any machine capable of running it.  In this functionalist framework of the

computer metaphor for mind having a body, li ving or artificial, is regarded as a low-

level implementational issue. Even connectionism of the 1980s, with its biologically

inspired computation and its strong criti cisms of the cognitivist stance for its lack of

concern with neural hardware, was mainly concerned with explaining cognitive

phenomena as separated from organism-world interaction.

Thus the early work on the interaction between cybernetic/robotic organisms and

their environments was divorced from the dominant themes in the mind sciences. The

early biologically oriented approaches contrasted sharply with those of cognitivism,
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traditional AI and traditional cognitive psychology. Here, mind was cut off fr om body in

a move that echoes in reverse the studies of decerebrated animals carried out by

Sherrington (1906) and others. Neisser (1967), for example, in his book Cognitive

Psychology, which defined the field, stressed that the cognitive psychologist “wants to

understand the program, not the hardware". According to Neisser, “ the task of a

psychologist trying to understand human cognition is analogous to that of a man trying

to understand how a computer has been programmed".

Hence, while behaviorists had treated mind as an opaque box in a transparent world,

cognitivists treated it as a transparent box in an opaque world (Lloyd 1989). Research in

cognitive science and AI therefore focused on what von Uexküll referred to as the “inner

world of the subject” (von Uexküll 1957). The cognitivist view, largely following Craik,

is that this ‘ inner world’ consists of an internal model of a pre-given “external reality” ,

i.e. representations (in particular symbols) corresponding/referring to external objects

(‘knowledge'), and the computational, i.e. formally defined and implementation-

independent, processes operating on these representations (‘ thought’) . That means, li ke

von Uexküll ’s theory, cognitivism was strictly opposed to behaviorism and emphasized

the importance of the subject’s “ inner world” , but completely unlike von Uexküll it de-

emphasized, and in fact most of time completely ignored, the environmental embedding

through functional circles. Or in Craik’s terms: cognitivism became pre-occupied with

the internal “small -scale model” , and the idea that it was to be located “ in the head”

alone, but completely neglected both organism and reality.

An example of the cognitivist correspondence notion of representation was given by

Palmer (1978), who characterized a representational system as including the following
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five aspects: (1) the represented world, (2) the representing world, (3) what aspects of

the represented world are being modeled, (4) what aspects of the representing world are

doing the modeling, and (5) what the correspondences between the two worlds are.

Thus, the cognitivist view of the relation between internal model and external world was

as ill ustrated in Figure 2, i.e. representation was seen as internal mirror of an observer-

independent, pre-given external reality (cf. also Varela et al. 1991).

CHAIR

FURNITURE

TABLE

is a

is a

mapping

representational domain world 

contains representational contains objects
entities (e.g. symbols) which
represent objects and concepts
in the world

Figure 2: The idea of traditional AI representation as a direct  mapping between

internal representational entities, e.g. symbols, and  objects in the external world.

Adapted from Dorffner (1997).

During the 1970s traditional AI’s notion of representation, as ill ustrated in Figure 2,

came under attack. Dreyfus (1979) pointed out that AI programs represented
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descriptions of isolated domains of human knowledge (“micro-worlds” ) “ from the

outside”. That means, they were not “situated” in them due to the fact they always

lacked a larger background of, e.g. bodily skill s or cultural practices, which might not be

formalizable at all . In a similar vein Searle (1980) pointed out that, because there are no

causal connections between the internal symbols and the external world they are

supposed to represent, purely computational AI systems lack intentionality8. In other

words, AI systems do not have the capacity to relate their internal processes and

representations to the external world. It can be said in semiotic terms that what AI

researchers intended was that the AI system, just like humans or other organisms, would

be the interpreter in a triadic structure of sign (internal representation/symbol), external

object and interpreter. What they missed out on, however, was that, due to the fact that,

in von Uexküll ’s terms, the “inner world of the subject” was completely cut off fr om the

external world by traditional AI’s complete disregard for any environmental embedding

through receptors and effectors, the interpreter could not possibly be the AI system

itself. Hence, as ill ustrated in Figure 3, the connection or mapping between

representational domain and represented world is really just in the eye (or better: the

mind) of the designer or other observers.

                                                          
8 See also Hoffmeyer (1996:47) who argues (not specifically directed at AI though) that “mental
“aboutness” – human intentionality – grew out of a bodily “aboutness” (i.e. the behavior necessary for
assuring reproduction and survival)” and points out that we “cannot escape the fact that our minds remain
embodied” .
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representational domain world 
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Figure 3: “What ‘really’ happens in traditional AI representation”  (Dorffner

1997). There are direct mappings between objects in the world and the

designer's own internal concepts, and between the designer's concepts and their

counterparts in the AI system's representational domain. There is, however, no

direct, designer-independent, connection between the AI system and the world

it is supposed to represent, i.e. the AI system lacks ‘f irst hand semantics’ or

‘contents for the machine’ . Adapted from Dorffner (1997).
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The problem illustrated in Figure 3 is now commonly referred to as the symbol

grounding problem (Harnad 1990). A number of other authors, however, have pointed

out that the grounding problem is not limited to symbolic representations, and should

therefore be referred to as the problem of representation grounding (Chalmers 1992),

concept grounding (Dorffner and Prem 1993), or the internalist trap (Sharkey and

Jackson 1994). Searle, however, did not suggest that the idea of intelli gent machines

would have to be abandoned. In fact he argued that humans are such machines and that

the main reason for the failure of traditional AI was that it is concerned with computer

programs, but “has nothing to tell us about machines" (Searle 1980), i.e. physical

systems causally connected to their environments. That means, instead of accusing AI to

be materialistic (for its belief that (man-made) machines, could be intelli gent), Searle

actually accused AI of dualism, for its belief that disembodied, i.e. body-less and body-

independent, computer programs could be intelli gent.

3.2 New AI : Situated and embodied agents

One of the developments of AI and cognitive science in the 1980s was a growing

interest in the interaction between agents and their environments. A number of

researchers questioned not only the techniques used by traditional AI, but its top-down

approach and focus on agent-internal reasoning in general.  They suggested a bottom-up

approach, also referred to as ‘New AI’ or ‘Nouvelle AI', as an alternative to the (purely)

computationalist framework of cognitivism. In particular, Brooks (1986b, 1990, 1991a)

put forward his behavior-based robotics approach and Wilson (1985, 1991) formulated

the animat approach to AI. These approaches agree that AI should be approached from

the bottom up; first and foremost through the study of the interaction between
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autonomous agents and their environments by means of perception and action. For a

more detailed review see Ziemke (1998). In this approach, agents equipped with sensors

and motors are typically considered physically grounded as Brooks explains:

Nouvelle AI is based on the physical grounding hypothesis. This hypothesis

states that to build a system that is intelli gent it is necessary to have its

representations grounded in the physical world. ... To build a system based on

the physical grounding hypothesis it is necessary to connect it to the world via

a set of sensors and actuators. (Brooks 1990)

These key ideas are also reflected by commitments to “ the two cornerstones of the

new approach to Artificial Intelli gence, situatedness and embodiment" (Brooks 1991b).

The first commitment, to the study of agent-environment interaction rather than

representation, is reflected in the notion of situatedness: “The robots are situated in the

world - they do not deal with abstract descriptions, but with the here and now of the

world directly influencing the behavior of the system." (Brooks 1991b). The second

commitment was to physical machines, i.e. robotic agents rather than computer

programs, as the object of study, as reflected in the notion of embodiment: “The robots

have bodies and experience the world directly - their actions are part of a dynamic with

the world and have immediate feedback on their own sensations” . (Brooks 1991b).

