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Abstrakt

TAKÁČ, Martin: Construction of Meanings in Living and Artificial Agents.
[Dizertačná práca]. Univerzita Komenského v Bratislave. Fakulta mate-
matiky, fyziky a informatiky; Katedra aplikovanej informatiky. Školitel:
Doc. RNDr. Ľubica Benušková, PhD. Komisia pre obhajoby: Aplikovaná
informatika. Predseda: . Stupeň odbornej kva-
lifikácie: Philosophiae doctor v odbore Aplikovaná informatika. Bratislava,
2007. 171 s.

Predkladaná práca sa zaoberá problematikou povahy a pôvodu porozume-
nia a významov v jazyku s použit́ım metodológie výpočtového modelovania.
Prináša preȟlad existujúcich sémantických teóríı, študuje významy u živých
organizmov v kontexte evolúcie a empirických poznatkov o akviźıcii jazyka
u det́ı. Analyzuje pŕıstup k významom v existujúcich výpočtových systémoch
s oȟladom na ich ukotvenosť v interakcii s reálnymi alebo simulovanými pro-
strediami. Hlavné pŕınosy práce:

Po prvé, návrh novej originálnej sémantiky založenej na tzv. identifi-
kačných kritériách. Sémantika umožňuje reprezentovať nielen statické objek-
ty a ich vlastnosti, ale aj dynamické zmeny, komplexné situácie a udalosti.
Všetky reprezentácie významov (konceptov) možno konštruovať automaticky,
extrakciou spoločných čŕt inštancíı konceptov v rôznych kontextoch. Teória
reprezentácie aj mechanizmy konštrukcie významov sú špecifikované tak ri-
gorózne, že umožňujú poč́ıtačovú implementáciu.

Po druhé, návrh dvoch výpočtových modelov konštrukcie interakčne ukot-
vených významov. V modeli individuálnej konštrukcie významov sa inštancie
združujú do kategóríı na základe rovnakých interakčných resp. motorických
programov (afordancíı). V modeli sociálneho učenia významov zameranom
na vplyv pomenovávania na tvorbu kategóríı sú entity združované do ka-
tegóríı na základe pomenovania rovnakým názvom. Výsledky experimen-
tovania s oboma výpočtovými modelmi potvrdzujú validitu navrhnutých
pŕıstupov k automatizovanej konštrukcii významov.

Po tretie, analýza faktorov ovplyvňujúcich stabilitu významov v medzige-
neračnom prenose pomocou výpočtového modelu založeného na iterovanom
učeńı.

Kľúčové slová: Výpočtové modelovanie. Kognit́ıvna sémantika. Ukot-
venosť symbolov. Automatizované vytváranie konceptov. Akviźıcia jazyka.



Abstract

TAKÁČ, Martin: Construction of Meanings in Living and Artificial Agents.
[Dissertation thesis]. Comenius University in Bratislava. Faculty of Mathe-
matics, Physics and Informatics; Department of Applied Informatics. Thesis
advisor: Doc. RNDr. Ľubica Benušková, PhD. Thesis defense committee:
Applied Informatics. Committee chairman: .
Qualification degree: Philosophiae doctor in Applied Informatics. Bratislava,
2007. 171 p.

This thesis addresses the issues of the nature and origin of understanding
and meanings in language with the computational modeling methodology.
It reviews formal semantic theories, studies meanings in living organisms
within their evolutionary context and takes into account empirical findings
about language acquisition by children. It analyzes meanings in existing
computational systems with respect to grounding in interaction with real or
simulated environments. The main contributions of the thesis follow:

First, we define a new original semantics based on so-called identifica-
tion criteria. The semantics allows for representation of objects, properties,
relations, changes, complex situations and events. All meanings can be con-
structed by extracting cross-situational similarities among instances of a cat-
egory. Both the theory and mechanisms of meaning construction are specified
rigorously enough to allow for implementation in computational models.

Second, we present two computational models of interaction-grounded
meaning construction. In the model of individual category construction,
the instances are grouped to categories by common motor programs (affor-
dances), while in the model of social learning, focused on the influence of
naming on category formation, entities are considered members of the same
category, if they are labeled with the same word by an external teacher.
Results of experimenting with both models validate the proposed meaning-
formation mechanisms.

Third, we report and analyze simulation results of an experiment focused
on the dynamics of meanings in iterated intergenerational transmission.

Keywords: Computational modeling. Cognitive semantics. Symbol
grounding. Automated concept formation. Language acquisition.





Foreword

The importance of studying the nature of meanings and mechanisms of their
construction is threefold. First, we live in times when human-computer and
computer-computer interaction is no longer a science fiction, but a practical
engineering problem. We need to design representational formalisms that will
allow us to endow machines with ontologies necessary for their successful
solving of given tasks and for their mutual co-ordination/communication.
The representation must be sufficiently complex to capture peculiarities of
physical and social environments, including their dynamical character. In
open environments, the ability to learn and autonomously construct useful
representation of relevant meanings is crucial.

Second, operationalization of semantic theories and building relevant com-
putational models can help clarify the notion of “understanding” in artificial
systems that has been a source of controversy in Artificial Intelligence for a
long time, and provide mechanisms for symbol and language grounding.

Last but not least, the computational models can help us better under-
stand ourselves. They can have a backward impact on theories of learning
and language development, and on cognitive science in general.

This thesis elaborates the idea that we can only talk about understanding
in systems that interact with their environment. It reviews existing computa-
tional systems from this point of view, proposes a representation of meanings
that can be constructed by interaction and validates the approach by exper-
iments with computational models. Original contribution in comparison to
existing systems is analyzed.

I got involved in the problematics of computational modeling of language
phenomena coincidentally, after choosing de Boer’s and de Jong’s IJCAI pa-
pers to refer about at an informal seminar at the Institute of Informatics
FMFI UK in the autumn 1999. My growing interest in language phenomena
has drawn me to cognitive science. My research goals have finally crystal-
lized around the issues of cognitive semantics. All of this has happened
in a friendly atmosphere of the Institute and later Department of Applied
Informatics. For this, I want to thank all my former and current colleagues.
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Chapter 1

Introduction

This thesis addresses the issue of understanding and meaning, especially how
the meaning is constructed/learned in living and artificial systems. In this
chapter, we start with motivational and historical remarks. A more formal
and structured outline of the thesis will be presented in Section 1.4.

1.1 Understanding as a Benchmark of Intel-

ligence

1.1.1 The Turing Test and the Chinese Room

Can machines be intelligent? This issue has become a subject of heated
debates soon after the construction of the first computers. Actually, the
name of the established scientific discipline Artificial Intelligence (AI), first
used in a grant proposal for 2-month studies at Darthmouth College in 1956,1

sounds somewhat provocative.
To shift away from nonproductive debates, Alan Turing (1950) proposed

an operationalization of the question of the intelligence of machines, the
imitation game, now known as the Turing test. The original Turing version
of the test involved three parties (the interrogator and two other persons, one
of them trying to help the interrogator, and the other one trying to confuse
him),2 simpler versions have later been proposed in which the interrogator
is communicating with a system (human or machine) and has to find out

1See e.g. Russell and Norvig (1995, p. 17).
2The object of the game for the interrogator was to determine which of the other two

was the man and which was the woman solely from communication via a teleprinter or a
computer terminal. Now, if a machine could successfully take part of the person trying to
confuse the interrogator, it passed the test.
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whether the system is a human or a machine.

The ability to communicate in (i.e., understand and produce) natural
language indistinguishably from humans has been used as a criterion of (ma-
chine) intelligence. The Turing test has elicited a lot of discussions and
critique. One of the prominent critics of the Turing test, John Searle, has ar-
gued that, solely by observing a behavior (the communication, in this case),
one cannot determine whether the system truly understands what it is talk-
ing about. He proposed a thought experiment, known as the Chinese Room
(Searle, 1980):

A person who does not speak Chinese is locked in the room. People out-
side the room send into the room questions written in Chinese. In the room,
there is a box with Chinese characters and a book of rules for manipulating
the characters, enabling to produce answers for questions written with Chi-
nese characters. The person in the room composes the answers entirely by
comparing the shapes of the characters with those in the box and by using
formal rules. Let us suppose that he gets so proficient in manipulating the
characters that he gives correct answers to the questions. Nobody outside
the room can tell that he doesn’t speak a word of Chinese, neither he un-
derstands the content of the communication he is participating in. He has
produced answers by manipulating uninterpreted formal symbols.

The Chinese Room metaphor has several interpretations.3 We shall only
mention one of them: no computer system or program based on formal ma-
nipulation with uninterpreted symbols could truly understand (e.g. Chinese),
even if it passed the Turing test. People’s minds have semantic contents not
reducible to purely syntactic symbols. For true understanding, “something
else” is required. One of the ambitious goals of this thesis is to seek for a
definition of understanding and provide an answer to what this “something
else” could be.

1.1.2 Physical Symbol System Hypothesis

Traditional Artificial Intelligence is strongly connected with the notion of
representation. Representations are structures that exist within the individ-
ual and can be interpreted by the individual itself (Pfeifer and Scheier, 1999).
They take the form of symbolic structures that computational processes op-
erate on. A mapping between the external world and internal representations
is established via encoding and decoding functions obeying the law of repre-
sentation

3And it received at least as much criticism as the Turing test, see for example Cole
(2004).
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decode[encode(T)(encode(X1))] = T(X1),

where X1 is the original external situation and T is the external transformation
(Newell, 1990, p. 59).

This characterization has been introduced by Newell and Simon (1976) as
the notion of the Physical Symbol System. The term “physical” means that
symbol systems must obey physical laws and be realized in some physical
medium (paper, computer, brain). A physical symbol system is a machine
that produces through time an evolving collection of symbol structures. Such
a system exists in a world of objects wider than just these symbolic expres-
sions themselves. A symbolic expression designates an object if, given the
expression, the system can either affect the object itself or behave in ways
dependent on the object. According to the Physical Symbol Systems Hypoth-
esis,

“a physical symbol system has the necessary and sufficient
means for general intelligent action. By ‘necessary’ we mean that
any system that exhibits general intelligence will prove upon anal-
ysis to be a physical symbol system. By ‘sufficient’ we mean that
any physical symbol system of sufficient size can be organized
further to exhibit general intelligence. By ‘general intelligent ac-
tion’ we wish to indicate the same scope of intelligence as we
see in human action: that in any real situation behavior appro-
priate to the ends of the system and adaptive to the demands
of the environment can occur, within some limits of speed and
complexity.” (Newell and Simon, 1976)

Intelligence, in Newell and Simon’s approach, is viewed as symbol manipu-
lation. Physical Symbol Systems Hypothesis characterizes the research pro-
gram of traditional Artificial Intelligence.

1.1.3 Connectionism

An alternative approach to computation has been inspired by human neu-
robiology: the brain can be viewed as a massively parallel device composed
of millions of richly connected simple processors (neurons). Communication
between neurons is carried out by analog signals. The representation of in-
formation in the system is distributed and redundant. The overall system is
robust against the noise and its performance degradation is gradual in case
of damage (Beňušková, 2002a).

The research within this new computational paradigm – connectionism
has begun with the design of perceptron (Rosenblatt, 1958) – a simple formal
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computational device modeling a neuron. After overcoming some difficul-
ties with mathematical limits of perceptrons (Minsky and Papert, 1969),
the connectionist paradigm has gained an influence in the late 80-ies of the
20th century (Rumelhart et al., 1986). Besides its importance as a computa-
tional paradigm (Kvasnička et al., 1997), connectionism has been sucessfully
applied in modeling of various cognitive processes and language phenomena
(Kvasnička and Posṕıchal, 2002; Farkaš, 2005; Rogers and McClelland, 2004).

Both paradigms – symbol and connectionist – are based on the assump-
tion that intelligence is based on specific forms of processing of suitably
represented information (Kelemen et al., 1992, p. 353). However, they differ
in the view on the particular nature of this representation and on the way it
is processed.4

1.1.4 Nouvelle AI: Intelligence without Representation

A radically different view rejecting any representationalism has been pro-
posed by Rodney Brooks (1991b) in his seminal paper Intelligence without
Representation. He criticized the approach of traditional AI as fundamen-
tally wrong. He suggested that we should drop thinking and reasoning, and
focus on the interaction with the real world. He proposes an engineering
methodology for building artificial creatures, of which he emphasizes two
crucial properties (Brooks, 1991a):

Situatedness. The robots are situated in the world – they do not deal with
abstract descriptions, but with the here and now of the world directly
influencing the behavior of the system.

Embodiment. The robots have bodies and experience the world directly -
their actions are part of a dynamic with the world and have immediate
feedback on their own sensations.

Brooks proposed the so-called subsumption architecture based on a large
number of loosely coupled processes that function predominantly in an asyn-
chronous, parallel way. In Brooks’s view, the intelligent behavior is an emer-
gent effect of interactions with the environment, i.e. the knowledge is dis-
tributed both in the individual’s architecture5 and the environment: “the
world is its own best model” (Brooks, 1990).

4Much more can be said about differences, advantages and disadvantages of symbolic
and connectionist approaches. However, this would exceed the scope of this thesis. An
interested reader can see e.g. Fodor and Pylyshyn (1988); Gärdenfors (1997); Farkaš
(2005).

5A robot is endowed with a new behavior by being added another architectural layer.
This approach seems to undermine the role of learning. However, Brooks himself admits
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The works of Brooks gave rise to so-called Nouvelle AI based on the
physical grounding hypothesis (Brooks, 1990):

“To build a system based on the physical grounding hypoth-
esis it is necessary to connect it to the world via a set of sensors
and actuators. Typed input and output are no longer of interest.
They are not physically grounded.”

After all, this is not in contrast with Searle’s conclusion that intelligence is
a property of machines, i.e. embodied systems causally connected with their
environment, rather than disembodied computer programs (Ziemke, 1999).

1.1.5 The Symbol Grounding Problem

The Chinese Room Argument led Steven Harnad to formulate his own version
of the problem, known as the Symbol Grounding Problem: “How can the
semantic interpretation of a formal symbol system be made intrinsic to the
system, rather than just parasitic on the meanings in our heads? How can the
meanings of the meaningless symbol tokens, manipulated solely on the basis
of their (arbitrary) shapes, be grounded in anything but other meaningless
symbols?” (Harnad, 1990).