Thus AI has come (or returned) to an Uexkülli an view of semantics, in which

signs/representations are viewed as embedded in functional circles along which the

interaction of agent and environment is organized/structured.  Or, as T. von Uexküll

(1982) put it: “ ... signs are instructions to operate. They tell the subject (as navigational
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aids do the seaman) what is to be done, i.e., they give instructions on how to operate”. In

AI this led to a de-emphasis of representation in the sense of an explicit internal world

model mirroring external reality (Brooks 1991a). Instead representations are in the

bottom-up approach viewed as deictic, i.e. subject-centered, indexical-functional

representations (e.g., Agre and Chapman 1987, Brooks 1991b) or “behavior-generating

patterns” (Peschl 1996), i.e. signs that play their role in the functional circle(s) of agent-

environment interaction.

Brooks (1986a, 1991a) was also, to our knowledge, the first AI researcher to take

inspiration directly from von Uexküll ’s work, in particular the concept of Merkwelt or

perceptual world. He pointed out that the internal representations in AI programs really

were designer-dependent abstractions, based on human introspection, whereas “as von

Uexküll and others have pointed out, each animal species, and clearly each robot species

with its own distinctly nonhuman sensor suites, will have its own different Merkwelt”

(Brooks 1991a). If, for example, in an AI program we had internal representations

describing chairs as something one could sit or stand on, that might be an apppropriate

representation for a human, it would, however, probably be entirely meaningless to a

computer or a wheeled robot which could not possibly sit down or climb on top of a

chair. Similarly, von Uexküll (1982) had pointed out, several decades earlier, that the

concept of ‘ chair’ as ‘something to sit on’ could apply to entirely different objects for a

dog than for a human.

Brooks therefore approached the study of intelli gence through the construction of

physical robots, which were embedded in and interacting with their environment by

means of a number of so-called behavioral modules working in parallel, each of which
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resembles an Uexkülli an functional circle. Each of these behavioral modules is

connected to certain receptors from which it receives sensory input (e.g. one module

might be connected to sonar sensors, another to a camera, etc.), and each of them, after

some internal processing, controls some of the robot’s effectors. Further these modules

are connected to each other in some hierarchy, which allows certain modules to

subsume the activity of others, hence this type of architecture is referred to as

subsumption architecture (Brooks 1986b). Thus, a simple robot with the task to

approach light sources while avoiding obstacles, could be controlled by three behavioral

modules; one that makes it move forward, a second that can subsume forward motion

and make the robot turn when detecting an obstacle with some kind of distance sensors,

and a third that can subsume the second and make the robot turn towards the light when

detecting a light source using some kind of light sensor. Thus, using this kind of control

architecture, the robot is guided by a combination of taxes working together and in

opposition, an idea that can be traced back to the work of Fraenkel and Gunn (1940),

who in turn were strongly influenced by Loeb.

A common criti cism of Brooks’ original subsumption architecture is that it does not

allow for learning. Hence, this type of robot, although operationally autonomous (cf.

Ziemke 1998) in the sense that during run-time it interacts with the environment on its

own, i.e. independent of an observer, still remains heteronomous in the sense that the

largest parts of its functional circles, namely the processing between receptors and

effectors, and thereby the way it interacts with the environment, is still pre-determined

by the designer. A number of researchers have therefore pointed out that a necessary

element of an artificial agent’s autonomy would be the capacity to determine and adapt,



28

at least partly, the mechanisms underlying its behavior (Boden 1994, Steels 1995,

Ziemke 1996b, Ziemke 1998). Different approaches to achieve this are discussed in

detail i n the next section.

4. Self-Organization of Sign Processes in Ar tificial Organisms

Much research effort during the 1990s has been invested into making robots ‘more

autonomous’ by providing them with the capacity for self-organization. Typically these

approaches are based on the use of computational learning techniques to allow agents to

adapt the internal parameters of their control mechanisms, and thus the functional

circles by which they interact with their environment. Different adaptation techniques

are described in the next subsection, and it is ill ustrated how such techniques can allow

autonomous agents to adapt their internal sign processes in order to self-organize their

sensorimotor interaction, e.g. to determine which environmental stimuli they should

respond to, and how.  Another subsection then takes this one step further and describes

how adaptation techniques have been used to allow groups/populations of agents to self-

organize communication among themselves. The differences between conventional

mechanisms and artificial organisms are then summarized and discussed in the third

subsection.

A ‘word of warning’ : It may seem that much of the following discussion presupposes

that robots can have first hand semantics and experience or that they have genuine

autonomy, experience and perception or that the type of learning and evolution we

discuss is the same as those in li ving organisms. That is an incorrect impression, as will

be discussed in further detail i n the next section (cf. also Sharkey and Ziemke 1998).
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However, instead of marking each term with quotes or quali fications such as “ it has

been argued that” , we have put in this disclaimer so that we can simpli fy and improve

the flow of the discussion.

4.1 Robot adaptation

As mentioned above, robot adaptation is typically approached by making the control

mechanism, mapping sensory signals to motor commands, adaptive. In particular so-

called artifi cial neural networks (ANNs), also referred to as connectionist networks,

have been used as ‘artificial nervous systems’ connecting a robot's receptors to its

effectors (for collections on this topic see, e.g., Bekey and Goldberg 1993, Brooks et al.

1998, Ziemke and Sharkey 1999). The robots used in this type of research are often

mobile robots (see Figure 4 for a typical example), typically receiving sensory input

from, e.g., infrared (distance) sensors or simple cameras, and controlli ng the motion of

their wheels by motor outputs. ‘Artificial nervous systems’ f or the control of such robots

and different learning and evolution techniques for their adaptation will be explained

briefly in the following subsections, together with examples of their use in the self-

organization of sign processes in artificial organisms.
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Figure 4: The Khepera, a wheeled miniature mobile robot commonly used in

adaptive robotics research (manufactured by K-Team SA; for details see

Mondada et al. 1993). The model shown here is equipped with infrared sensors

and a simple camera.

4.1.1 Artificial Neural Networks

For the understanding of the argument here it suff ices to know that an ANN is a

network of a (possibly large) number of simple computational units, typically organized

in layers (cf. Figure 5, but note that the number of layers, units and connection weights

can very greatly).  Each unit (or artificial neuron) receives a number of numerical inputs

from other units it is connected to, calculates from the weighted sum of the input values

its own numerical output value according to some activation function, and passes that

value on as input to other neurons, and so on.  The feature of ANNs that allows them to
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learn is the fact that each connection between two units carries a weight, a numerical

value itself, that modulates the signal/value sent from one neuron to the other. Hence, by

weakening or strengthening of the connection weight, the signal flow between

individual neurons can be adapted, and through coordination of the individual weight

changes the network’s overall mapping from input to output can be learned.

output layer

input layer

hidden layer

unit

connection
weight

Figure 5: A typical feed-forward artificial neural network (ANN). Each circle

represents a unit (or artificial neuron), and each solid line represents a

connection weight between two units. Activation is fed forward only, i.e. from

input layer via a hidden layer to the output layer.

A number of learning techniques and algorithms have been applied to training neural

networks, which vary in the degree of self-organization that they require from the

network. During supervised learning ANNs are provided with inputs and correct target

outputs in every time step, i.e. the network is instructed on which inputs signal to use
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and which output signals to produce, but how to coordinate the signal flow in between

input and output is up to the network’s self-organization. Hence, internal representations

(both hidden unit activations and connection weights are commonly interpreted as

representations, cf. Sharkey 1991) could be considered to be signs (or their modulators)

private to the network and often opaque to outside observers.  Thus, unlike traditional

AI, connectionists do not promote symbolic representations that mirror a pre-given

external reality. Rather, they stress self-organization of an adaptive flow of signals

between simple processing units in interaction with an environment, which is

compatible with an interactive (Bickhard and Terveen 1995; Bickhard 1998) or

experiential (Sharkey 1997) view of representation (see also Clark 1997; Dorffner

1997), and thus offers an alternative approach to the study of cognitive representation

and sign use.