As his own solution to the problem, Harnad suggests a hybrid nonsym-
bolic/symbolic model of the mind, in which the symbolic functions would
emerge as an intrinsically “dedicated” symbol system as a consequence of
the bottom-up grounding of categories’ names in their sensory (nonsymbolic)
representations of two kinds:

1. iconic representations, which are analogs of the proximal sensory pro-
jections of distal objects and events, and

2. categorical representations, which are learned or innate feature-detectors
that pick out the invariant features of object and event categories from
their sensory projections.

Elementary symbols are the names of these categories, assigned on the ba-
sis of their (nonsymbolic) categorical representations. Higher-order symbolic
representations, grounded in these elementary symbols, consist of symbol
strings describing category membership relations (e.g., ”An X is a Y that is
Z”).

that, for more complex tasks, a robot needs to develop internal representations (Brooks,
1991c).
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The cognitive tasks involved in symbol grounding are iconization, discrim-
ination, identification and composition. Iconization is a process of transfor-
mation of analog signals to their iconic projections. Discrimination between
objects is enabled by the existence of iconic representations, upon which it is
performed. Identification of an object as a member of some kind or category
requires categorical representations.6

Connectionism is suggested as a natural candidate for the mechanism that
creates categorical representation by extracting the invariant features of sen-
sory projections (icons) paired with feedback about names of the respective
categories. Once the taxonomy of elementary categories labeled with names
exist, the rest of the symbol strings of a natural language can be generated
by symbol composition alone (e.g. defining zebra as a “horse with stripes”).
This way the hybrid connectionist/symbolic model combines strengths and
avoids weaknesses of both approaches: pure symbolic models are weak in con-
necting symbols to their referents in the world, while connectionist models
are week in compositionality (Fodor and Pylyshyn, 1988).

1.2 Understanding in Cognitive Science

1.2.1 Language and Cognitive Science

Although we intend to extend the notion of understanding to also include
“understanding the world around”, a more frequent notion of understanding
is connected to the language.

Language is a phenomenon par excellence in cognitive science (Chierchia,
1999; Rybár et al., 2005). The language competence is a unique property of
mankind, distinguishing us from other species. Language processing (parsing
and production) involves many non-trivial cognitive processes. The question
of evolutionary language origins is still an enigma. The generative paradigm
of a linguist Noam Chomsky (1957, 1965) who was inspired by studying the
processes of children’s language acquisition, has influenced not only cogni-
tive science, but has had a huge impact and applications in computer science,
too, namely in the formal theory of languages. Semantics and pragmatics of
language is an important field, where cognitive science meets logic and phi-
losophy. Pathologies of language reveal important aspects of the functioning
of the brain.

Studying these phenomena reveals a lot about the human mind; that is
why linguistics, together with psychology, philosophy, artificial intelligence,

6We will talk about the differences between discrimination and categorization in more
detail in Section 4.4.5.
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neuroscience and anthropology, is considered one of the foundational disci-
plines of cognitive science (Sloan, 1978; Simon and Kaplan, 1990).

1.2.2 Synthetic Modeling Methodology

The methodology of cognitive science draws on the methodologies of its sub-
disciplines: theoretical analyses (philosophy), empirical research and exper-
iments (psychology), brain imaging methods and studies of the effects of
brain lesions (neuroscience), historical, comparative and field research (lin-
guistics and anthropology), and computational modeling (artificial intelli-
gence). Computational, or synthetic modeling approach can be character-
ized as “understanding by building” (Pfeifer and Scheier, 1999). It works by
creating an artificial system (typically a computer model) that reproduces
certain aspects of a natural system (typically results gained by experimental
empirical research). The focus of interest shifts from reproducing the results
of an experiment to understanding why the results come about,7 inasmuch
as construction of the model involves implementation of hypothesized inter-
nal mechanisms that should lead to the particular results. This approach is
extremely productive and its advantages include:

• the necessity of detailed, rigorous and operational specification of all
terms and mechanisms (misty verbal descriptions are not enough),

• direct verification of predictions,

• a possibility to control internal parameters, which are not controllable
in empirical research,

• a possibility to reproduce historically remote processes “in silico” or
perform research that would be unethical if performed with human
subjects (e.g. linguistic deprivation, damaging neural circuits, etc.).

In this thesis, we will adopt the synthetic modeling approach to study the
processes of language acquisition, meaning construction and understanding,
and their mutual relations.

1.3 Practical Applications

Besides providing a deeper insight into human cognitive functioning, com-
putational models of language origins, acquisition and processing have im-

7Reproducing the empirical results is still an important aspect, because of the validity
issue: if the simulated behavior does not fit the observed behavior of the modeled natural
system, the model is not valid.
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portant practical application in human-computer interaction, as well as for
communication of artificial agents operating in heterogeneous and open en-
vironments, such as the world wide web. The ability to learn an existing
language or to build a new one from scratch, together with construction
and mutual negotiation of meanings is crucial in the areas where all possi-
ble meanings cannot be anticipated in design-time. Automated negotiation
of meanings of terms is an important research issue also in EU terminology
unification efforts (Micko, 2006; Popper, 2007).

1.4 Outline of This Thesis

The moral of the story told so far is that problems of meaning and under-
standing rank among crucial problems of Artificial Intelligence and cognitive
science and have important practical consequences.

1.4.1 The Goal of This Thesis

The notion of meaning is in the main focus of this thesis. Our principal goals
are listed below:

1. Formulate a notion of meaning that should be applicable not only to
linguistic humans, but also to preverbal living organisms and artificial
systems.

2. In line with the formulated notion of meaning, propose a formal rep-
resentation of various types of meaning (including objects, properties,
relations, dynamic changes, situations and events) in a rigorous-enough
way that would allow for computer implementation.

3. Propose mechanisms of autonomous construction/acquisition of mean-
ings and verify them by experimenting with computational models.

1.4.2 Overview of Existing Theories and Methods

Existing formal theories of meaning are reviewed in Chapter 2. Chapter 3
provides an evolutionary view on the origin of meanings in living systems. In
Chapter 4, we review and evaluate existing approaches to representation of
meanings in artificial systems within the framework of computational mod-
eling methodology. In Chapter 5, we formulate our notion of meaning.
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1.4.3 Our Methodology

Our approach is based on computational modeling methodology of “under-
standing by building”. Methodological commitments that our models shall
adhere to are proposed in Chapter 6.

1.4.4 Experimental Plan

Our experimental plan is settled in Section 6.2. It consists of

1. rigorous proposal of semantic representation of various types of mean-
ings,

2. proposal of individual and social mechanisms of autonomous construc-
tion of such semantic representations,

3. verification of the hypothesized mechanisms by simulations of imple-
mented computational models.

1.4.5 Experiments

The proposed models and experiments form the content of the second part
of this thesis. As we have designed several computational models, first we
describe their common features in Chapter 7. In Chapter 8, we propose se-
mantic representation of various types of meanings based on cross-situational
similarities. Then we present experiments with the models of individual
(Chapter 9) and social (Chapter 10) mechanisms of meaning creation. In
Chapter 11, we let the meaning-formation process iterate intergenerationally
and we analyze its dynamics.

1.4.6 Evaluation

Partial results are discussed at the end of each of the experimental chapters.
General discussion including related works, limits of our approach and di-
rections for the future can be found in Chapter 12. Our contributions and
evaluation of fulfillment of the goals of this thesis are summarized in the final
chapter.
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Chapter 2

Formal Theories of Meaning

2.1 Babel of Terms

When we speak, our words and sentences are about something, or they mean
something. What is this something and what does it mean to mean something
are the big questions having been studied by philosophers and linguists for
many centuries, starting with Aristotle, Aurelius Augustinus and Thomas
Aquinas, through Locke and Hume, to de Saussure, Pierce, Frege, Russel,
Wittgenstein, Austin, Tarski, Kripke, Montague, Lakoff, Fodor and many
others. Rather than a consensus, two thousand years of discussions have
brought in a babel of terms, distinctions and notions.

The precise use of terms is important for the purposes of this thesis,
because the answers to the questions of understanding and symbol grounding
depend on the precise meaning of the terms such as “symbol”, “meaning”
and others. Before giving our own definitions of terms used throughout the
rest of the thesis, we review several established approaches and their notions
of basic terms.

2.1.1 Syntax, Semantics, Pragmatics, Semiotics

Syntax is a subfield of linguistics that studies the construction of complex
signs from simpler signs (the rules that determine the way sentences
are formed by the combination of lexical items into phrases).

Semantics studies aspects of meaning that are expressed in systems of signs
(a language, code, or other form of representation).

Pragmatics studies how language is practically used by individuals and
communities and how it is interpreted in particular circumstances and
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contexts.

Semiotics is the study of signs as complex dyadic or triadic relations. It dif-
fers from linguistics in that it generalizes from linguistic signs to signs
in any medium or sensory modality. Morris (1938/1971) defined semi-
otics as grouping the triad syntax, semantics, and pragmatics, where
syntax studies the interrelation of the signs without regard to mean-
ing, semantics studies the relation between the signs and the objects
to which they apply and pragmatics studies the relation between the
sign system and its user.

2.1.2 Sense and Reference

Frege (1892/1952) introduced the distinction between sense and reference.1

Sense and reference are two different aspects of the meaning of at least some
kinds of terms (mainly proper names).

As Frege discovered, a term’s reference (the object it refers to) cannot
be treated as identical with its meaning. For example, Hesperos (an ancient
Greek name for the evening star) and Phosphorus (an ancient Greek name
for the morning star) both refer to Venus, but the astronomical fact that
“Hesperos is Phosphorus” can still be informative, even if the “meanings” of
both Hesperos and Phosphorus are already known. This problem led Frege
to distinguish between the sense of a word and its reference.

Reference of a term is the object2 it refers to.

Sense of a term is the way in which it refers to its referent.

We can even understand a meaning of words or phrases that have no
referent, such as “the biggest integer”, or “Cinderella”. Hence, it is safer
to define a sense as an individuating description (that can be understand
with or without a reference), rather than as the mode of presentation of the
reference.

It is interesting to note that Frege considered sense to be objective and
distinguished it from a subjective idea:

1In German original, Sinn und Bedeutung.
2Some authors distinguish the reference from a referent, whereas a reference is the

relation between words (nouns or pronouns) and objects that are named by them, while
the object which is named by a reference, or to which the reference points, is the referent
of the word.
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“If the reference of a sign is an object perceivable by the
senses, my idea of it is an internal image, arising from memo-
ries of sense impressions which I have had and acts, both internal
and external, which I have performed. . . . This constitutes an es-
sential distinction between the idea and the sign’s sense, which
may be common property of many and therefore not a part of
a mode of the individual mind. . . . whereas in the case of an
idea one must, strictly speaking, add to whom it belongs and
at what time. The reference of a proper name is the object it-
self which we designate by its means; the idea, which we have in
that case, is wholly subjective; in between lies the sense, which
is indeed no longer subjective like the idea, but is yet not the
object itself. The following analogy will perhaps clarify these re-
lationships. Somebody observes the Moon through a telescope. I
compare the Moon itself to the reference; it is the object of the
observation, mediated by the real image projected by the object
glass in the interior of the telescope, and by the retinal image of
the observer. The former I compare to the sense, the latter is
like the idea or experience. The optical image in the telescope is
indeed one-sided and dependent upon the standpoint of observa-
tion; but it is still objective, inasmuch as it can be used by several
observers. At any rate it could be arranged for several to use it
simultaneously. But each one would have his own retinal image.”
(Frege, 1892/1952).

2.1.3 Connotation and Denotation

The sense–reference distinction is commonly confused with that between con-
notation and denotation. The connotation–denotation distinction is com-
monly associated with the philosopher John Stuart Mill.

This distinction is applied mainly to words expressing properties, i.e.
predicates such as red, dog, bachelor, rather than naming individuals, so the
difference between the two distinctions can be hard to see.

Connotation of a predicate is the concept it expresses, or more often, the
set of properties that determine whether an individual falls under it.

Denotation of a concept is the actual collection of entities that fall under
it.3

3In poetry, the terms denotation and connotation are used with different meaning:
Denotation is the literal meaning of a word, and connotation is the suggestive meaning of
a word.

24



For example, the connotation of bachelor is “unmarried adult man”, while
its denotation is all the bachelors in the world.

2.1.4 Intension and Extension

Some contemporary philosophers use the terms intension and extension for
connotation and denotation respectively.

Intension of a concept consists of the ideas, properties, or corresponding
signs that are implied or suggested by the concept.

Extension of a concept consists of the things to which it applies.

The extension of monadic concepts or expressions (i.e. those that can
be satisfied by a single object) is the set of things it applies to, e.g. the
extension of the word dog is the set of all dogs in the world. By convention,
the extension of a whole statement is defined as its logical value (true or
false).

The extension of relational or polyadic concepts (those relating objects
to objects) is the set of all sequences of objects that satisfy the concept or
expression in question, e.g. the extension of the word before is the set of all
(ordered) pairs of objects such that the first one is before the second one.

2.1.5 Sign

Sign is a central concept of semiotics. We make meanings through our cre-
ation and interpretation of signs. Signs take the form of words, images,
sounds, acts or objects, but all these things become signs only if we attribute
them a meaning. “Nothing is a sign unless it is interpreted as a sign” (Peirce,
1931-58). And, anything can be a sign as long as someone interprets it as
’signifying’ something – referring to or standing for something other than it-
self (Chandler, 2007). Now we describe two dominant notions of sign: those
of the linguist Ferdinand de Saussure and the philosopher Charles Sanders
Peirce.

Sign as a Dyadic Relation

A sign was defined by de Saussure (1916/1974) as a relation between two
parts:

Signifier is the perceivable form (the sound or written word) which the sign
takes.
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Signified is the mental4 concept or an idea it represents.

According to de Saussure, the association between a signifier and the
signified is completely arbitrary. Only after a signifier is combined in the
brain with the signified, it can mean something and form the sign. Hence,
meaning is ultimately the same thing as the sign, and meaning means that
relationship between signified and signifier. Saussure’s conception of meaning
was structuralist and derived from relations between signs themselves, not
from any reference to properties of material things.

Despite their being a matter of public convention, signs can only mean
something to the individual, e.g. what red means to one person may not be
what red means to another.