Nonetheless, in most connectionist work of the late 1980 and early 1990s, the

‘environment’ was reduced to input and output values (cf. Clark 1997; Dorffner 1997),

i.e. networks were not, li ke real nervous systems, embedded in the context of an

organism and its environment. Thus, although in a technically different fashion,

connectionists were, li ke cognitivists, mainly concerned with explaining cognitive

phenomena as separated from organism-world interaction. Hence, they initially focused

on modeling isolated cognitive capacities, such as the transformation of English verbs

from the present to the past tense (Rumelhart and McClelland 1986) or the

pronunciation of text (Sejnowski and Rosenberg 1987), i.e. ‘micro-worlds’ in Dreyfus’

(1979) sense (cf. above discussion). Or in von Uexküll ’s terms: Early connectionism

was only concerned with the self-organization of the subject-internal part of the
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functional circle (where input units might be roughly li kened to receptors and output

units to effectors). Making the connection between inputs, outputs and internal

representations and the actual world they were supposed to represent, was again left to

the mind of the observer, similar to the situation ill ustrated in Figure 3.

4.1.2 Artificial Nervous Systems

The situation changes fundamentally as soon as ANNs are used as robot controllers,

i.e. ‘artificial nervous systems’ mapping a robot’s sensory inputs to motor outputs. Then

the network can actually, by means of the robot body (sensors and effectors), interact

with the physical objects in its environment, independent of an observer’s interpretation

or mediation. Hence it could be argued that its internal signs/representations, now

formed in physical interaction with the world they ‘represent’ or reflect, can be

considered physically grounded in the sense explained by Brooks above. Accordingly,

the robot controller is in this case part of a complete functional circle (or several circles,

as will be discussed below). As an example of this view, imagine a wheeled robot

moving about in a room with boxes lying on the floor and pictures hanging on the wall .

The robot might be equipped with infrared sensors as receptors sensitive to the

perceptual cues of, for example, the reflectance patterns of solid objects in its

environment. Thus, the walls and the boxes on the floor would be part of the robot’s

own perceptual world (Merkwelt), cf. Brooks (1986a). Their meaning to the robot would

be that of an ‘obstacle’ , since they limit the robot’s motion, assuming the robot has the

goal to keep moving while avoiding colli sions.  Upon detection of the perceptual cue

‘solid object at short range’ through the distance sensors (receptors) corresponding signs

would be transferred to the network’s input layer (the robot's ‘perceptual organ’) . Signs
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would be transformed and passed on through the internal weights and units of the ANN

controlli ng the robot and eventually certain signs would reach the output layer (the

robot's ‘operational organ’) , which in turn will t ransfer signs corresponding to the

desired level of activation to the motors controlli ng the robot’s wheels (its effectors).

This would make the robot, if trained correctly, move and turn away from the obstacle.

Hence, the obstacle or part of it would disappear from the robot’s sensor range, such that

the receptors would now receive a new perceptual cue, and so on.

The pictures on the wall , on the other hand, would remain ‘ invisible’ to the robot;

they are not part of its perceptual world, and they carry no meaning for it. Thus the robot

may be considered to be embedded in its own Umwelt, consisting of its perceptual world

(Merkwelt), consisting of solid objects (or their absence), carrying the meanings

‘obstacle’ and ‘fr ee space’ respectively, and its operational world of motor-controlled

wheeled motion. The “inner world” of the robot would be the ANN’s internal sign flow

and interactive representations, and unlike in the cases of traditional AI programs and

Brooks’ subsumption architecture, the inner world would here be a self-organized flow

of private signs embedded in agent-environment interaction.

Thus learning in ANN robot controllers can be viewed as the creation, adaptation

and/or optimization of functional circles in interaction with the environment. Although

the above example ill ustrated only one such circle, we can of course easily imagine

several functional circles combined/implemented in a single ANN, e.g. if we

additionally equipped the robot with a light and added light sources to the environment,

we might have three functional circles: one that makes the robot move forward when
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encountering ‘fr ee space', one that makes it turn/avoid when encountering ‘obstacles’ ,

and one that makes it approach when detecting the light.

4.1.3 Recurrent ANNs

As long as we are using a feed-forward network, i.e. a network in which activation is

only passed in one direction, namely from input to output units, the mapping from input

to output will always be the same (given that the network has already learned and does

not modify its connection weights anymore). Hence, the controlled robot will be a

“ trivial machine” (cf. T. von Uexküll 1997a), i.e. independent of past or input history

same inputs will always be mapped to same outputs. In semiotic terms this corresponds

to a semiosis of information where the input corresponds to the sign, the input-output

mapping to the interpretant (or causal rule) and the output to the signified (T. von

Uexküll 1997a).

However, if we add internal feedback through recurrent connections to the network,

as exempli fied in Figure 6, it becomes a “non-trivial” machine. That means, the

mapping from input to output will vary with the network’s internal state, and thus the

machine, depending on its past, can effectively be a ‘different’ machine in each time

step. An analogy in semiotic terms could be a semiosis of symptomization (cf. T. von

Uexküll 1997a) where the interpretant varies and the system’s input-output behavior can

inform an observer about the current interpretant. For the robot itself this means that it

no longer merely reacts to ‘external’ stimuli , but it interprets signs according to its own

internal state. Meeden (1996), for example, trained a toycar-like robot using a recurrent

controller network (of the type ill ustrated in Figure 6 (a); originally introduced by Elman
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(1990)) to periodically approach and avoid a light source while avoiding other obstacles.

Information on whether to avoid or to seek the light at a particular point in time was not

available/accessible to the robot from the environment (in some of the experimental

setups). Instead the control network developed in the learning process an internal

dynamic, i.e. a way of utili zing its own feedback signs, that allowed it to form a purely

internal hidden unit representation of its current goal. That means, here the functional

circles connecting robot (subject) and light source (object), and thus the light cue’s

meaning, do actually vary with time, not completely unlike the varying level of hunger

effects the meaning a piece of food has for an animal.

context units
input units

hidden
units

output units output units

input units

state
unitsfirst-order

feedback

feedback
second-order

(b)(a)

context
network
weights

function
network
weights

Figure 6: Recurrent artificial neural networks (RANNs), using (a) first-order

feedback, and (b) second-order feedback. Solid arrows indicate that each unit

in the first layer of units (layers are surrounded by dotted lines) is connected to



37

each unit in the second layer. The dashed arrow in (a) represents a copy-back

connection. That means, hidden unit activation values at time step t are fed-

back and re-used as extra-inputs at time step (t+1). In (b) the function network

weights, i.e. the connection weights between and input and output/state units,

embodying the (current) sensorimotor mapping, can be adapted dynamically

via a feedback loop (through the context network weights).

The recurrent networks discussed so far utili ze first-order feedback. That means, as

ill ustrated in Figure 6(a), previous activation values are used as extra inputs to certain

neurons (typically at the input layer) in later time steps (typically the next). Hence, the

network output is in each time step computed as a result of the current input and the

context of an internal state (referred to as ‘context units’ in Figure 6(a)). A second-order

networks, on the other hand, is exempli fied in Figure 6(b). Here second-order (i.e.

multiplicative) feedback (through state units and context network weights), is used to

dynamically adapt the connection weights between input and output units (the function

network weights). Thus the mapping from sensory input to motor output can effectively

be adapted from time step to time step, depending on an internal state (referred to as

‘state units’ in Figure 6(b)). For a detailed description of different variations of this type

of network and examples of its use for robot adaptation see Ziemke (1996a, 1996c,

1997, 1999a).