Sign as a Triadic Relation

Peirce (1931-58) defined a sign as a relation between three parts:

“A sign (in the form of a representamen) is something which
stands to somebody for something in some respect or capacity. It
addresses somebody, that is, creates in the mind of that person
an equivalent sign, or perhaps a more developed sign. That sign
which it creates I call the interpretant of the first sign. The sign
stands for something, its object. It stands for that object, not
in all respects, but in reference to a sort of idea, which I have
sometimes called the ground of the representamen.”

To summarize,

representamen is the form which the sign takes,

interpretant is the sense made of the sign by an interpreter, and

object is that to which the sign refers.

For example, the traffic light sign for ’stop’ would consist of: a red light
facing traffic at an intersection (the representamen); vehicles halting (the
object) and the idea that a red light indicates that vehicles must stop (the
interpretant) (Chandler, 2007).

It is important to note that Pierce’s notion of a sign is not an absolute
or ontological property of a thing, but rather it is a relational, situated and
interpretive role that a thing can have only within a particular context of
relationships. What constitutes a sign for one observer (interpreter), can be

4Note that the signified is a mental construct of a thing rather than the thing itself.
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Table 2.1: Different nomenclatures for the triadic sign relation.
Author Terms

Peirce (1931-58) representamen interpretant object
Nöth (1990) sign vehicle sense referent

Ogden and Richards (1923) symbol thought/reference referent
Steels and Kaplan (2001b) form meaning referent

just a useless or imperceptible noise for another one, depending on the in-
terpreter’s embodiment, society and the history of interactions. A particular
interaction between the representamen, the object and the interpretant is
referred to by Peirce as (an act of) semiosis.

In relation to de Saussure, the representamen is similar to signifier and the
interpretant corresponds to signified. The object is missing in de Saussure’s
model.

Other sign nomenclatures

The triadic notion of sign is sometimes referred to as “the semiotic triangle”.
However, different authors use different nomenclature for the vertices of the
triangle, see Table 2.1.

Types of Sign

Based on the degree of naturalness of the relation in which the representamen
refers to its object through a particular interpretant, Pierce distinguishes
three modes/types of sign relations (Chandler, 2007):

Index/indexical – a mode in which the signifier is not arbitrary but is di-
rectly connected in some way (physically or causally) to the signified.
This link can be observed or inferred: e.g. natural signs (smoke, thun-
der, footprints, echoes, non-synthetic odours and flavours), medical
symptoms (pain, a rash, pulse-rate), measuring instruments (weather-
cock, thermometer, clock, spirit-level), ‘signals’ (a knock on a door, a
phone ringing), pointers (a pointing index finger, a directional sign-
post), recordings (a photograph, a film, video or television shot, an
audio-recorded voice) and indexical words (that, this, here, there).

Icon/iconic – a mode in which the signifier is perceived as resembling or
imitating the signified (recognizably looking, sounding, feeling, tasting
or smelling like it) - being similar in possessing some of its qualities:
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e.g. a portrait, a cartoon, a scale-model, onomatopoeia, metaphors,
sound effects in radio drama, or imitative gestures.

Symbol/symbolic – a mode in which the signifier does not resemble the sig-
nified but which is fundamentally arbitrary or purely conventional - so
that the relationship must be learnt: e.g. language in general (plus spe-
cific languages, alphabetical letters, punctuation marks, words, phrases
and sentences), numbers, morse code, traffic lights, national flags.

2.1.6 Symbol

For Pierce, a symbol was a sign with completely arbitrary link between a
representamen and its object. Saussure avoided referring to linguistic signs
as ’symbols’ at all. However, most nowadays linguists would agree that
language is a symbolic sign system.

A definition of a symbol system, mostly used in computer science and AI
was introduced by Harnad (1990), based on Newell and Simon (1976) and
others:

“A symbol system is a set of arbitrary ‘physical tokens’ scratches
on paper, holes on a tape, events in a digital computer, etc. that
are manipulated on the basis of ‘explicit rules’ that are likewise
physical tokens and strings of tokens. The rule-governed symbol-
token manipulation is based purely on the shape of the symbol to-
kens (not their ‘meaning’), i.e., it is purely syntactic, and consists
of ‘rulefully combining’ and recombining symbol tokens. There
are primitive atomic symbol tokens and composite symbol-token
strings. The entire system and all its parts – the atomic tokens,
the composite tokens, the syntactic manipulations both actual
and possible and the rules – are all ‘semantically interpretable’:
The syntax can be systematically assigned a meaning e.g., as
standing for objects, as describing states of affairs.”

2.1.7 Meaning

Meaning is the content carried by the words or signs exchanged by people
when communicating through language. Communication of meaning is the
main purpose and function of language. In semiotics, the meaning of a
representamen (signifier) is its place within a particular sign relation.

Meaning is the central issue of semantics. However, different semantic
theories give different answers to the questions of the nature and origin of
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meanings and the relation between language and meanings. In the following
sections, we review the most influential semantic theories.

2.2 Functionalist Semantics

The basic question is whether there are some kinds of objects – physical or
mental – that are the meanings of linguistic expressions. Semantics answer-
ing ‘yes’ to this question are referential ; semantics answering ‘no’ are non-
referential. First we review a non-referential functionalist tradition within
the philosophy of language.

2.2.1 Meaning in Use

According to (late) Wittgenstein (1953), meaning of words cannot be defined
by reference to the objects or things which they designate in the external
world nor by any ideas or mental representations that one might associate
with them, but rather by how they are used in communication. The lan-
guage is primarily about action in the real world; hence, meaning is more in
the realm of pragmatics than pure semantics. The meaning of a linguistic
utterance simply is its communicative function. Wittgenstein likens the use
of language to a game: meaning something in language is like making a move
in a game according to some rules.

2.2.2 Speech Acts

This idea was further elaborated by Austin (1962). In communication, the
speaker can have a variety of goals: drawing the hearer’s attention to some-
thing, describing something, giving information, asking a question, making
a request or giving an order. By speaking, he is actually doing something –
performing a speech act (Searle, 1969).

A speech act has an illocutionary force, e.g. directing someone to do
something.5 In children’s utterances, realizations of nine types of primitive
speech acts can be distinguished: labeling, repeating, answering, requesting
(action), requesting (answer), calling, greeting, protesting, practicing (Dore,
1975).

Interestingly enough, speech acts theory has been a theoretical base for a
formal specification of communication semantics6 in Agent Communication

5The illocutionary aspect of a speech act should be distinguished from its perlocutionary
effect, which is what it brings about, e.g. the doing of the thing by the person directed.

6See also Parunak (1996).
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Language (ACL) developed by Foundation for Intelligent Physical Agents
(FIPA),7 the eleventh Standards Committee of the IEEE Computer Society.

2.3 Realist Semantics

In referential semantics, linguistic meanings are some objects. Concerning
the nature of these objects, the fundamental distinction should be made be-
tween the realist and cognitive (or conceptualist) approaches. In the realist
approach, meanings are some entities “out there” in the world. In the cog-
nitive approach, meanings are mental entities “in the head”.8

2.3.1 Extensional Semantics: Meanings are Objects in
the World

Meaning in the extensional type of realist semantics is built upon relations
to objects in the “world”, or formally in a model structure M . Names are
mapped onto particular objects – elements of M , and predicates are mapped
onto sets of objects or relations in M .9 By composition, sentences are mapped
onto truth values. The corollary of this approach is that meanings are ob-
jective and independent of understanding of particular users.

The foundations of extensional semantics were laid by Frege, further de-
veloped in the truth theory of Tarski (1933). Limits of the set-theoretic
approach were discovered soon. Some predicates did not fit well the exten-
sional definition of meaning, for example, the meaning of small cannot be
the set of all small things, because an emu is a bird, but a small emu is not
a small bird (Gärdenfors, 2000, p. 61).

2.3.2 Intensional Semantics: Meanings are Mappings
to Possible Worlds

To remedy the problems of extensional semantics, Kripke (1959, 1963), Mon-
tague (1974) and others developed so-called intentional semantics. In inten-
sional semantics, elements of a language L are mapped to a set of possible

7http://www.fipa.org
8Cognitive semantics should not be confused with the Language of Thought hypothesis

of Fodor (1975) stating that people understand language by translating sentences into
propositional structures in the internal language called “Mentalese” amenable to rule-
driven inferences. When it comes to the semantics of the Mentalese’s syntactic structures,
Fodor is a realist in that he relies on references in the external world and truth conditions.

9See also discussion on monadic and polyadic concepts/predicates in Section 2.1.4.
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worlds instead of a single world. A proposition can be defined as a function
from possible worlds to truth values, that determines the set of worlds where
the proposition is true.

The intensional semantics has been criticized for:

1. being counterintutive (Bealer, 1989),

2. not supporting inductive inferences (Goodman, 1955; Gärdenfors, 2000),

3. having difficulties with expressing an antiessentialistic doctrine (Stal-
naker, 1981),

4. that the model-theoretic definition of properties does not and cannot
work as a semantic theory of properties (Putnam, 1981).

2.4 Cognitive Semantics: Meanings are Men-

tal Entities

The persuasion that meanings are ideas can be traced back to classical em-
piricists such as David Hume and John Locke. In modern times, Eleanor
Rosch and George Lakoff were the first pioneers of the cognitive approach to
semantics.

2.4.1 Prototypes and Basic-Level Categories

The work of Rosch (1978) provided empirical evidence against classical Aris-
totelian view that categories can be characterized by necessary and sufficient
conditions. Rosch discovered that category membership is graded, some
members are better examples of the category than others, and some cat-
egories even have fuzzy boundaries. The best examples of a category are
called prototypes.

People categorize at different levels, of which the basic level has a special
status. It is the most general level, at which a common perceptual image
and a common motor program can be created for members of a category,
and the level with the highest intra-cluster similarity and inter-cluster dis-
tinctiveness. Basic-level categories support inductive inferences, i.e. deriving
further properties of objects from their membership in a category. When
adults speak to children, they tend to use words for basic-level categories
and these words are understood and acquired by children first (Rosch, 1978).
The level below the basic one is called subordinate and the one above it is
called superordinate. For example, animal is a superordinate category of
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the basic-level category dog, and bulldog, setter, terrier are its subordinate
categories.

2.4.2 Embodied Meanings

George Lakoff (1987) used empirical findings of Rosch and others as an argu-
ment against objectivist view on cognition and meanings that can be charac-
terized by the following statements: Thinking is independent of the body; it is
a mechanical symbol manipulation similar to computer algorithms. Symbols
(such as words and mental representations) get their meaning by correspon-
dence with the real world; they are objective and independent of the body,
perception and neural system.

Objectivist paradigm is based on the above mentioned Aristotelian view
on categories existing in the world independent of an observer. Lakoff is a
proponent of the opposite experientialist view: Categories are not objectively
“out there” in the world. They evolve as learned concepts co-determined by
bodily experience, mind and culture. For example our categorization of colors
is based not only on wavelengths of the light, but also on properties of our
neurobiology of seeing and on cultural conventions (Berlin and Kay, 1969).
Meaning is not an objective truth, but a subjective construct. Conceptual
categories will not be identical for different cultures, or even for different
individuals in the same culture.

We organize our knowledge by means of structures called idealized cogni-
tive models (ICM). For example, the meaning of the word Tuesday can be
defined relative to an ICM that includes the natural cycle of the movement
of the sun, the notion of the end of one day and the beginning of the next,
and a seven-day calendrical cycle (Lakoff, 1987). Similarly, the concept of
weekend requires a notion of a cycle of work week of five days followed by a
break of two days. This model is idealized, because seven-day weeks do not
exist objectively in nature, but they are created by human beings in some
cultures (different cultures can have different calendrical systems).

Some ICMs have a propositional structure, i.e. they specify elements,
their properties and mutual relations, others have an image-schematic struc-
ture. Image schemas, e.g. Containment, Source-Path-Goal, Center-Periphery,
are embodied prelinguistic structures of experience stemming from recurring
patterns in our bodily interactions. ICMs can be combined to radial struc-
tures, transformed, or used in metonymic and metaphoric mappings.

In metonymic mapping, part of an ICM is used to stand for the whole.
Metaphors refer to the understanding of one conceptual domain in terms
of another (by mapping some substructure of an ICM to the corresponding
structure in another ICM). They typically employ a more abstract concept
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as their target and a more concrete or physical concept as their source, e.g.
THINKING IS MOVING, AFFECTION IS WARMTH, TIME IS MOTION,
etc. (Lakoff and Johnson, 1980). In relation to the theory of meaning,
concrete terms are directly grounded in our bodily experience via image
schemas and basic-level concepts, and meaning of abstract terms is build
from more concrete meanings via metonymic and metaphoric mappings.

2.4.3 Perceptual Symbol Systems

The idea that human conceptual system is grounded in the bodily experience
and neural system can also be found in the work of Barsalou (1999). He
emphasizes the role of perception and the brain’s modality-specific systems
in construction of representations. The representation is modal and has the
form of perceptual symbols and simulators:

“During perceptual experience, association areas in the brain
capture bottom-up patterns of activation in sensory-motor ar-
eas. Later, in a top-down manner, association areas partially
reactivate sensory-motor areas to implement perceptual symbols.
The storage and reactivation of perceptual symbols operates at
the level of perceptual components – not at the level of holistic
perceptual experiences. Through the use of selective attention,
schematic representations of perceptual components are extracted
from experience and stored in memory (e.g., individual memories
of green, purr, hot). As memories of the same component become
organized around a common frame, they implement a simulator
that produces limitless simulations of the component (e.g., simu-
lations of purr).” (Barsalou, 1999)

Analogical simulators develop for aspects of proprioception and introspec-
tion. These simulators form a basic conceptual system; abstract concepts
are grounded in complex simulations of combined physical and introspective
events. Barsalou claims that, while the proposed conceptual system stays in-
herently modal, it is a fully functional conceptual system that also supports
productivity, propositions, and abstract concepts.

2.4.4 Neural Theory of Language

Other researchers focused even more on connection between language under-
standing and neural activity and processing. Correlations between activa-
tions of certain neural structures and perceiving, performing, imagining or
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talking about the represented content have been found (Pulvermüller, 1999;
Rizolatti et al., 1996; Beňušková, 2005).