Hence, in this type of controller the sensorimotor mapping, and thus the controlled

agent’s behavioral disposition (or interpretant), dynamically changes with the agent’s
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internal state. Ziemke (1999a), for example, documents experiments in which a Khepera

robot, controlled by a second-order network, encounters identical objects inside and

outside a circle, but has to exhibit two very different responses to the exact same stimuli

(approach inside the circle, and avoidance outside). The problem is that the robot cannot

sense whether or not it currently is inside or outside the circle, but only senses the

boundary line while passing it on its way in or out. The robot learns/evolves to solve the

problem by dynamically adapting its behavioral disposition (interpretant), i.e. its

behavioral/motor biases and the way it responds to stimuli from the objects it

encounters. This means that, depending on its current behavioral disposition, the robot

attributes different meanings to the object stimuli , such the exact same stimulus can

adopt very different functional tones (cf. von Uexküll 1957) in different contexts.

4.1.4 Reinforcement learning

For complex tasks robots are typically not trained using supervised learning

techniques. This has two reasons: (a) In order to allow for a maximum of robot

autonomy, it is often desirable to reduce designer intervention to a minimum of

feedback/instruction, and (b) it is often not even possible to provide a robot with an

exact target output in every time step, for much the same reason why it is impossible to

tell a child learning to ride a bike how exactly to move its legs, arms and body at every

point in time. For such tasks, the robot, much like the child, simply has to figure out for

itself how exactly to solve a problem, i.e. how to organize and adapt its sign processes

in interaction with the environment. Hence, robots are often trained using reinforcement

learning or evolutionary adaptation techniques.
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During reinforcement learning (RL), an agent is provided only with occasional

feedback, typically in terms or positive and negative reinforcement, e.g. in the case of

Meeden’s robot when hitting an obstacle (‘bad’) or achieving a light goal (‘good’) . From

this feedback the agent can adapt its behavior to the environment in such a way as to

maximize its positive reinforcement and minimize its negative reinforcement.

Reinforcement, in this context is simply defined as a stimulus which increases the

probabilit y of the response upon which it is contingent.

Grey Walter (1951) was the first to use RL techniques for the training of robots. By

grafting the Conditioned Reflex Analogue (CORA), a learning box, onto Machina

speculatrix (cf. discussion above), he created Machina docili s, the easy learner. M.

docili s had built -in phototaxis, i.e. a light elicited a movement response towards it

which he referred to as “an unconditioned reflex of attraction” . When a light was

repeatedly paired with the blowing of a whistle, M. docili s became attracted to the sound

of the whistle and exhibited a phonotaxic response. In a separate series of experiments,

Grey Walter repeatedly paired the sound of the whistle with obstacle avoidance and thus

trained the robot to ‘avoid’ the sound of the whistle. He also demonstrated extinction of

conditioned pairings by presenting the conditioned stimulus repeatedly without pairing

it with the unconditioned stimulus. There was also a slower decay of the conditioned

response if it was not used for some time. Grey Walter’s experiments show how a

simple learning mechanism can extend the behavior of a robot by bringing its reflexes

under the control of substituted environmental effects.
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4.1.5  Evolutionary adaptation

The use of evolutionary techniques is an approach to ‘push’ the designer even further

‘out of the learning loop’ and aims to let robots learn from the interaction with their

environment with a minimum of human intervention (cf. Nolfi 1998). Evolutionary

methods are abstractly based on the Darwinian theory of natural selection. Thus

feedback is no longer instructive as in reinforcement and supervised learning, but only

evaluative. Typically, a population of individuals (e.g. robot controllers) is evolved over

a large number of generations, in each of which certain individuals are selected

according to some fitness function, and ‘reproduced’ into the next generation, using

recombinations and slight mutations mimicking natural reproduction. Due to the

selective pressure the average fitness in the population is li kely to increase over

generations, although the individuals typically do not learn during their ‘ li fetime’ . The

very idea of evolving robots was well ill ustrated by Braitenberg (1984) who likened

evolution to the following scenario: There are a number of robots driving about on a

table top. At approximately the same rate that robots fall off the table, others are picked

up randomly from the table, one at a time, and copied. Due to errors in the copying

process, the original and the copy might differ slightly. Both are put back onto the table.

Since the fittest robots, those who stay on the table longest, are most likely to be

selected for ‘reproduction’ the overall fitness of the robot population is li kely to increase

in the course of the ‘evolutionary’ process.

A concrete example of evolutionary robotics research is the work of Husbands et al.

(1998) who evolved RANN robot controllers for a target discrimination task, which

required a mobile robot, equipped with a camera, to approach a white paper triangle
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mounted on the wall , but to avoid rectangles. In these experiments both the network

topology and the visual morphology (or receptive field), i.e. which parts/pixels of the

camera image the controller network would use as inputs, were subject to the

evolutionary process. The analysis of the experimental runs showed that structurally

simple control networks with complex internal feedback dynamics evolved which made

use of low bandwidth sensing (often only two pixels of visual input were used) to

distinguish between the relevant environmental stimuli . Thus in these experiments both

the internal flow of signals and use of feedback, as well as the ‘external’ sign use, i.e.

which environmental stimuli to interpret as signs of what, are the result of an artificial

evolutionary process. The evolved sign processes are diff icult to analyze and understand

in detail , due to the fact that they are private to the robot and in many cases radically

differ from the solutions the human experimenters would have designed.  Husbands et

al. point out that this “ is a reminder of the fact that evolutionary processes often find

ways of satisfying the fitness criteria that go against our intuitions as to how the problem

should be ‘solved’ ” (Husbands et al. 1998:206).

The influence of the human designer can be reduced even further using co-

evolutionary methods. Nolfi and Floreano (1998), for example, co-evolved two RANN-

controlled robots to exhibit predator- and prey-behavior. The ‘predator’ , a Khepera

robot equipped with an extra camera (cf. Figure 4) which allowed it to observe the prey

from a distance, had to catch (make physical contact with) the ‘prey’ , another Khepera

robot, equipped only with short-range infrared sensors but also with the potential to

move faster than the ‘predator’ . By simply evolving the two ‘species’ with time-to-

contact as a fitness and selection criterion, quite elaborate pursuit- and escape-strategies
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evolved in the respective robots. The predator species, for example, in some cases

developed a dynamics that allowed it to observe and interpret the prey’s current

behavior as a symptom of its current behavioral disposition, and thus of its behavior in

the immediate future, such that it would only ‘strike’ when it had a realistic chance to

catch the prey ‘off guard’ .

The examples discussed so far have only been concerned with the

evolution/adaptation of artificial nervous systems. Recently, however, researchers have

begun to apply evolutionary methods also to the construction of physical structures and

robot morphologies (in simulation) (e.g. Funes and Pollack 1997; Lund et al. 1997), in

some cases in co-evolution with controllers (Cli ff and Mill er 1996, Lund and Miglino

1998). Cli ff and Mill er (1996), for example, simulated the co-evolution of ‘ eyes’

(optical sensors) and ‘brains’ (ANN controllers) of simple robotic agents which pursued

and evaded each other in a two-dimensional plane. The co-evolution of both body and

‘brain’ of artificial organisms aims to overcome what Funes and Pollack (1997:358)

called the “chicken and egg” problem of the approach: “Learning to control a complex

body is dominated by inductive biases specific to its sensors and effectors, while

building a body which is controllable is conditioned on the pre-existence of a brain” . For

a detailed discussion of the epistemological implications of robotic devices which

evolve/construct their own hardware see Cariani (1992).