In 1990, Jerome Feldman and George Lakoff from UC Berkeley set up a
research project L0 focused on language learning from picture-sentence pairs.
Later (1997) they extended the scope of the project to biologically plausible
computational modeling of all aspects of language. The project (and the
research group) was renamed to the Neural Theory of Language (NTL).10

Their effort is aimed at explaining how brain functions (including emotion
and social cognition) work together to understand and learn language. They
study this complex questions on multiple layers (ordered top-down in the
list):

Cognition and Language – cognitive mechanisms, linguistic phenomena
(spatial relations, metaphor, aspect, epidosic memory, frames, con-
structions).

Computation – formalisms, data structures, algorithms (executing schemas,
feature structures, maps, belief nets).

Structured Connectionism – distributed networks of units (temporal bind-
ing, recruitment learning).

Computational Neurobiology – models of neuronal structures and pro-
cesses.

Biology – biological and neurophysiology structures and processes (fMRI
imaging).

The focus of the group is mostly on the required representations and
computations, less on neurobiology and the role of particular brain areas.11

The NTL assumption is that people understand narratives by subcon-
sciously imaging (or simulating) the situation being described. When asked
to grasp, they enact it. When hearing or reading about grasping, they sim-
ulate grasping, being grasped, or watching someone grasp.

The main practical results of the group were a computational model
of learning the meaning of spatial relations from named pictorial examples
(Regier, 1992), a computational model of learning simple action verbs from
labeled examples of structured event descriptions – VerbLearn system of
Bailey (1997), a model of metaphorical understanding (through embodied

10http://www.icsi.berkeley.edu/NTL
11A reader interested in cognitive neuroscience may want to see the major reference

book of the field edited by Gazzaniga (1999). Recent discoveries in the interplay between
neural mechanisms and genetics can be found in Beňušková and Kasabov (2007).
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simulations) of events in newspaper articles – KARMA system of Narayanan
(1997).

The research of embodied meaning of words was extended to larger units
such as sentences, modeled by so-called Embodied Construction Grammar –
ECG (Bergen and Chang, 2003). In ECG, every linguistic unit is a form-
meaning pair, where the form part expresses syntactic constraints and the
meaning part is a computational-level description of embodied conceptual
structures such as image schemas or action simulators (see also Section 4.6.2).
The overall NTL research is summarized in the recent book of Feldman
(2006). We review several other neurally plausible cognitive models related
to the acquisition of language and meaning, proposed outside the NTL group,
in Section 4.7.

2.4.5 Conceptual Spaces

Now we turn to cognitive semantics elaborated more on the level of repre-
sentational structures, without direct connections to neural realization.

Gärdenfors (2000) characterizes cognitive semantics by the following six
tenets:

1. Meaning is a conceptual structure in a cognitive system (not truth con-
ditions in possible worlds).

2. Conceptual structures are embodied (meaning is not independent of
perception or of bodily experience).

3. Semantic elements are constructed from geometrical or topological struc-
tures (not symbols that can be composed according to some system of
rules).

4. Cognitive models are primarily image-schematic (not propositional).
Image schemas are transformed by metaphoric and metonymic opera-
tions (which are treated as exceptional features within the traditional
views).

5. Semantics is primary to syntax and partly determines it (syntax cannot
be described independently of semantics).

6. Concepts show prototype effects (contrary to the Aristotelian paradigm
based on necessary and sufficient conditions).

The first tenet implies that language understanding cannot be managed
by any isolated language module, but it is an integral part of the very same
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conceptual system that serves for reasoning, orientation and acting in the
world.

The fifth tenet is in opposition with the Chomskian tradition within lin-
guistics (Chomsky, 1957, 1965). Within Chomsky’s school, grammar is a
formal calculus, which can be described via a system of rules formulated
independently of the meaning of the linguistic expressions. Semantics is
something independent that is added to the grammatical rule system. On
the contrary, within cognitive linguistics, semantics is the primary compo-
nent (which, in the form of perceptual representations, had existed before
language was fully developed). The structure of the semantic schemas puts
constraints on the possible grammars that can be used to represent those
schemas (Gärdenfors, 2000).

The ideas of the second, fourth and sixth tenets have already been dis-
cussed within the above-mentioned approaches to cognitive semantics. The
main contribution of Gärdenfors is in elaborating the third tenet. As a frame-
work for a geometric structure used in describing a cognitive semantics, he
proposes the notion of a conceptual space.

A conceptual space consists of a number of quality dimensions such as
color, pitch, temperature, weight, and the three ordinary spatial dimensions.
The quality dimensions are endowed with certain topological or metric struc-
tures; some quality dimensions can have a discrete structure. Dimension that
have been vital for the survival of humans seem to be innate (genetically
evolved) and hardwired in our nervous system. Other dimensions are learned
and some of them are culturally dependent (e.g. our linear conception of time
in contrast to circular conception in some cultures). Finally, some quality di-
mensions are introduced by science, e.g. the distinction between temperature
and heat, or between weight and mass.

Dimensions of a conceptual space correspond to attributes of represented
objects. Because not all attributes are relevant to all represented entities,
dimensions are organized in domains.

Conceptual spaces are construed in such a way that representations of
similar objects are geometrically close to each other. A particular object
is represented as a point (vector of coordinates) in a subspace of one or
several domains; the similarity between two objects is inversely proportional
to the distance of their point representations in the conceptual space (for the
distance to be evaluated, objects must share some domains or a subspace
with a common metric).

Representation of natural categories is based on the convexity assump-
tion: if two points represent objects that are good examples of a category,
then any point in between them must also be a good example of that cate-
gory (Gärdenfors, 2000). Hence, natural concepts are represented by convex
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points (represented as black crosses) in the space. These prototypes then determine a 

Voronoi tessellation of the space.5 
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Figure 3. Voronoi tessellation generated by three classes of exemplars. The prototypes are represented 

by crosses. 

The mechanism illustrated here shows how the application of concepts can be 
 on the basis of only a few examples of each concept. The additional 

information that is required for the generalization is  from the geometrical 
structure of the underlying conceptual space that is required for the calculation of 
prototypes and for the Voronoi tessellation. In this way, conceptual spaces  
information to what is given by experience. 

Furthermore, the concepts generated by such a categorization mechanism are 
 in the sense that when the agent observes a new item x in a category, the 

prototype for that category will, in general, change somewhat, since the mean of the 
class of examples will normally change. For each dimension i, the effect !pi on 

dimension i of the stored prototype p can be calculated as !pi = (xi - pi)/(n+1), where 

xi is the ith co-ordinate of the newly learned instance and n+1 is the total number of 

instances (including the new one) in the class represented by the prototype p (see 
Langley 1996, pp. 99-100). 

Figure 4 shows how the categorization in figure 3 is changed after learning about 
one new exemplar, marked by an arrow, belonging to one of the categories. This 
addition shifts the prototype of that category, which is defined as the mean of the 
exemplars, and consequently the Voronoi tessellation is changed. The old tessellation 
is marked by hatched lines and the old prototype is marked by a grey cross. 

                                                 
5It is possible that an exemplar will lie  the Voronoi region assigned to the corresponding 
prototype. Such an exemplar would be an anomaly for the classification. This kind of case will 
normally lead to the introduction of a new concept, i.e., a finer partitioning of the conceptual space. 

Figure 2.1: Voronoi tessellation of space to categories generated by proto-
types. Round points represent examples of categories, ‘x’ points are pro-
totypes computed as centroids of the examples. The picture is taken from
Gärdenfors (2000).

regions in the space. Geometrical centroids of the regions correspond to the
best examples – prototypes of categories (Rosch, 1978).

Categories can be compactly represented by their prototypes. As cate-
gories are considered mutually exclusive, the whole space can be tessellated
by assigning each point of the space to the category represented by the nearest
prototype (see Figure 2.1). The centroids of the categories can be computed
and (continuously recomputed) from incoming examples of the category.

2.4.6 Cognition Without Mental Processes

A cognitive theory of representation of Šefránek (2002) is an effort with a
declared goal to posit a non-trivial and falsifiable level of analysis of cog-
nition and understanding without the necessity to resort to the brain and
neural processes. Rather, this theory focuses on the contents of cognition –
meanings, which are taken to be external12 with respect to mental processes
(Šefránek, 2002, p. 208). This theory aspires to be relevant for real (alive)
cognitions in the biological world.

The crucial assumption of this approach is that meanings can be sepa-
rated from language, i.e. they also exist in animals and preverbal infants. In
general, the theory applies to some organisms situated in some environment.
The organisms have needs and goals, which they try to satisfy by perform-
ing actions (behavior). The organisms possess representation composed of
meanings.

The theory of meanings is built upon the notion of recognitional13 crite-

12In this respect, Šefránek’s position is at least partially objectivist (Šefránek, 2007).
13The Slovak expression “rozlǐsovacie kritérium” can be translated as discrimination,

identification, or recognitional criterion. With respect to the sense of the original text and
indications in Šefránek (2005, p. 163), here we have chosen the translation recognitional.
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ria. The recognitional criteria are abstractions of the organism’s ability to
recognize (or distinguish) certain aspects of its (internal or external) envi-
ronment. However, an ability to distinguish can be referred to as “meaning”,
only if it satisfies the following conditions (Šefránek, 2002):

A In a particular situation, the organism can distinguish/recognize also
entities that are not directly perceivable.

B The process of recognition is potentially non-deterministic.

C Based on observing and experimenting in its environment, the organism
is able to construct14 new meanings (recognitional criteria).

D The organism can infer new criteria from the existing ones (by reason-
ing, without the interaction with the environment).

Elementary recognitional criteria recognize objects (individuals), natural
kinds of objects, natural properties of objects, and natural relations among
objects. More complex criteria, constructed from the elementary ones, recog-
nize situations, rules (types of situations), goals (desired situations), changes
in environment, plans (projected changes), methods (successful plans), events
and types of events. The construction of the complex criteria is based on the
important notion of transformations of criteria.

Šefránek (2002) further suggests the way from protosemantics, protoin-
ference and protocommunication of simple organisms, through 2-language, to
the full-fledged language with propositional representation and syntax. The
ability to understand the complex language is inherently connected with rea-
soning, more specifically, with hypothetical15 reasoning. In his more recent
paper, Šefránek (2005) focuses on the possibilities of the representation of
verb meanings within his theory.

2.4.7 Other Approaches

In the previous sections, we reviewed several types of cognitive semantics,
which were inspiring for our work. Other influential theories of cognitive
semantics include e.g. Force Dynamics of Talmy (2000), frame semantics of
Fillmore (1982), mental spaces of Fauconnier (1985) and Cognitive Grammar
of Langacker (1987, 1991b). However, these theories are not in the main scope
of our work.

See also the footnote 1 in Chapter 8.
14Emphasized by us, also in D.
15It is the reasoning with incomplete and dynamic knowledge including the possibility

to make mistakes and the necessity of knowledge revisions (Šefránek, 2000).
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2.5 Enactive Approach

Cognitivist and representationalist views on cognition have been criticized
by proponents of enactivism, e.g. Maturana and Varela (1987); Varela et al.
(1991). Enactivists emphasize the importance of embodiment, situated-
ness and action to cognition (Pecher and Zwaan, 2005; Gibbs, 2006). Em-
bodied cognition does not represent some beforehand-given world in some
beforehand-given mind. Instead, the individual world (Umwelt) and the
mind (Innenwelt)16 are being continuously reshaped (enacted) during the in-
teractional history of the individual. There is no linear causal line between
perception and action; these two processes form a loop that structurally cou-
ples the organism and its environment (Maturana and Varela, 1987).

2.5.1 Subjective Worlds of Experience

The roots of the enactive approach can be traced back to an Estonian biol-
ogist Jakob Johann von Uexküll who introduced the notion of Umwelt. Von
Uexküll was interested in how living beings subjectively perceive theirenvi-
ronment. The term Umwelt has later been imported to semiotics by Sebeok
(1976).

As opposed to an objectively described world, the Umwelt is the subjec-
tively experienced semiotic world of an organism, including all the aspects
of the world meaningful for the organism, e.g. water, food, shelter or po-
tential threats. An organism creates its own Umwelt when it interacts with
the world, and at the same time it reshapes the world. The features of the
world which the subject perceives (Merkwelt) and the features which it acts
on the world (Wirkwelt) together form a functional circle (Funktionskreis,
von Uexküll, 1934/1957). Subjectively constructed internal representation
(modeling system) of the world is the individual’s Innenwelt (von Uexküll,
1909/1985). In this way, each organism constructs and lives within its own
lifeworld, which follows from the individuality and uniqueness of its history.17

The mind and the world are inseparable.

Von Uexküll’s work influenced a philosopher Martin Heidegger, who added
two other terms: Mitwelt and Eigenwelt. These terms were further elaborated
and used by an existential psychologist Ludwig Binswanger (1942/1993).

Umwelt – subjectively perceived biological and physical world around the
individual.

16The terms Umwelt and Innenwelt were coined by von Uexküll (1909/1985).
17“What a rose is will not be the same to a bee and to a human suitor.” (Deely, 2001).
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Mitwelt – the individual’s social world and his/her awareness, perception
and experience of others.

Eigenwelt – the individual himself/herself, including its inner psychological
reality and a dialogue with oneself.

2.5.2 Affordances

Another source of inspiration for enactivists was the work of Gibson (1979).
According to Gibson, we perceive in order to operate on the environment.
Our perception was evolutionarily designed for action. Gibson called the
perceivable possibilities for action affordances. He claimed that we perceive
affordance properties of the environment in a direct and immediate way.
Affordances include objects that can be manipulated (such as doors that can
be opened), things that can be eaten, surfaces that can be walked on, etc.

Enactive knowledge is the one that comes through action and it is con-
structed on motor skills, such as manipulating objects, riding a bicycle or
playing a sport. Simply, it is the knowledge acquired by doing. Human cogni-
tion and consciousness are constituted by the enactive structures – structural
couplings between the brain, the body and the physical world with which the
body interacts (Varela et al., 1991).18

2.5.3 Dynamical Systems Perspective

The enactivist position is most strongly expressed in the Dynamical Systems
approach to cognition (Tschacher and Dauwalder, 1999). This approach
builds on the mathematical theory of dynamical systems (e.g. Arrowsmith
and Place, 1990) and its tools and emphasizes the temporal dimensions of
cognition and the ways in which an individual’s behavior emerges from inter-
actions of brain, body, and environment (Gibbs, 2006, p. 10). Self-organized
patterns of behavior emerge as stable states from the interaction of the sub-
systems. Dynamical systems perspective cuts across brain-body-world divi-
sions.