In summary, we have seen a number of examples of artificial organisms self-

organizing (a) their internal usage of signs (their “ inner world”), in the form of ANN

connection weights, (b) the way they respond to stimuli from the environment, and in

some cases (c) the way they dynamically self-adapt their behavioral disposition, i.e. the
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way they make use of internal sign usage to adapt their response to ‘external’ stimuli .

Thus, in many of these examples, it is left up to a process of self-organization, to

determine which of the objects in the environment become carriers of meaning, and

what exactly their meaning is to the agent. The next section will t ake this one step

further, and ill ustrate how adaptive techniques have been used by populations of agents

to facilit ate the self-organization of communication between them.

4.2 Self-organized communication in autonomous agents

Traditional AI research initially focused on endowing computers with human-level

cognitive capacities, of which natural language communication was by many considered

to be of particular relevance. Alan Turing (1950), a key figure in the development of the

very idea of AI, in fact suggested the (later) so-called Turing test as a criterion for

machine intelli gence. In this test a machine would have to carry on a natural language

conversation on arbitrary every-day topics with a human judge for a certain period of

time, via some teletype-terminal so the judge could not see whether he is

communicating with a machine or a human being. If after that time the judge could not

reliably identify the machine as a machine, it would, according to Turing, have to be

considered to possess human-level intelli gence. This test was considered a valid

criterion of intelli gence by most AI researchers at least until the 1980s, and many AI

systems simulating human communication were built .  Most famous among them was

perhaps Weizenbaum’s (1965) ELIZA system, which simulated a human psychiatrist.

From the arguments Dreyfus, Searle and others (cf. above), however, it became clear

that, of course, in these conversations the AI system performed purely syntactic



44

transformations of the symbols it was fed, without even a clue of their actual meaning.

That means the AI system processed a language (‘natural’ to the human observer)

without actually understanding it. On some reflection this is not too surprising, after all

what could a conversation about the objects of human experience (like tables, chairs,

etc.) possibly mean to a computer system completely lacking this type of experience? In

von Uexküll ’s and Brooks’ terms, even if a computer program had a perceptual world, it

would be very unlikely to contain, for example, chairs since certainly it could not sit on

them or make any other meaningful use of them.

The study of communication has therefore been addressed in a radically different way

in AI and ALife research since about the mid-1990s. Now communication is studied

from the bottom up; i.e. using autonomous agents that can actually ‘experience’ and

interact with their environment. Moreover, artifacts are no longer expected to learn

human language, but their own language, i.e. a language that is about ‘ the world as it

appears to them’ and that helps them to communicate with other agents (no longer

humans) in order to better cope with that world.

In the spirit of the bottom-up approach, these communication systems  must be

developed by the robots themselves and not designed and  programmed in by

an external observer. They must also be grounded in the sensori-motor

experiences of the robot as opposed to being disembodied, with the input given

by a human experimenter and the output again interpreted by the human

observer. (Steels and Vogt 1997: 474)
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Cangelosi and Parisi (1998), for example, have in computer simulations studied the

evolution of a ‘ language’ in a population of ALife agents that ‘ li ve’ in a simulated world

containing edible and poisonous mushrooms, of which they have to find the former but

avoid the latter in order to ensure survival. The agents were controlled by ANNs which

received as input ‘sensory’ information about mushrooms nearby and produced as

output ‘motor’ commands that controlled the agent’s motion. Additionally each agent

could output communication signals, which other agents could receive as additional

input. The scenario was set up such that agents would profit from communicating, i.e.

every agent approaching a mushroom required the help of another agent telli ng it

whether the mushroom was edible or not. The results showed that after 1000 generations

of artificial evolution the agents had indeed evolved a simple ‘ language’ of signals that

allowed them to communicate about the world they ‘ li ved’ in, i.e. the approach and

avoidance of the mushrooms they encountered.

Experiments on the development of ‘ language’ and ‘meaning’ in groups of robotic

agents through “adaptive language games” have been carried out by Steels (1998; see

also Steels and Vogt 1997, Steels and Kaplan 1999). In the experimental setup used by

Steels and Vogt (1997), a number of mobile robots moved around in a physical

environment of limited size, containing some additional objects. The robots acquired a

common ‘vocabulary’ of word-meaning pairs (where the meaning of a word is taken to

be the sensory feature set it is associated with) through “adaptive language games”,

which work roughly as follows. Whenever two robots meet they first perform a simple

“dance” in the course of which they turn 360 degrees and scan the view of their

environment. They agree on some sensory feature set, e.g. a box nearby, and both focus
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on it. Then both robots check if they already have a ‘word’ f or the object/feature set they

see. If only one of them has, it tells the other, which now learns the new word. If none of

them has a word for the object, they ‘make one up’ and both learn it. If both already

know different words for the object, one of them forgets the old word and learns a new

one from the other robot. After that the robots begin roaming the environment separately

again. Since there are several robots a common ‘ language’ develops and eventually

spreads to the whole population through the accumulative transfer, creation and

adaptation of a common vocabulary as a result of the development and interaction of

individual lexica of word-meaning pairs in the course of the one-to-one language games

performed by the robots. For a discussion of the semiotic dynamics resulting in this kind

of experiment, e.g. the emergence and dampening of synonymy and polysemy, see also

Steels and Kaplan (1999).

Thus, in both these examples autonomous agents are not ‘f orced’ to learn a human

language they could, due to their radically different physiology, not possibly understand.

Instead they develop, in a process of self-organization, their own language from the

interaction with their environment and other agents, i.e. a language that is specific to

their ‘species’ , in the sense that it is based on their own experience and serves their own

purposes, and thus is not necessarily interpretable to human observers (cf. Dorffner and

Prem 1993, Prem 1995).

It could, however, be argued (cf. Prem 1998), that this type of approach to the

evolution/development of language is misguided in that it is typically based on the old

symbol/representation grounding idea of hooking independently existing external

objects to abstract internal labels/signs (cf. Figure 2). An example is the above work of
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Steels and Vogt in which the sensory feature set that a word is associated with is taken

to be its meaning. In Jakob von Uexküll ’s view of signs, however, as Thure von Uexküll

(1982) put it: “signs are instructions to operate” which “ tell the subject ... what is to be

done”, i.e. signs derive their meaning from the role they play in the functional circles of

the interaction between a subject and its object(s). Communication should therefore

perhaps first and foremost be addressed as giving agents the possibilit y to influence each

others’ behavior. That means, they should be able to communicate signals that help

them to interact or coordinate their behavior instead of learning a vocabulary without

actual functional value for the interaction between agent and environment (cf. Ziemke

1999b), as in the above case of Steels and Vogt, where the agents never actually use

those object labels for anything more than just the labeling of objects.

4.3 How ar tificial organisms differ from conventional mechanisms

We have now seen a number of examples of autonomous agents and their self-

organization. Together these examples ill ustrate that artificial organisms, although

certainly mechanisms in the technical sense, in a number of points radically differ from

the type of mechanism that von Uexküll discussed, and in fact exhibit some of the

properties that he ascribed to organisms alone. This subsection summarizes the

differences between artificial organisms and other mechanisms. The following section

will t hen complement this one by taking an in-depth look at the differences between

artificial and living organisms, and the implications for their respective autonomy and

capacity for semiosis.
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Firstly, the use of ‘ artificial nervous systems’ in combination with computational

learning techniques allows autonomous agents to adapt to their environment. In

particular, due to their use of memory the behavioral disposition of autonomous agents

varies over time. Thus, although they do not “grow” in the physical sense, they do adapt

to their environment, such that they do in fact have a “historical basis of reaction” (cf.

the arguments of Driesch and von Uexküll discussed above). Self-organized artificial

organisms thus no longer react in a purely physical or mechanical manner to causal

impulses. Instead their reaction carries a ‘subjective’ quality, in the sense that the way

they react is not determined by built -in rules (alone), but is specific to them and their

history of ‘ experience’ and self-organization.