Some dynamical models reject representations at all, other incorporate
representations, but reconceive them as dynamical entities (e.g., system states,
or trajectories shaped by attractor landscapes). Representations tend to be
seen as transient, context dependent stabilities in the midst of change, rather
than as static, context-free, permanent units (Gelder, 1999).

18Note that this approach is not far away from that of Brooks (1991b), see Section 1.1.4.
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2.6 Constructivism and Symbol Grounding

The dynamical systems perspective is an instance of radical constructivism,
which claims that knowledge is the self-organized cognitive process that reg-
ulates itself (Ziemke, 2001). In this view, knowledge is a subjective construct
with indeterminable relation to an ontological reality. Our position is less
radical, but nevertheless constructivist.

Internal representations have no intrinsic meaning per se (compare Har-
nad, 1990), but get it via structural coupling with the environment. This
coupling has two components: individual and social. The former one, called
Physical Symbol Grounding (Vogt, 2002), refers to the ability of each individ-
ual to create an intrinsic link19 between world entities and internal represen-
tations, while the latter one, called Social (or External) Symbol Grounding,
refers to the collective negotiation for the selection of shared symbols and
their meanings (Cangelosi, 2006). A corollary of this is that meanings are
individually created subjective constructs, but they are attuned to each other
collectively.

Philosophically, physical symbol grounding roughly corresponds to cog-
nitive constructivism based on the work of Piaget (1937/1955) in that indi-
viduals actively construct their own meanings through cognitive processes,
based upon their past experiences and their interactions in the world. Social
symbol grounding is close to social constructivism (Vygotsky, 1978), in the
sense that individually created meanings are motivated and constrained by
the social context.20

2.7 Our Terminology

In this chapter, we reviewed the most influential theories of meaning. Some
of them used identical terms with different meanings. Now we try to make
clear the way we use some of the terms throughout the rest of this thesis.21

19E.g. in the form of triadic semiotic sign relations, see Section 2.1.5. We emphasize
that all components of the triad are individual, situated and contextual.

20Sad stories of feral children deprived of linguistic input in the first years of their lives
suggest that social and linguistic interactions within a critical period are necessary condi-
tions for the child’s successful language development. For example, Genie who had been
kept locked in her bedroom, treated badly, deprived from linguistic input and punished
for her attempts to speak from the age of 20 month till 13 years by her mentally ill fa-
ther, have never gained full linguistic competence, despite systematic efforts of her new
foster parents and therapists after being rescued from her father. The case of Genie was
documented by Curtiss (1977).

21Because we need to define the very terms such as “meaning”, “sense” or “refers to”,
we realize that, without resort to meta-language, our definitions will be circular (or struc-
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Meaning. In a broader sense, e.g. when talking about “construction of
meanings”, we refer to construction of the whole semiotic sign triad, e.g.
the internal representation (interpretant) put in relation with some lexi-
cal expression and referring to some object. For the components of the
semiotic triangle, we will use Steelsean nomenclature form-meaning-
referent (see Table 2.1). I.e., in the narrow sense, meaning refers to
internal representation of concepts/categories.

Concept/category (equivalent to the narrow sense of meaning) is non-
verbal internal representation realized as identification criterion (see
Chapter 8). Concepts in the form of criteria are used for identifying
(kinds of) objects in the world and they can be connected with lexical
expressions (forms) via the semiotic sign relation.

Form/Expression is a synonym for Pierce’s representamen, e.g. words.

Reference/Referent is Pierce’s object. Unlike Frege (1892/1952), we use
this term not in the sense of all objects in the world denoted by some
word or concept, but as the set of currently present objects denoted by
the word or concept in a particular contextual act of semiosis.22

Sense is the particular aspect of the referent inherent in the meaning. For
example, when labeling a single big black cup on the table with the
expression “big black cup”, all three words have the same referent in
this situation (the particular cup), but they have different senses. The
senses of words are usually disambiguated cross-situationally. The sense
of a word is encoded in its meaning, i.e. in the concept linked with the
word.

“refers to”/“denotes” : In a general sense (such as in these term defi-
nitions), we use these terms for form-meaning mappings, e.g. we can
say that a word denotes or refers to some meaning. In connection with
a particular act of semiosis of the modeled agents, we will use these
terms for form-referent and/or meaning-referent mappings too.

turalist). To keep things simple, we assume the reader’s good will and common sense.
22For more technical definition of reference, see Section 7.5.1.
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Chapter 3

The Origin of Meanings in
Living Systems

3.1 Phylogeny, Ontogeny, Glossogeny

Human language is a complex phenomenon that has been co-evolving on
different timescales (Takáč, 2003a):

Phylogenetic timescale. This is the scale of biological evolution that has
shaped genetically encoded physical and cognitive faculties necessary
for language production and understanding.

Ontogenetic timescale. This is the scale of individual language acquisi-
tion. Children are exposed to linguistic input in the form of externalized
utterances of members of their community – E-language. This input
shapes the individual’s internal representation of language – I-language,
which controls production and interpretation of sentences of the ac-
quired language (Chomsky, 1986).1

Historical/Glossogenetic timescale. The glossogenetic2 scale is the scale
of vertical (from parents/caregivers to children) and horizontal (among
peer members of a language community) cultural transmission of lan-
guage (see below). Languages are not transmitted as petrified systems,
but they themselves undergo changes and evolve (Deacon, 1997; Kirby

1According to Chomsky (1980), the large part of the language competence that codes
universal grammatical features (principles) is innate, see also Kvasnička and Posṕıchal
(2005). An innate language acquisition device (LAD) controls the ontogenetic process of
setting a finite number of language-specific parameters, based on the linguistic input.

2The term “glossogenetic” that refers to the historical timescale over which languages
change was coined by Kirby and Hurford (1997).
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and Hurford, 2001), e.g. neologisms appear and archaisms disappear,
some elements of syntax simplify and get regularized, etc.

Cultural transmission of language is a non-genetic evolutionary process
characterized by reproduction, variation and selection in the following sense
(Takáč, 2005a):

Reproduction. The evolving structures are preserved in memories of in-
dividuals rather than in genes. The transmission of the structures is
realized by behavioral imitation rather than inheritance.

Variation. The imitation/acquisition process is noisy and prone to errors
(e.g. overgeneralization or overspecialization) and deliberate innova-
tions of speakers.

Selection. The evolving product is the result of (often conflicting) selection
pressures of maximization of communication success, minimization of
cognitive processing and memory load, temporal effectivity and con-
straints of sensory-motor apparatus.

The processes on different timescales do not work in isolation, but are cou-
pled and determine each other. The emerging structure of a glosogenetically
evolving language is constrained by the ontogenetic process of language acqui-
sition, which is in turn determined by innate learning mechanisms (Briscoe,
2001).

In this thesis, our primary focus is on meanings. Although the language
acquisition process can be viewed as a problem of acquiring correct mappings
between elements of overt form, such as words, sentences, gestures, etc. and
covert meanings (Langacker, 1991a), we rather view language as a system of
triadic semiotic signs (see Section 2.1.5). Within this view, we can study links
between any two vertices of the semiotic triangle and mutually interacting
processes of their establishment.

3.2 Preverbal Meanings

Meanings, as mental concepts, are taken to be inborn (Fodor, 1981; Rybár,
2005), acquired in the course of interaction with the world (Bloom, 2000),
or formed by the influence of language itself (Whorf, 1956). If we took an
extreme view that all concepts exist in advance, language acquisition would
be just a labeling problem – learning the names for existing concepts. If we
took the opposite extreme view, no thinking could exist without a language.
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We agree with Šefránek (2002)3 in that at least some meanings, in the
form of embodied knowledge coming from perceiving and acting in the en-
vironment, are separated from language, because they can be found in pre-
linguistic organisms both in phylogeny – in animals (Kováč, 2000) and on-
togeny – in preverbal infants (Piaget and Inhelder, 1966; Spelke, 1990). We
take a stance that some concepts are innate, others emerge in the process
of sensory-motor interaction with the environment, and yet another ones are
formed or reformed by the influence of the language. In the computational
modeling part of this thesis, we account for construction of preverbal mean-
ings by sensory-motor interaction (Chapter 9) and construction of lexical
meanings by verbal instruction (Chapter 10). Computational models of the
origin of innate meanings are based on evolutionary algorithms (Kvasnička
et al., 2000). An example of such a model can be found in Section 4.3.2.

3.2.1 Phylogenetic Precursors: Signifaction

In this section, we focus on the origin of preverbal meanings, i.e. on the origin
of the referent-meaning (object-interpretant) relation of the semiotic trian-
gle. The foregoing study concerns individuals situated in an environment,
achieving their goals by sensing and acting. In line with Kelemen (1994), we
will call such individuals agents.4

Some scientists, e.g. de Chardin (1956); Goodwin (1978); Kováč (1986),
trace/postulate elementary forms of cognition on very deep levels of the phy-
logenetic tree, even on bacterial, cellular and molecular levels (Kováč, 2006).

Some of the systems that appeared in the course of evolution have per-
sisted, because their structure reflected relevant characteristics of their envi-
ronment. Biological evolution consists in generation of hypotheses about the
nature of the environment, in falsifying these hypotheses, and in maintaining
the hypotheses that have not been falsified (Kováč, 1986).

Hence, evolutionary adaptation of organisms can be viewed as a form
of phylogenetic learning with knowledge being encoded in their structure.
The chances of persisting are higher for organisms that actively explore their
environment and adapt to it or adjust it by their behavior. Each organism
recognizes5 the environmental aspects that are significant for itself.

In the most elementary sense, agents attribute meaning to parts of their

3See Section 2.4.6.
4Although, in this section, we apply the term agents to living organisms, later we will

extrapolate the same principles (and apply the same terms) to artificially created systems.
5Once the environmental knowledge is built in the structure of the organism, it is

a deterministic process of recognition, rather than non-deterministic cognition (Kováč,
1986).
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environment by recognizing, via their sensors and actuators, information
useful for achieving their goals (Nehaniv, 2000; Šefránek et al., 2007).6 Proto-
creation of meanings in the form of recognition of relevant aspects of the
environment is called signifaction by Kováč (2003).

The simplest cognitive systems only consist of the mechanisms of sensing
and actuating their environment. More complex cognitive mechanisms – per-
ception, affection and cogitation – are gradually interjected between sensing
and actuating in the process of intercalary evolution (Kováč, 2003).

Thinking appears on the highest stages of evolution as an abstract ac-
tion – testing of various motor acts without actually involving the muscles.7

“What-if” thinking – the ability to mentally simulate various scenarios and
evaluate their consequences without the necessity to realize them physically
increased the survival chances of organisms and provided them with a signif-
icant evolutionary advantage.

3.2.2 Cued and Detached Representations

Gärdenfors (1996a) distinguishes between two kinds of representations: cued
and detached. A cued representation must always be triggered by something
present in the current situation. An organism reacting to certain states
of its environment in certain ways (e.g. eating objects recognized as food
and avoiding objects recognized as predators) performs categorization and
possesses cued representations of the respective categories. However, these
representations are only activated in the presence of their referents. Cued
representations observable as non-volitional behavioral reactions are innate
and have evolved phylogenetically.

A significant mechanism that enhances the limited memory of an organ-
ism consists in putting externalized marks in the environment, for example
effluvial marks that help animals in orientation (or a notoriously known knot
in the handkerchief as a “don’t forget” sign). In these cases, a mark put in
the environment later triggers the respective cued representation.

A detached representation may stand for objects and events neither present
nor triggered by anything in the current situation of the organism. For exam-
ple, a chimp looking for a (non-present) twig to reach for a banana possesses
a detached representation of a twig and its use.

It is speculated that the appearance of detached representations in phy-
logeny co-occurs with the development of neocortex (Gärdenfors, 1996b); in

6But see the discussion about when recognitional abilities can be referred to as “mean-
ings”, Section 2.4.6.

7See also Wiedermann (2007) for a computational account on the emergence of higher
cognitive functions in an artificial agent.
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ontogeny it corresponds to object permanence (Piaget and Inhelder, 1966).

Possession of detached representation is a necessary condition for higher
cognitive functions such as planning, deception, self-awareness and linguistic
communication (Gärdenfors, 1996a). Planning presupposes the organism’s
ability to “mentally” (i.e. on the level of detached representations) eval-
uate expected consequences of various behavioral scenarios and choose the
sequence of actions that suits best its current goals. Good planning should
also take into account consequences of actions of other agents. Deception
presupposes representation of other agents as having their own representa-
tions, plans, etc. (i.e. sort of a “theory of mind”). Also, a lier must have a
representation of how he will be viewed by the deceived agent. In this way,
he has a representation of a representation of himself, which is a necessary
precursor of self-awareness (Gärdenfors, 1996a; Beňušková, 2002a).

3.3 Linguistic Meanings

The linguistic competence is considered one of the highest cognitive functions.
Language is a symbolic sign system that enables externalization and com-
munication of detached representations. Thanks to its detached nature, it
enables talking about things not present here and now, even about things that
cannot exist physically. According to Gärdenfors (2004), language evolved
in order to make cooperation about future goals possible.

However, this seems to create a paradox: cooperation requires socially
shared meanings, but each communication participant has its own individual
meanings. How can the participants understand each other? There are
several answers to this paradox.

First, although individual meanings are not identical, they must be suf-
ficiently similar thanks to similar learning mechanisms and experiences in a
shared environment (Steels et al., 2002). If the meanings are not sufficiently
similar, the communication ends up in misunderstanding.