Secondly, and closely related to the previous point, artificial organisms are clearly

involved in sign processes, and they ‘make use’ of signs ‘ themselves', unlike the

mechanisms von Uexküll discussed. Furthermore, unlike computer programs which are

to some degree also capable of semiosis (cf. Andersen et al. (1997) and the discussion in

the introductory section), the sign processes of artificial organisms are typically (a) not

(fully) determined by their human designers, (b) independent of interpretation through

external observers (at least at the operational level), and (c) in many cases not even

interpretable to humans at a close look at the internal processes (despite the fact that

these are much easier to observe than in the case of a li ving organism). Much of the sign

usage of such systems is therefore, due to their self-organization, indeed private and

specific to them. Artificial organisms therefore have been argued to have certain degree

of epistemic autonomy (Prem 1997; cf. also Bickhard 1998), i.e. li ke living organisms

they are “on their own” in their interaction with their environment.
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Thirdly, the use of self-organization, especially evolutionary techniques, does

nowadays (to some degree) allow the construction of robot controllers, and to some

degree even robot bodies (in simulation), following centrifugal principles. In the context

of robot controllers, Nolfi formulated the concept as “adaptation is more powerful than

decomposition and integration” (Nolfi 1997a, 1997b). Here controllers are not, as in

Brooks’ subsumption architecture or conventional robot design, broken down into

behavioral or functional modules by a designer, but the task decomposition is the result

of a process of adaptation, which distributes behavioral competences over subsystems in

a modular architecture. Similarly, as mentioned above, in some of the first author’s

work (e.g., Ziemke 1996a, 1999a), the control of a robot is broken into a number of

functional circles in a process of dynamic adaptation and differentiation.  In these cases

the control mechanism is not constructed along centripetal principles, i.e. not broken

down into sub-tasks or -competences by a designer to be integrated later, but instead

constructed making use of what might be called centrifugal task decomposition. That

means, a single control mechanism breaks itself down into a number of sub-mechanisms

in a process of adaptation and differentiation. Similar principles have even been applied

to the co-evolution of physical structures and robot morphologies with controllers (e.g.,

Cli ff and Mill er 1996, Lund and Miglino 1998).  Here robot body and controller are no

longer treated as isolated elements to be constructed separately, but instead they are co-

evolved in an integrated fashion as the result of the evolution of single artificial

genotype. The use of centrifugal principles (although not under that name) has during

the 1990s become a ‘hot topic’ in ALife research, and there are various approaches to

the combination of evolution, development, and learning in the self-organization of

artificial organisms. Another example is the work of Vaario and Ohsuga (1997) on
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“growing intelli gence” which integrates processes of development, learning, natural

selection and genetic changes in simulated artificial organisms.

5. The Role of the L iving Body

Having ill ustrated the principles of artificial organisms and their self-organization

and having outlined the differences between such systems and conventional mechanisms

in the previous section, we will now turn to the differences between artificial and living

organisms. The next subsection presents a brief comparison between von Uexküll ’s

theory and the work of Maturana and Varela on autopoiesis and the biology of

cognition. The implications of the lack of a li ving body for the autonomy of artificial

organisms and their sign processes are then considered in the second subsection.

5.1 Von Uexküll versus Maturana and Varela

As discussed above, the (re-) turn to artificial organisms in AI research can be seen as

a rejection of the purely computationalist framework of traditional cognitive science.

Instead, work on ALife and autonomous robots has to some degree taken inspiration

from the work of Humberto Maturana and Francisco Varela, who have since the late

1960s developed their theories on the biology of cognition and autopoiesis (e.g.,

Maturana 1969,Varela 1979, Maturana and Varela 1980, Maturana and Varela 1987)

which has more recently also lead to the formulation of an enactive cognitive science

(Varela et al. 1991). To summarize their work goes beyond the scope of this paper. It is,

however, worth pointing out the relation to the unfortunately less known, but closely

related and much earlier work of Jakob von Uexküll i n a number of points, in particular
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since Maturana and Varela apparently themselves were not aware of von Uexküll ’s

work.

Maturana and Varela’s work is strictly opposed to the cognitivist framework of

traditional cognitive science, and instead is aimed at understanding the biological basis

of cognition. They propose a way of “seeing cognition not as a representation of the

world “out there”, but rather as an ongoing bringing forth of a world through the process

of li ving itself” (Maturana and Varela 1987:11). This somewhat unconventional use of

the term “cognition” may be clarified by Bourgine and Varela’s (1992) characterization

of the cognitive self (similar to von Uexküll ’s notion of ‘ subject') as the “specific mode

of coherence, which is embedded in the organism”:

... the cognitive self is the manner in which the organism,  through its own

self-produced activity, becomes a distinct entity in space, though always

coupled to its corresponding environment from which it remains nevertheless

distinct. A distinct coherent self which, by the very same process of

constituting itself, configures an external world of perception and action.

(Bourgine and Varela 1992: xiii )

Similar to von Uexküll ’s emphasis of the subjective nature of li ving organisms,

Maturana and Varela (1987) point out that “all cognitive experience involves the

knower in a personal way, rooted in his biological structure”. In particular they

characterize living organisms, as well as the cells they consist of, as autopoietic unities,

i.e. self-producing and -maintaining systems, and like von Uexküll they point out that
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li ving systems, cannot be properly analyzed at the level of physics alone, but require a

biological phenomenology:

... autopoietic unities specify biological phenomenology as the

phenomenology proper to those unities with features distinct from physical

phenomenology. This is so, not because autopoietic unities go against any

aspect of physical phenomenology - since their molecular components must

fulfill all physical laws - but because the phenomena they generate in

functioning as autopoietic unities depend on their organization and the way

this organization comes about, and not on the physical nature of their

components (which only determine their space of existence). (Maturana and

Varela 1987: 51)

Maturana and Varela distinguish between the organization of a system and its

structure. The organization, similar to von Uexküll 's notion of a building-plan

(Bauplan), denotes “ those relations that must exist among the components of a system

for it to be a member of a specific class" (Maturana and Varela 1987: 47). Living

systems, for example, are characterized by their autopoietic organization. An autopoietic

system is a special type of homeostatic machine for which the fundamental variable to

be maintained constant is its own organization. This is unlike regular homeostatic

machines, which typically maintain single variables, such as temperature or pressure. A

system’s structure, on the other hand, denotes “ the components and relations that

actually constitute a particular unity, and make its organization real" (Maturana and

Varela 1987: 47).  Thus the structure of an autopoietic system is the concrete realization

of the actual components (all of their properties) and the actual relations between them.
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Its organization is constituted by the relations between the components that define it as a

unity of a particular kind.  These relations are a network of processes of production that,

through transformation and destruction, produce the components themselves. It is the

interactions and transformations of the components that continuously regenerate and

realize the network of processes that produced them.

Hence, according to Maturana and Varela (1980), li ving systems are not at all the

same as machines made by humans as some of the mechanistic theories would suggest.

Machines made by humans, including cars and robots, are allopoietic. Unlike an

autopoietic machine, the organization of an allopoietic machine is given in terms of a

concatenation of processes. These processes are not the processes of production of the

components that specify the machine as a unity. Instead, its components are produced by

other processes that are independent of the organization of the machine.  Thus the

changes that an allopoietic machine goes through without losing its defining

organization are necessarily subordinated to the production of something different from

itself.  In other words, it is not truly autonomous, but heteronomous. In contrast, a li ving

system is truly autonomous in the sense that it is an autopoietic machine whose function

it is to create and maintain the unity that distinguishes it from the medium in which it

exists. Again, it is worth pointing out that, despite differences in terminology, Maturana

and Varela’s distinction between autopoietic and allopoietic machines, is very similar to

von Uexküll ’s (1928) earlier discussed distinction between human-made mechanisms,

which are constructed centripetally by a designer and act according to his/her plan, and

organisms, which as ‘ li ving plans’ ‘ construct’ themselves in a centrifugal fashion.