Second, the intended meaning of the speaker is inherently ambiguous:
it cannot be transferred, but it must be inferred by the hearer from the
pragmatic context. Inference of the meaning is problematic, as it has been
stated by Quine (1960) in the famous Gavagai problem:

Suppose we have a linguist observing a native speaker of a
foreign language pointing to a rabbit and saying ‘Gavagai’. The
linguist cannot be sure what ‘Gavagai’ means, because it could
mean ‘rabbit’, ‘animal’, ‘white’, ‘fur’ and many other things.
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Ostensive definition8 has also been criticized by Wittgenstein (1953). If
someone points to two nuts while saying “This is called two”, the listener
cannot determine whether the word “two” means the number of items, the
type of nut, or their color, unless he has already had an understanding of the
process and context involved. Another solution is that an ostensive definition
can be variously interpreted in every case. In Section 3.3.3, we review several
developmental strategies that help children tackle this problem.

Third, common social meanings can be viewed as constantly renegotiated
moving equilibria emerging from the process of mutual coordination of indi-
vidual meanings of language users (Gärdenfors, 2000). This self-organizing
process was modeled by Steels (2000), showing how a globally coherent lan-
guage can emerge from scratch as a result of local interactions of language
users. The community of language users was modeled by a multi-agent sys-
tem, in which agents (simulated or embodied in real robots) played various
types of language games by picking a topic from the environment and de-
scribing it with a chosen linguistic form (see Section 4.4.1). In the course of
time, each agent adapted its linguistic behavior according to the history of
previous interactions. A positive feedback between the selection of a language
form and its success in use resulted in self-organization and the emergence
of a coherent lexicon.

3.3.1 Linguistic Determinism

Linguistic meanings are not isolated, but they are interwoven in a conceptual
system. This motivated some thinkers, stemming back to Wilhelm von Hum-
boldt (1820/1997) to postulate that language shapes thought. This idea was
further developed by Edward Sapir and his student Benjamin Lee Whorf and
has become known as Sapir-Whorf hypothesis (Sapir, 1949; Whorf, 1956) con-
sisting of statements of linguistic determinism and relativity. Several versions
of these statements have been proposed and debated. Basically, the principle
of linguistic relativity states that different languages mediate different world
views and subtle differences in meanings in one language cannot be easily ex-
pressed in another language. Strong version of linguistic determinism states
that language (completely) determines our thought. This version has been a
subject of many controversies and is commonly thought to be incorrect now.
Weaker version of linguistic determinism, stating that language affects our
thought, has been supported by many experiments focusing on whether (cul-
tural) differences in extra-linguistic processes correlate with and depend on

8An ostensive definition conveys the meaning of a term by pointing out examples. It
is usually accompanied with a gesture pointing out the object serving as an example, e.g.
defining “red” by pointing out red objects – apples, stop signs, roses.
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differences in linguistic structures (Kay and Kempton, 1984). Results of these
experiments have confirmed that there are clearly some measurable effects of
the language structure on cognition. In experimental cognitive tasks, speak-
ers of different languages have shown different forms of class generalizations,
conceptions of time, spatial orientation systems, color similarity judgments,
reaction times and priming effects. References and details of experiments
can be found in Feldman (2006, Chap. 15).

Observation of a linguistic behavior of an individual can tell us a lot about
his/her conceptual system. This methodology can be extended to a common
conceptual system of a community. Language use reveals as a specific in-
terpretation of the world shared by a community – its language world view
(Bartmiński and Tokarski, 1986). Meaning of a linguistic expression and the
corresponding conceptual structures behind it can be deduced from the con-
texts of its use by a linguistic community. This methodology was used e.g.
by Lakoff (1987) in his famous case study of anger and by Vaňková et al.
(2005) for analysis of Czech language world view.

3.3.2 The Influence of Naming on Concept Formation

An aspect of linguistic determinism most interesting for the purposes of this
thesis is the influence of language on concept formation process.

In the experiment carried out by Waxman and Braun (2005), the authors
show that naming highlights commonalities among objects for infants and
help them to organize objects into categories. The experiment was conducted
with 12-month-old infants. In the familiarization phase, the infants were
offered objects from a given set (e.g. four different animals) one at a time,
in random order. Each infant was assigned to one of three conditions (see
Figure 3.1). In the No Word (control) condition, the experimenter drew
the infant’s attention to each object but offered no label, saying, e.g. “Look!
Look here!” In the Consistent Noun condition, she said, “Look! It’s a(n) X!”,
using the same nonce noun throughout the familiarization trial for a given
set. In the Variable Noun condition, she said, “It’s a(n) X!”, presenting a
different nonce noun for each named object within a given set.

In the test phase, infants in all conditions were simultaneously presented
two test objects: a new member of the supposed now-familiar category (e.g.
another animal) and an object from a novel category (e.g. a tool). The
experimenter held the objects in front of the infant, saying “Look! See what
I have?” and then the infant was allowed to manipulate the objects freely
for certain time. The total manipulation time for each of the objects was
measured. If the infant formed a category, he/she should preferably attend
to the test object not in the category and the manipulation time for this
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Figure 3.1: An experiment focused on influence of naming on object category
formation. A representative sample of the objects and instructions in each
condition. The picture is taken from Waxman and Braun (2005).

test object should be significantly longer than for the other. The significant
novelty-preference occurred in the Consistent Noun condition, while in the
No Word and Variable Noun conditions it did not exceed the chance level.
This suggests that, in the two latter conditions, the infants failed to form
a category. The experiment focused on superordinate level categories (e.g.
animal) because the effect of naming has been most apparent here (at the
basic level, e.g. horse, the infants formed categories successfully even in the
No Word control condition).

In several variants of this experiment, Waxman (2004) tries to clarify how
exactly naming influences the children’s conceptual organization and sup-
ports discovery of novel concepts. She compares the effect of naming with a
non-linguistic attention-drawing sound and also uses different grammatical
forms (nouns and adjectives, e.g. “this is a blicket”, “this one is blickish”)
to show that even 14-month-old infants start to be sensitive to grammati-
cal clues. Different kinds of words direct the infant’s attention to different
aspects of the same scene: nouns highlight category-based commonalities,
while adjectives highlight property-based ones.

Waxman concludes that naming definitely has the effect on category for-
mation: using distinct names for distinct objects motivates looking for dif-
ferences and supports individuation, while using the same name for distinct
objects motivates looking for similarities and supports categorization. Booth
and Waxman (2002) speculate that object names are salient for infants be-
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cause they support communication, predictions about objects in the vicinity
and induction of their non-obvious properties, as well as provide better means
for reaching desired goals.

A general conclusion that can be drawn from these experiments is that, in
children, the processes of language acquisition and meaning formation are not
independent, but coupled. In Chapter 10, we present our own computational
model of category formation supported by naming. By means of synthetic
modeling, we try to verify the hypothesis about the influence of naming
on category formation process suggested by the empirical experiments we
have just described. The important novel contribution of our model is that
meanings of words are not only whole objects, but also their properties,
mutual relations and dynamic changes in time.

3.3.3 The Inference of Meanings

In bootstrapping a language from scratch, it is particularly important to
establish shared meanings of referential expressions, such as names, nouns
and adjectives (Gärdenfors, 2004). This happens by referential (labeling)
acts that draw attention to objects present on the scene of communication,
with the help of non-verbal means such as pointing, gaze following or joint
attention (Tomasello and Farrar, 1986). The whole matter is complicated by
the fact that a word uttered along with a non-verbal reference to an object
can label the object, any of its parts or properties, its superordinate class
and many other things (Quine, 1960). Children use several strategies to
overcome this problem: they assume that novel words refer to whole objects
(Markman, 1992), that a novel word cannot name an object that already
has a name (the mutual exclusivity constraint, Markman, 1992, 1989), that
any difference in form marks a difference in the meaning (the principle of
contrast, Clark, 1987). They also disambiguate meanings by occurrences of
their referents in multiple situations (Akhtar and Montague, 1999; Waxman
and Braun, 2005).
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Chapter 4

Meanings in Artificial Systems

In previous chapter, we provided an evolutionary view on the origin of mean-
ings in living systems. The nature and origin of meanings is also an important
issue in artificial systems and various computational models. We have seen
that attribution of “understanding” to artificial systems is a very controver-
sial matter and is connected with certain problems (see Section 1.1).

In this chapter, we review several computational models of various aspects
of communication, language origins and language acquisition. We compare
the representations of meanings in these models with respect to their expres-
sive power, the ability to cope with the Symbol Grounding Problem (Harnad,
1990) and several other related criteria.

For evaluation of models, we will consider the following aspects:1

1. Is there any environment in the model that the agents interact with?
Is the environment simulated or real (i.e., are the agents embodied in
robots)?

2. Are meanings individual, or identical for all the agents? Are they
fixed and innate (given beforehand), or constructed and continuously
incrementally updated?

3. What is the type of representation of meanings (predicate logics, vec-
tors, neural networks, prototypes, discrimination trees, etc.)?

4. What kinds of concepts can be represented (static objects, properties,
changes, actions, events, situations, etc.)?

1Not all the listed questions are relevant for each model.
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5. Do concepts (categories) have sharp, or fuzzy boundaries? Can they
overlap?

6. Does the representation support synonyms, homonyms and hierarchical
relations among concepts?

7. Is the representation sensitive to multidimensional concepts based on
inter-correlations of attributes?

8. If the meanings are not fixed, what is the driving force of their adapta-
tion (evolutionary fitness, pragmatic feedback, success in discrimination
task, observation of coincidences, etc.)?

9. In communication, do agents have a direct access to internal represen-
tations of meanings of other agents (“telepathy”)?

All the presented models are simplified in some aspects, often deliberately.
We need to emphasize that this is not necessarily a fault, as long as the
models abstract away from aspects not directly relevant to the research goal
of the modelers. Keeping the number of intervening parameters small is
important for correct interpretation of simulation results and for identifying
causal dependencies in the model.

Our selection of models is not meant to be exhaustive. We have chosen
several models to illustrate various possibilities of meaning representation
and problems that the chosen representations bring with. In describing the
models, we deliberately do not go into more detail than necessary for our
purpose. For details, we refer the reader to the original literature.

The reviewed models could be ordered in several ways; we have chosen
the order by a type of meaning representation, then by a modeling goal.
Anyway, several models span over more than one category.

4.1 Procedural Representation and Rules

4.1.1 Natural Language Understanding

ELIZA

ELIZA was a program written by Joseph Weizenbaum (1966) in 1964-66 at
the M.I.T.2 It carried on conversations with a user in the manner of non-
directive Rogerian psychotherapy (Rogers, 1951). As such, it was not sup-
posed to initiate new themes in the conversation and could do with mostly
reformulating and mirroring sentences of the user.

2Massachusetts Institute of Technology.
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Computationally, ELIZA had to parse the input from the user to find
the most important keywords to which it should respond, then use rules and
templates to transform the input (e.g. turn “I” into “you”) into a response
that echoed the input statement or asked for more discussion around the
keyword. In the case it was unable to identify any keywords in the user’s
input, it generated a neutral phrase that could sound reasonable.

Evaluation. Although ELIZA got a good public reception initially, and
some users even became emotionally attached to it (Weizenbaum, 1976), it is
hardly possible to talk about any “meanings” or “understanding” in ELIZA.
It had no model of the outside world, nor it used any semantic representation
of the conversation. Even there was no goal or overall script of the conver-
sation: ELIZA was purely reactive according to the list of preprogrammed
transformational and decomposition rules and it had no learning abilities.

SHRDLU

SHRDLU is a program for understanding natural language, written by Terry
Winograd at the M.I.T. AI Laboratory in 1968-70 and described in his dis-
sertation (Winograd, 1971). The program was considered an extremely suc-
cessful early demonstration of the power of AI.

The program allows a user to converse about a simulated (visualized)
simple “block world” consisting of 3D shapes of various colors and sizes, in
which SHRDLU acts as a robot with an eye and a magnetic hand. The user
can give SHRDLU commands to manipulate the objects in the block world,
e.g. “Find a block that is taller than the one you are holding and put it into
the box.” or ask it questions about the world or about history of its actions
and its own “mind”, e.g. “How many blocks are not in the box?” or “When
did you picked up the pyramid and why?”. The effects of SHRDLU’s actions
are visualized on the screen. SHRDLU is sensitive to context references,
able to resolve ambiguities and make inferences about the world. It is also
able to learn simple facts about what kinds of objects the user likes/dislikes,
learn definitions of novel words and use them in further interactions, e.g. “A
steeple is a pyramid on top of a block.” and then “How many steeples are
there on the table?”.

SHRDLU, written in LISP, consists of mutually interacting modules of
syntax, semantics and inference. The inference mechanism, used both for
directing the parsing process and for deducing facts about the block world,
is realized by the deductive system MICRO-PLANNER (Sussman and Wino-
grad, 1970), which is the core of SHRDLU functioning. Unlike other theorem
provers that handle assertions in predicate calculus, MICRO-PLANNER is a
goal-oriented procedural language that also interprets procedural knowledge
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used for controlling the inference process. SHRDLU maintains an internal
model of the world in the form of a collection of MICRO-PLANNER theorems
representing the properties and state of the different blocks, e.g. (#COLOR

:BOX #WHITE), or (#AT :B5 (400 600 200)), or (#GRASPING :SHRDLU :B2).

SHRDLU can perform actions in the block world. Elementary actions
#GRASP, #UNGRASP, #MOVETO are directly connected with routines for visual-
ization of the simulated block world. More complex actions are constructed
as plans (MICRO-PLANNER programs).

Semantic knowledge about the meanings of words is represented in the
form of MICRO-PLANNER programs, e.g. the meaning of “red cube” is the
program for verification that the object bound to the variable X1 is a red
block with equal dimensions:

(THPROG (X1)

(THGOAL (#IS $?X1 #BLOCK))

(#EQDIM $?X1)

(THGOAL (#COLOR $?X1 #RED)))

The meaning of the word “one” is either the number 1, or the program
that looks in the history of the dialog for a context reference (depending on
the result of syntactic analysis, whether “one” is a noun or a number).

The semantic module is a collection of LISP programs that look at the
syntactic structures as well as meanings of words and combine them into
MICRO-PLANNER programs. The syntactic parsing of sentences is main-
tained by the module called PROGRAMMAR, which implements the so-
called systemic grammar approach to parsing that emphasizes mutual rela-
tions of symbolic units and their function in the process of understanding
(Rubin, 1973).