54

The two-way fit between organism and environment is what Maturana and Varela

refer to as structural congruence between them, which is the result of their structural

coupling:

Ontogeny is the history of structural change in a unity without loss of

organization in that unity. This ongoing structural change occurs in the unity

from moment to moment, either as a change triggered by interactions coming

from the environment in which it exists or as a result of its internal dynamics.

As regards its continuous interactions with the environment, the .. unity

classifies them and sees them in accordance with its structure at every instant.

That structure, in  turn, continuously changes because of its internal dynamics.

...

In these interactions, the structure of the environment only triggers structural

changes in the autopoietic unities (it does not specify or direct them), and vice

versa for the environment. The result will be a history of mutual congruent

structural changes as long as the autopoietic unity and its containing

environment do not disintegrate: there will be a structural coupling. (Maturana

and Varela 1987: 74)

Moreover, similar to von Uexküll ’s (1928) view of autonomous cellular unities

(Zellautonome) as the basic components of multicellular organisms, Maturana and

Varela refer to the former as “ first-order autopoietic unities” and the to the latter as

“second-order autopoietic unities” , and they characterize their integration/solidarity as

follows:
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... in the dynamism of this close cellular aggregation in a li fe cycle, the

structural changes that each cell undergoes in its history of interactions with

other cells are complementary to each other, within the constraints of their

participation in the metacellular unity they comprise.  (Maturana and Varela

1987: 79)

Finally, it should be mentioned that, although they are compatible in many aspects,

there are of course differences between the two theoretical frameworks compared here.

For example, von Uexküll ’s outright rejection of evolutionary theories in general, and

the work of Darwin in particular, is a position that in its strictness now, more than 50

years later, appears untenable (cf. Emmeche 1990, Hoffmeyer 1996). Maturana and

Varela’s work, although also skeptical towards neo-Darwinism and its overly simplistic

view of ‘ natural selection’ , is certainly more in agreement with modern evolutionary

theory. In fact, the view of evolution as “natural drift” is an important element of their

theory of the biology of cognition (for details see Maturana and Varela, 1987; Varela et

al. 1991).  A common criti cism of Maturana and Varela’s theory of autopoiesis, on the

other hand, is its disregard for such concepts as representation9 and information (cf.

Emmeche, 1990). Hence, in this aspect many cognitive scientists, and certainly many

researchers in semiotics, will probably prefer the theoretical framework of von Uexküll

whose theories emphasize the central role of sign processes in all aspects of li fe.

                                                          
9 See, however, also Varela et al.’s (1991) more recent formulation of an enactive cognitive science,
which is to a large extent compatible with an interactive view of representation.
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5.2 On the differences between ar tificial and li ving organisms

Having discussed the differences between artificial organisms and conventional

mechanisms above, this section will examine what exactly the (remaining) differences

between living and artificial organisms are, and what semiotic relevance these

differences have. In the following discussion concepts from both the theories of von

Uexküll as well as Maturana and Varela will be used. We do so because we believe that

the two theoretical frameworks, concerning the issue at hand, are suff iciently

compatible, and in fact enrich each other.

As discussed in the previous sections, modern AI research on the interaction between

artificial organisms and their environments has, unlike the still pre-dominant computer

metaphor, certainly taken a lot of inspiration from biology. Nevertheless, modern

autonomous robotics and ALife research, due to its interest in (intelli gent) behavior and

its focus on observabilit y, often sidesteps much of the proximal details, i.e. the actual

biology, and goes directly for the behavior. Thus, robots are enabled to interact with

their environment such that a distal description of the behavior, at the right level, can be

compared with the description of some living systems’ behavior at the same level of

description (e.g. “obstacle avoidance”). Thus, the Turing test has been replaced by a

behavioral test. If, for example, a robot avoids obstacles or follows a cricket’s calli ng

song (cf. Lund et al. 1998) ‘ just like a real animal’ , then the internal processes of

artificial and living organism are taken to be equivalent, at least possibly. This, however,

is just the observer’s interpretation of the robot’s behavior. On some reflection, nobody

would suggest that the robot following the male cricket’s calli ng song actually does so

in order to mate. Von Uexküll (1982: 36) pointed out that the “li fe-task of the animal …
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consists of utili zing the meaning carriers and the meaning-factors, respectively,

according to their particular building-plan” . It might be argued that the calli ng song

‘carries meaning’ f or both female cricket and robot, in the sense that they both utili ze

the signal in order to move towards its source. Ultimately, however, we have to

acknowledge that this behavior is meaningful only for the cricket (or its species), since it

contributes to the fulfilli ng of its “ li fe-task” . In the robot’s case this behavior is only

meaningful to the observer, simply because the robot has no “ li fe-task” independent of

observation, and its phonotaxis is not at all of part of a coherent whole of agent and

environment (cf. also Sharkey and Ziemke 1998, 2000).

The robot’s relation to its environment is very different from the living organism’s,

i.e. the ‘embodiment’ and ‘situatedness’ of natural organisms are far more deeply rooted

than those of their artificial counterparts (cf. Ziemke, 1999b).  A robot might have self-

organized its control system, possibly even its physical structure to some degree, in

interaction with its environment, and thus have acquired a certain degree of “epistemic

autonomy” (Prem 1997, Cariani 1992). This self-organization, however, starts and ends

with a bunch of physical parts and a computer program. Furthermore, the process is

determined, started and evaluated by a human designer, i.e. the drive to self-organize

does not lie in the robot’s components themselves and success or failure of the process

is not ‘ judged’ by them either. The components might be better integrated after having

self-organized; they might even be considered ‘more autonomous’ f or that reason, but

they certainly do not become alive in that process. Neither do they suddenly have an

intrinsic “li fe-task” , even in an abstract sense; the “task” still i s in the head of the

observer. The living organism, on the other hand, starts its self-organizing process from
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a single autonomous cellular unity (Zellautonom). The drive to self-organize is part of

its ‘building plan’ (Bauplan), and it is equipped, in itself, with the resources to ‘carry

out that plan’ .  From the very beginning the organism is a viable unity, and it will

remain that throughout the self-organizing process (until it dies). T. von Uexküll

(1997a) has pointed out that living organisms are autopoietic systems (cf. previous

subsection), which selectively assimilate parts of their environment and get rid of parts

they do not need anymore. According to T. von Uexküll , selection and assimilation of

the required elements can be described as sign processes, whose interpretants

correspond to the living systems’ biological needs. The criterion for the correctness of

the interpretation described by the sign process is the successful assimilation. Robots,

however, do not assimilate anything from their environment, and, as mentioned above,

they have no intrinsic needs that the self-organizing process would have to fulfill t o

remain ‘viable’ . Thus, for the robot the only criterion of success or failure is still t he

designer’s and/or observer’s evaluation or interpretation, i.e. this criterion is entirely

extrinsic to the robot.

A key problem with research on artificial organisms, we believe, is that, despite

claims to the contrary and despite the emphasis of ‘ embodiment’ , many researchers are

still devoted to the computationalist/functionalist view of medium independence, i.e. the

idea that the “characteristics of li fe and mind are independent of their respective

material substances” (Emmeche 1992: 471). Much research effort is spent on control

mechanisms, or ‘artificial nervous systems’ , and how to achieve certain behaviors in

robots through self-organization of these control mechanisms. However, to compare a

robot’s ‘artificial nervous system’ to an animal's nervous system, because they exhibit
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‘ the same behavior’ , implies that the relation between behavior and (artificial) nervous

system is actually independent of the controlled body. In other terms, it implies that the

operation of the nervous system is computational and largely independent of the body it

is carried out in, i.e. the body is reduced to the computational control system’s

sensorimotor interface to the environment. Maturana and Varela, however, have argued

(again, similar to von Uexküll (1928); cf. also Hoffmeyer 1996), that in li ving

organisms body and nervous system are not at all separate parts:

... the nervous system contains milli ons of cells, but all are integrated as

components of the organism. Losing sight of the organic roots of the nervous

system is one of the major sources of confusion when we try to understand its

effective operation. (Maturana and Varela 1987: 34)

Similarly, T. von Uexküll et al. (1993, 1997), in their discussion of endosemiosis,

point out that the living body, which we experience to be the center of our subjective

reality (Wirklichkeit), is the correlate of a neural counterbody (Gegenkörper) which is

formed and updated in our brain as a result of the continual information flow of

proprioceptive signs from the muscles, joints and other parts of our limbs. This neural

counterbody is the center of the earlier discussed neural counterworld (cf. von Uexküll

1909, 1985), created and adapted by the brain from the continual stream of signs from

the sensory organs. According to T. von Uexküll et al., counterbody and counterworld

form an undividable unity, due to the fact that all processes/events we perceive in the

world really are ‘countereffects’ to real or potential effects of our motor-system, and

together with these they form the spatial structure within which we orient ourselves. A

robot, on the other hand, has no endosemiosis whatsoever in the body (its physical
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components) as such. Thus, there is no integration, communication or mutual influence

of any kind between parts of the body, except for their purely mechanical interaction.

Further, there is no meaningful integration of the ‘artificial nervous system’ and the

physical body, beyond the fact that some parts of the body provide the control system

with sensory input, which in turn triggers the motion of some other parts of the body

(e.g. wheels) (cf. also Sharkey and Ziemke 1998).

In summary, it can be said that, despite all biological inspiration, artificial organisms

are still radically different from their li ving counterparts.  In particular, despite their

capacity for a certain degree of self-organization, today’s so-called ‘autonomous’ agents

are actually far from possessing the autonomy of li ving organisms. Mostly, this is due to

the fact that artificial organisms are composed of mechanical parts and control

programs. The autonomy and subjectivity of li ving systems, on the other hand, emerges

from the interaction of their components, i.e. autonomous cellular unities

(Zellautonome). Meaningful interaction between these first-order unities, and between

the resulting second-order unity and its environment, is a result of their structural

congruence, as pointed out by von Uexküll as well as Maturana & Varela. Thus,

autonomy is a property of a li ving organism’s organization right from its beginning as

an autonomous cellular unity, and initial structural congruence with its environment

results from the specific circumstances of reproduction. Its ontogeny maintains these

properties throughout its li fetime through structural coupling with its environment.

Providing artifacts with the capacity for self-organization can be seen as the attempt to

provide them with an artificial ontogeny. However, the attempt to provide them with

autonomy this way is doomed to fail , since it follows from the above argument that
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autonomy cannot from the outside be ‘put’ into a system, that does not already ‘contain’

it. Ontogeny preserves the autonomy of an organization, it does not ‘create’ it. The

attempt to bring the artifact into some form of structural congruence with its

environment, on the other hand, can ‘succeed’ , but only in the sense that the criterion for

congruence cannot lie in the heteronomous artefact itself, but must be in the eye of the

observer. This is exactly what happens when a robot is trained to adapt its structure in

order solve a task defined by its designer (cf. also Sharkey and Ziemke (2000), where

we discuss the relation to the case of Clever Hans (Pfungst 1911)). Thus, the lack of

autonomy makes the idea of true ‘f irst hand semantics’ or ‘content for the machine’ in

today’s robotic systems highly questionable.

6. Summary and Conclusions

The aim of this paper has been to discuss the relation between Jakob von Uexküll ’s

work and contemporary research in AI and cognitive science. In particular we have used

his theory of meaning to evaluate the semiotic relevance of recent research in adaptive

robotics and ALife.

The paper started off by discussing von Uexküll ’s and Loeb’s views of the

differences between organisms and mechanisms, as well as early attempts at putting

mechanistic theories to the test through the construction of artificial organisms. Then

AI’s attempts to create a new type of mechanism, which should have some of the mental

and/or behavioral capacities of li ving organisms, was discussed. It was noted that, after

three decades of focusing on disembodied computer programs, AI research returned to
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its cybernetic roots, and now again much research is devoted to the interaction between

agents and their environments.

The autonomous agents approach to AI and ALife has incorporated influences from a

number of theories. From the work of Loeb and others the view that organisms are more

or less guided by the environment through taxes/tropisms has found its way into

robotics, and has become very influential. From cognitivism many researchers, perhaps

without much reflection, have adopted the general idea that the nervous system carries

out computation, mapping sensory inputs to motor outputs.  However, the bottom-up

approach distances itself strongly from the cognitivist correspondence view of

representation as a ‘mirror’ of a pre-given world and instead focuses on interactive

representations as behavior-guiding structures (Bickhard and Terveen 1995, Peschl

1996, Dorffner 1997, Ziemke 1999a). This is much in line with von Uexküll ’s view of

signs as embedded in the functional circles of agent-environment interaction. Moreover,

von Uexküll i nfluenced Brooks’ (1986a, 1991a) argument that, li ke any living organism,

an autonomous agent would have to have its own ‘subjective’ view of the world.

Further it was then discussed how ‘artificial nervous systems’ in combination with

computational learning techniques are used in the attempt to make artificial organisms

(more) autonomous by enabling them to self-organize their sign processes. Several

examples ill ustrated how such techniques allow robots to find their own way of

organizing their functional circles, i.e. their internal use of signs and their response to

stimuli from the environment. It was further pointed out that the use of self-organization

and memory does indeed make artificial organisms a unique type of mechanism that

might be of further semiotic interest.
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The previous section then first examined the relation between von Uexküll ’s theory

and Maturana and Varela's work on embodied cognition and its biological basis. It can

be noted that the two theoretical frameworks, both developed against the ‘mainstream’,

are largely compatible, although (unfortunately) developed independently. Moreover,

the differences between living and artificial organisms were examined in further detail .

It was pointed out that, despite all biological inspiration and self-organization, today’s

so-called ‘autonomous’ agents are actually far from possessing the autonomy of li ving

systems. This is mostly due to the fact that artificial organisms are composed of

mechanical parts and control programs. Living organisms, on the other hand, derive

their autonomy and ‘subjectivity’ fr om their cellular autonomous unities’ integration

and structural congruence with the environment, as pointed out by von Uexküll as well

as Maturana and Varela. Together with the fact that artificial organisms simply lack an

intrinsic “li fe task” this strongly questions the idea of ‘f irst hand semantics’ or ‘content

for the machine’ in today’s robotic systems.

However, it has been shown that the AI/ALife community strives to minimize human

intervention in the design of artificial organisms and actively investigates alternative,

more ‘ li fe-like’ ways of ‘ constructing’ such systems. So far self-organization through

adaptation in interaction with the environment has mostly been applied to control

systems, but it has also been discussed that researchers are beginning to apply similar

approaches to the integrated self-construction of robot bodies and nervous systems. For

future work along these lines a greater awareness of Jakob von Uexküll ’s work would

be important, since it could help to avoid the pitfalls of ‘ new’ overly mechanistic

theories. We believe that his theories will prove to be of great value to researchers in
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robotics, ALife and embodied cognition in their endeavor to gain further understanding

of the meaningful embedding of li ving organisms in their worlds, as well as the

possibiliti es and limitations of their artificial counterparts.
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