Evaluation. We can say that SHRDLU’s knowledge is partially repre-
sented as predicate-logic clauses and partially as procedures operating on the
clauses. The atoms of the representation, such as :SHRDLU, #RED, #COLOR,
are symbolic and given beforehand. Limited learning ability of SHRDLU
consists in adding new assertions to the world model, based on the user’s in-
put and the history of actions in the block world. In the sense that SHRDLU
can perform in the simulated world actions specified by linguistic commands
and answer correctly questions about the status of the blocks world, it shows
what could be called limited understanding of its virtual environment and a
small subdomain of the language.
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INROOM(ROBOT,R1)

CONNECTS(D1,R1,R2)

CONNECTS(D2,R2,R3)

BOX(BOX1)

INROOM(BOX1,R2)

...

(∀x∀y∀z)[CONNECTS(x, y, z)⇒ CONNECTS(x, z, y)]

Figure 4.1: An example of the axiomatic model of Shakey’s world Nilsson
(taken from 1984).

4.2 Predicate Logic

4.2.1 A Mobile Robot Shakey

Shakey was developed in the Stanford Research Institute in 1966-72. It
was the first mobile robot able to reason about its actions. Shakey had a
TV camera and a triangulating range finder in a movable head, and bump
sensors. It had two stepping motors driving its wheels and other motors to
control the camera focus and the tilt angle of the head. It was connected
to DEC PDP-10 and PDP-15 computers via radio and video links (Nilsson,
1984).

Shakey could move on flat surfaces between office rooms and perform
simple tasks that required planning, route-finding and rearranging of sim-
ple objects. It maintained an axiomatic model of its world (see Figure 4.1)
and used a hierarchy of programs for perception (including simple vision),
world-modeling, and acting. Low-level routines, represented by symbolic
commands with parameters, e.g. TILT numberOfDegrees, provided the in-
terface between the robot’s hardware and higher-level software and took
care of simple moving, turning, panning and taking a TV picture. Ax-
iomatic predicates of this level represented the robot’s low-level state, e.g.
(AT ROBOT xfeet yfeet) or (TILT ROBOT degreesUp). Intermediate level
actions were described in terms of going to a specified place or pushing an ob-
ject from one place to another, e.g. GOTHRUDR(DOOR FRROMRM TORM) moves
the robot from room FROMRM to room TORM via door DOOR.

On the highest level, Shakey used a planning system STRIPS3 (Fikes and

3Acronym for STanford Research Institute Problem Solver.
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Operator:
GOTHRU(d, r1, r2)

Preconditions:
INROOM(ROBOT, r1) ∧ CONNECTS(d, r1, r2)

Delete List:
INROOM(ROBOT, $)

Add List:
INROOM(ROBOT, r2)

Figure 4.2: An example of operator specification in STRIPS. Strings begin-
ning with lower-case letters are parameters, $ denotes an arbitrary value.
The example is taken from Nilsson (1984).

Nilsson, 1971) that could chain together intermediate-level actions into plans
and execute them to achieve goals given by a user. The goals were specified as
first-order predicate logic formulas.4 In order to plan a sequence of actions
that would change the world in such a way that the current goal formula
is true in the changed world model, STRIPS needed to know the effects
of each action. The model of each action, called the operator, consisted of
preconditions (formulas that were required to be true in the world model
for the operator to be applicable) and postconditions in the form of an add
list and a delete list. The effect of applying the operator to a world model
consisted in deleting from the model all those clauses specified by the delete
list and adding to the model all those clauses specified by the add list (see
Figure 4.2).

STRIPS also had some learning abilities – it was able to generalize plans
by using parametrized operators and by identifying subsequences of actions
necessary for the success of the new plan. It saved these generalized plans
for possible future use.

Evaluation. Shakey was a physically realized robot, situated in the real
(albeit simplified) environment, that was interacting with the world via its
sensors and motors. Its (mostly preprogrammed) knowledge about the world
was represented by symbolic first-order predicate logic formulas. It “under-
stood” the world around to the extent that it possessed the representation
of consequences of its actions and used it to plan actions in order to achieve
goals by modifying the environment.

4Actually, users gave instructions in simplified English, e.g. “USE BOX 2 TO
BLOCK DOOR DPDPCLK FROM ROOM RCLK.” and the statements were subse-
quently converted by the system ENGROB (Coles, 1969) to first-order logic formulas,
e.g. BLOCKED(DPDPCLK,RCLK,BOX2).
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4.2.2 ILM: Modeling the Emergence of Grammar

The iterated learning model (ILM) framework (Kirby and Hurford, 2001) has
been designed for modeling the emergence of compositional structures (gram-
mar) in a language by means of cultural transmission. The model usually
consists of two agents – an adult teacher and an infant learner. The teacher
uses its language competence5 to generate a linguistic input for the learner
in the form of utterance/meaning pairs. The learner, initially having no
knowledge of the target language, uses this input to induce its own linguis-
tic competence. Later, the original teacher is removed from the population,
the learner becomes a teacher for the next-generation learner and the whole
process iterates. The key result of the ILM models is that, in the process of
iterated cultural transmission, language itself undergoes changes and adapts
for better transmission by incorporating structural regularities.

There are many instantiations of ILM framework; here we review one
of the experiments that use predicate logic for representation of meanings.
In the experiment of Kirby (2000), meanings were drawn from a predefined
meaning pool common to all agents. Meanings were compositions of symbolic
atoms divided into two classes:

Objects = {Mike, John,Mary, Tunde, Zoltan}

and
Actions = {Loves,Knows,Hates, Likes, F inds} .

Each meaning was a triple 〈Agent ,Patient ,Predicate〉, wherein only atoms of
the type Object could stand for the Agent and the Patient, and only atoms of
the type Action could stand for the Predicate. Within these type restrictions,
the atoms could be combined to form the total of 100 meanings.6 In a
more readable fashion, the meanings could be written as predicate-argument
propositions Predicate(Agent ,Patient).7

The meaning space was given beforehand and did not change during the
simulation. In the production phase of an iteration, the adult agent was given
a random subset of the meaning space and had to produce utterance/meaning
pairs for each meaning in the subset. Utterances were generated by the adult
agent’s grammar that embodied its linguistic competence. The production

5The first-generation teacher has no linguistic competence either. However, it uses an
invention mechanism and generates random strings for parts of a sentence that it otherwise
could not express.

6Reflexive meanings with the same atom substituted for both the Agent and Patient
were not allowed.

7In Kirby (2002), meanings were extended to include recursive structures such as
knows(john,eats(tiger,john)).
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Figure 4.3: The Iterated Learning Model (ILM). The adult agent uses its
grammar to produce utterances for a randomly chosen subset of meaning
space. The produced utterance/meaning pairs are used by the infant agent
for grammar acquisition. After inducing a grammar, the learner becomes
an adult and produces a teaching input for the next-generation infant. The
whole process then iterates. The picture is taken from Kirby (2002).

included random invention in case the agent had no rule to generate a string
for some meaning or its part.

The utterance/meaning pairs served as the input for the induction of
the learner’s grammar8 (see Figure 4.3). The agents used a simple version
of a context-free definite clause grammar (DCG) enriched with statistical
information and semantic components. The grammar could encode holistic
rules as well as compositional ones (see Figure 4.4). After receiving a new
utterance/meaning pair, the agent stored it in the form of a holistic rule.
Holistic rules could later be subsumed (generalized) to compositional rules
by utilizing structural regularities that randomly occurred in the utterances.

Evaluation. In the reviewed experiment, the meanings were represented
by symbolic predicate-argument propositions. However, meanings were ex-
ternal to the agents, given beforehand, fixed and common to all the agents.
They bore no relation to any environment; in fact, there was no environment
at all in this experiment. The agent’s task was to learn a mapping between

8Each agent initially started with an empty grammar.
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A holistic rule:
S/eats(tiger, john) → tigereatsjohn

Compositional rules:
S/p(x,y) → N/x V/p N/y
V/eats → eats

N/tiger → tiger

N/john → john

Figure 4.4: Holistic and compositional portions of an example DCG gram-
mar used in ILM. Capital letters denote non-terminals and typewriter-style
strings denote terminals (substrings of a generated utterance). Lower-case
italic variables denote preterminals that can be substituted with semantic
components (parts of meanings, which are represented by strings after the
slashes and written in italic). The example is taken from Kirby (2002).

a static compositional code that the experimenters called meanings, and a
new emerging compositional system called syntax.

Another unrealistic assumption of this model was that, together with
an utterance, the learner received its meaning. This “telepathic” approach
created the signal redundancy paradox (Smith, 2003a): If the meanings are
directly transferable, then the signals are redundant.

4.3 Uninterpreted Scalars and Vectors

Omitting the environment and abstracting away semantic problems has been
quite common in computational models that primarily view the language
acquisition/evolution as the problem of acquisition/creation of correct map-
pings between signals and meanings.

4.3.1 Formal Models of Innate and Learned Commu-
nication

In the formal models of Oliphant (1997, 1999), communication is analyzed
in terms of relations between meanings and signals, where each meaning µ
is represented by an integer, e.g. 1, 2, 3, and each signal σ by a letter,
e.g. a, b, c.9 The communicative behavior of an individual is specified by

9A meaning is said to represent an associated pair ǫ, α of some environmental state ǫ

and an action α appropriate in the state ǫ, however the pair is never used in the course of
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two probability functions: transmission function s and reception function r,
where s(µ, σ) represents the probability that the signal σ will be sent for
a meaning µ, and r(σ, µ) represents the probability that a signal σ will be
interpreted as the meaning µ by the individual. Communication between
a sender and a receiver is successful, if the meaning of the sender’s signal,
as decoded by the receiver, is the same as the speaker’s intended meaning.
A measure of communicative accuracy is defined as an average probability
that any given meaning will be successfully communicated (between two
individuals, or in the whole population).

In Oliphant’s experiments, transmission and reception functions of in-
dividuals are encoded either in genome matrices in the models of innate
(genetically evolved) communicative behavior, or in various types of sim-
ple networks (Willshaw networks, Cummulative-Association Networks and
Hebbian networks)10 in the models of learned communicative behavior. The
experiments evaluate various learning strategies in terms of achieved com-
municative accuracy.

Evaluation. The models bring valuable theoretical insight into the prob-
lem of the acquisition of correct associations between meanings and signals.
However, the problem of meaning formation is abstracted away: meanings
are unstructured tokens (integers) given in advance, fixed and common for
all the agents, without a relation to any environment.

4.3.2 Emergence of Syntax

From the models of emergence of syntax that use uninterpreted binary vec-
tors as meanings, we have chosen the model of Kvasnička and Posṕıchal
(1999). The purpose of this model is to study a hypothesis that coordi-
nated communication together with grammar regularities are results of an
evolutionary process running in a population of agents. Cognitive devices of
agents are represented by neural networks, similarly to the model of Batali
(1998). The difference between the reviewed model and that of Batali is
that while the latter model studies the emergence of structural regularities
within one generation of neural networks, the former model is enlarged with
Baldwin effect (Baldwin, 1896) and Dawkins memes (Dawkins, 1976) within
the evolutionary process spanned over many generations.

Let us look at the model of Kvasnička and Posṕıchal (1999) in more detail
now. The experiments are performed with the population of 30 agents. Each
agent uses a simple neural network with one layer of hidden neurons for

experiments, nor there is any environment.
10For details, refer to the original source.
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coding meanings into signals and vice versa. Meanings are 8-dimensional
binary vectors ~y ∈ {0, 1}8 that model internal states of the agents. Meanings
have an internal structure; the set of allowed meaning vectors is the Cartesian
product11

A = {(1100), (0011), (0101), (1010)} × {(0110), (1001), (1100), (0011)} .

The meaning vectors are coded by speakers to strings of maximal length 10
composed of two symbols {a,b}.

Each neural network can be specified by its structure, connection weights
and thresholds. Such specification is used as the agent’s genome in the evo-
lutionary process. This deliberately vague specification allows to represent
several types of neural networks ranging from feed-forward to recurrent ones.
Hence, the population can be composed of agents equipped by neural net-
works with different architectures.

The evaluation of the fitness of an agent is based on its success in pairwise
communications with other agents (the success is inversely proportional to
the difference between speaker’s meaning and the meaning decoded by the
listener). The set of allowed meaning vectors A is divided into a training set
and a testing set. For all possible pairs speaker – listener all meaning vectors
from the training set are applied in elementary communication acts. During
the communication acts, the listener’s neural network is modified so that the
difference between the speaker’s and listener’s meaning vectors decreases.
At the end of the generation, a new population is created by quasi-random
selection of best-fitted networks that undergo small mutation. The offspring
inherits from parents only their initial weights and threshold coefficients, in
order to prevent Lamarckian inheritance.

To study the effect of Dawkins memes, each agent generates a training
set of “memes” in the form of meaning/signal pairs in the end of its life. This
set is inherited by the agent’s offspring, which is trained on it before entering
the communication acts.

The results of simulations have shown that:

1. in the course of evolution, the decoded meanings gradually get closer
to meaning vectors of speakers and all the agents gradually start to use
the same vocabulary for the common communication,

2. regularities in meaning vectors are manifested also in the structure of
signals (similar parts of meaning vectors are coded by similar symbol

11Batali (1998) suggests that such vectors can be interpreted as predicate-argument
clauses. This interpretation is not used in the reviewed model.
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substrings); this is considered a manifestation of an emergence of a
grammar system,

3. for the emergence of coordinated communication, the inclusion of memes
is of primary importance.

Evaluation. This model is an important step toward understanding
the roles of Darwinian evolution and cultural transmission of memes in the
emergence of syntax. However, with respect to our criteria put on meanings,
the model contains many simplifications. First, there is no environment in
the model. The meanings are external to the agents, predefined and fixed
during the whole experiment. Second, the model relies on the unrealistic
assumption that the listener has a direct access to the speaker’s internal
state (the meaning). It is used both for training from the meme set and for
adapting the listener’s network during the communication acts. Although
the authors presume that the listener can find out the internal state of the
speaker because it corresponds to some external surrounding reality which
can be determined also by the listener, the inference of meaning from a
situation is not easy and is subject to referential indeterminacy or Gavagai
problem (see Section 3.3).

4.4 Regions in a Space

In this section, we describe several models that consist of agents perceiving
a shared environment through their sensors. A common feature of these
models is that meanings are represented by regions in some geometrical space,
typically a space defined over possible sensor values. Moreover, meanings are
not externally given in these models, but created individually by each agent.

The agents are either software entities in a simulated environment, or
programs embodied in real robots operating in a real environment. Each
agent senses its environment through a set of sensors that give readings
{s1, . . . , sn} with ranges si ∈ Di (in most of the experiments, normed ranges
Di = (0, 1) are used for all sensors).12 Meanings then typically represent
classes of sensor readings that should be treated equally with respect to some
purpose. These classes form regions either in single-sensor 1-dimensional
spaces Di, or in the multidimensional space D1× . . .×Dn in case that tuples
of all sensor values are considered simultaneously.

12A tuple of sensor readings can represent the whole perceived scene that possibly con-
sists of several objects. However, in many models, sensor readings are preprocessed in
that a separate n-tuple is given for each object in the agent’s vicinity.
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4.4.1 Games the Agents Play

The agents enter into mutual interactions called language games that proceed
in rounds. In each round, one agent is selected as a speaker and another as a
hearer. A typical communicative goal of the speaker is to uniquely identify a
particular object present in the environment, chosen as the topic. All other
objects concurrently present in the environment form the context.

The speaker first plays a discrimination game (Steels and Kaplan, 1999)
in order to find among its internal meanings one that distinguishes the topic
from all other objects in the context. In case of failure, the representation
of meanings is refined. In case of success, the speaker tries to lexicalize the
selected meanings.

The lexicon of an agent typically consists of many-to-many associations
between words (strings of characters) and meanings. Each association has a
strength expressed by a positive real number. The agent learns associations
between words and meanings by manipulating the strengths of the associa-
tions based on success/failure in language games or on noticing word-meaning
co-occurrences. There are several variants of how this can happen:

• In the guessing game (Steels and Kaplan, 1999), the speaker utters
an expression and the hearer tries to guess what referent the speaker
names. Afterwards, the hearer receives a feedback indicating whether
its guess was correct or not.

• In the observational game (Oliphant, 1997), the speaker narrows down
the set of possible referents by e.g. pointing, and the hearer adapts its
lexicon by Hebbian learning. In case there are still more than one can-
didate left, the hearer associates the speaker’s verbal description with
each of the candidates (the hearer receives no feedback in this case).
Meanings can then be disambiguated cross-situationally (Siskind, 1996;
Smith, 2005a).

In all the models, the hearer’s inference of the meaning is constrained by
the assumption that the scene only contains one referent of the speaker’s
utterance (semantic hypotheses with more referents are excluded from con-
sideration). In some models, the hearer also assumes mutual exclusivity, i.e.
it excludes from consideration all those objects on the scene, for which it
already knows an appropriate word (Smith, 2005b).

Now we will review several possibilities of representation of meanings by
regions in the sensor space in more detail.
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Figure 4.5: Splitting a discrimination tree. The range of the sensor is repeat-
edly split into halves. Note that the tree does not have to be balanced. The
resulting density of the splits depends on a particular history of discrimina-
tion games in particular environmental contexts. The picture is taken from
Bod́ık and Takáč (2003), where we modeled the emergence of a common
spatial lexicon in agents traveling over the lattice.

4.4.2 Discrimination Trees

One possibility of partitioning the sensor spaces is via discrimination trees
(Steels, 1997), which are used in models of language formation based on
computer simulations (Bod́ık and Takáč, 2003; Smith, 2003a, 2005a) or ex-
periments with real robots (de Jong and Vogt, 1998; Steels and Vogt, 1997;
Steels and Kaplan, 1999; Steels, 1999; Steels et al., 2002). For each sensory
channel, the agent constructs a separate binary discrimination tree. Nodes
of the tree represent subintervals of the corresponding sensor’s range. They
determine the granularity of the agent’s representation: all sensor readings
that fall within an interval of some node are treated equal.

Initially, each tree only consists of a root that represents the whole range
of the corresponding sensor, e.g. the interval [0, 1]. A node can spawn two
children that represent halves of their parent’s interval, e.g. [0, 0.5) and
[0.5, 1]. Upon failure in a discrimination game, agent randomly chooses a
node of some tree and splits its interval into halves by spawning two sub-
nodes (see Figure 4.5). The utility of each split is monitored by recording
its use and success in future discriminations. Environmentally irrelevant
(unused or unsuccessful) distinctions will be discarded.

We will illustrate this in more detail on a paradigmatic experiment Talking
Heads (Steels, 1999). The experimental setup consists of two pan-tilt cameras
in which different agents can be loaded. The agents loaded into the cameras
perceive a shared environment that consists of a magnetic white board on
which various geometric shapes of various colors are pasted: triangles, circles,
rectangles, etc. Agents are capable of segmenting the perceived image into
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objects and of collecting various characteristics about each object, specifically
the color (decomposed in RGB channels), grayscale, and position in pan/tilt
coordinates. Hence, each object on the scene is represented by a n-tuple of
(preprocessed) sensory values.

In this experiment, agents play guessing games. A speaker first selects
a topic and plays a discrimination game. It searches through each discrim-
ination tree and tries to find a node with the interval that contains the
corresponding sensor’s reading of only the topic (and no other object from
the context). If it cannot uniquely identify the topic by a node from a single
discrimination tree, it tries to combine nodes from several trees. In case of
success, the speaker verbalizes each of these meanings (each describing some
feature of the topic) by finding words associated with these meanings in the
lexicon. If a meaning is associated with several words, it can simply choose
the strongest association, or use the introspective obverter strategy (Smith,
2003b) by selecting the word that the speaker itself would best understand
as the meaning (if it does not have such a word, it can invent a random one).

The hearer then tries to decode the uttered words by inspecting associa-
tions stored in its own lexicon. After finding the associated meanings, it tries
to use them to uniquely identify some object on the scene, i.e. to guess the
object meant by the speaker. The speaker and hearer receive feedback about
the result of the game and adapt scores of their representations accordingly.
In case of failure, the speaker identifies the intended topic to the hearer by
pointing. Note that the evaluation of success in the game is based on a prag-
matic criterion of referent identity: the agents must agree upon an external
object, but each of them can use different internal meanings to represent the
object.

The experiment ran for 4 months in 1999. There were close to 6000
agents launched and they played 400000 grounded language games. The
agents started with empty lexicons and meaning repertoires. A shared lexicon
enabling successful communication emerged within a few days. A total of
8000 words and 500 concepts were created, with a core vocabulary consisting
of 100 basic words (Steels et al., 2002).

Evaluation. The discussed experiment Talking Heads is a practical
demonstration of the emergence of a common lexicon from scratch in a com-
munity of physically realized agents by means of purely horizontal interac-
tions within one generation of agents. The experiment explores the role of
cultural transmission in language evolution, as there is no genetic selection
in the model.

Each agent creates its meanings individually based on the interaction with
the real environment. The meanings are private, not available to other agents
and possibly different in each agent. The agents communicate about static
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objects currently present in their surrounding. Although the agents pos-
sess multiple sensory channels, they do not relate them multi-dimensionally.
Hence, meanings (nodes of trees) do not actually represent objects, but ab-
stractions over feature values. They can be situationally combined to refer
to objects, but a persistent representation encoding covariant properties is
not feasible in this model. Categories (intervals of feature values) have sharp
boundaries. They are mutually exclusive (non-overlapping) on the level of
leaf nodes of the tree – a particular object’s feature value can fall into just
one interval. The whole tree supports hierarchical relations (an interval of
a node higher in the tree includes intervals of its subtree). As the lexicon
contains many-to-many word/meaning associations, it supports synonymy
and homonymy.

Distinctions expressed by a discrimination tree are created situationally
and kept environmentally relevant (by pruning irrelevant branches). Actual
shape of the representation is optimized to the goal of success in discrimi-
nation games. Whether such a driving force leads to cognitively plausible
categories, is an open question. We discuss this issue in Section 4.4.5.

4.4.3 Situation Concepts

A situation concept is a subset of the possible histories of an agent’s interac-
tion with its environment with the property that knowing to which situation
concept the actual history of interaction corresponds, allows the agent to
predict some aspect of the future (de Jong, 1999). Each agent constructs sit-
uation concepts individually by observing patterns in the sequence of inputs
from the environment, its own actions, and subsequent evaluative13 feedback.
Situation concepts were used in the model of de Jong (2000) inspired by the
alarm call system of vervet monkeys described by Seyfarth et al. (1980). The
innate14 system of alarm calls enables vervet monkeys to distinguish three
types of predators: birds of prey, large mammals and snakes. Based on sig-
nals from other monkeys, a monkey can take the appropriate flight action
even if it did not detected the predator directly itself.

In de Jong’s experiments, five agents can move horizontally and vertically
on a grid. Each agent has three sensors: one (S1) indicating the type of a
predator that is present (or the absence of predators), two (S2 and S3) for the

13Evaluative feedback is available in the form of a numeric reward corresponding to
the appropriateness of the performed action. It should be distinguished from instructive
feedback, which consist in providing direct information about the appropriate (or required)
action. In the experiments described in this section, only evaluative feedback is at the
agents’ disposal.

14In the model, the set of signals and their meaning is learned.
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agent’s own horizontal and vertical coordinates. Actions consist of moving
horizontally one step left or right or staying (action dimension A1), and
selecting a vertical position (action dimension A2). A predator of random
type (three different types of predators exist) is created in 10% of the time
steps at a random horizontal position, provided no predator is present yet.
The vertical position of an agent determines whether it is safe from the
predator or not, and since the number of vertical positions is three, each
position corresponds to a single type of predator. The horizontal position
of an agent determines whether it can see the predator. The scope of the
agents’ perception amounts to 90% of the field; hence, for each agent, 10%
of the predators are expected to be invisible (de Jong, 1999).

If, during the presence of a predator, an agent is not in the safe row, it
will receive a zero reward (evaluative feedback). If it moves to the safe row,
it will be rewarded by 1.0. When no predator is present, staying at the same
place is rewarded by 1.0 and all the other choices of vertical movement are
rewarded by 0.5. Each agent starts with a 5-dimensional sensor-action space,
where each dimension corresponds to the whole range of possible sensor or
action values. During the experiment, each agent adaptively splits the whole
space into halves, depending on whether a split along a dimension leads
to a more uniform distribution of rewards between the two halves. The
history of all splits is represented by a tree (see Figure 4.6). Not all the
sensor dimensions are relevant for choosing the appropriate action: only
the sensor dimension indicating the predator type should correlate with the
chosen vertical position; all other dimensions are irrelevant. The agents
should discover this by utilizing the history of interactions and rewards.

In each time step, an agent receives signals from all the other agents indi-
cating the type of the perceived predator. Bayesian conditional probability
rule is then used by each agent to decide whether to rely on the observed
type of the predator, or the predator type decoded from the signals uttered
by the other agents.

Evaluation. De Jong’s experiments are conducted in a simulated envi-
ronment. The meanings represented by subregions in the state-action space
are individually created by each agent, based on the external pragmatic eval-
uative feedback. The concepts integrate situation and action categories in
that they support causal predictions of the effect of actions in a particular
situation (in terms of the expected yielded reward). All categories have sharp
boundaries (i.e., each input is categorized in one and only one category). The
representation supports hierarchic meanings in terms of nodes on different
levels of the tree. Unlike in the discrimination trees (see the previous sec-
tion), categories are formed as multidimensional regions in the state-action
space. Hence, they implicitly encode correlations between dimensions. The
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Figure 4.6: Situation concepts: De Jong’s representation of meanings in
a five-dimensional hyperspace using adaptive splitting to subspaces. Dis-
tinctions have been made in the S1 and A2 dimensions corresponding to a
perceived predator’s type and a move in the vertical direction. The picture
is taken from (Smith, 2003a).

driving force of the meaning formation process is the feedback about success
in the predefined task (to choose a particular action corresponding to the
type of the present predator). This learning mechanism has been criticized
(Smith, 2003a): failure in accomplishing the task could be fatal – the first
time an agent chooses a wrong action, it would be caught or killed. Hence,
the environmental feedback would not allow the agents to learn and to solve
the problem.

4.4.4 Prototypes

The general idea of prototypes comes from the empirical findings that some
exemplars of categories are more representative than others (Rosch, 1978).
In computational models, prototype representation allows for better cogni-
tive economy: only the best exemplars (prototypes) need to be remembered.
Category membership of any input is then determined by its distance from
prototypes in some geometric conceptual space (Gärdenfors, 2000, see Sec-
tion 2.4.5): each point of this space is considered a member of the category
represented by the spatially closest prototype (see Figure 2.1). Prototypes
were used as representation of meanings in experiments with software agents
in a simulated environment (Vogt, 2003a,b, 2005; Divina and Vogt, 2006;
Vogt and Divina, 2007) as well as with real robots (Vogt, 2000, 2002). We
will illustrate the usage of prototypes in more detail on the experiment con-
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ducted by Vogt (2002). In this experiment, language games are played by
two agents embodied in two mobile LOGO robots. The goal of a language
game is to communicate a name for one of light sources that the robots can
detect in their environment. Both robots first sense their surroundings, then
one of the robots takes the role of the speaker and the other takes the role
of the hearer. The speaker selects one sensation of a light source as the topic
and individually plays a discrimination game to find a unique category that
distinguishes the topic from the context – sensations of other present light
sources. Then it searches a word that it has associated with this category in
the past, and communicates this word to the hearer. The hearer, who has
also sensed several light sources, tries to interpret the communicated word.
The language game is successful when both robots communicated about the
same light source; in this case, the agents increase scores of the structures
and associations used in this game. If the language game was not a success,
the lexicon has to be adapted either by creating a new form (if the speaker
could not produce an utterance), by adopting the form (if the hearer could
not understand the utterance) or by decreasing association scores. In the
beginning of the experiments, the robots have no categories or words; these
are developed during the language games.

In the sensing phase, a stream of raw sensory data is preprocessed, so that
all perceived light sources can be represented by feature vectors of the same
length. Hence, the context of m perceived light sources {S0, . . . , Sm} can be

represented as m real-valued vectors/points
{

~f1, . . . , ~fm

}

in a n-dimensional
feature space F . Categories are regions in the feature space. Each point
of the feature space belongs to a category defined by the closest prototype.
Each agent maintains several versions {Fλ | λ = 0, 1, . . . , λmax} of the feature
space with different resolution of at most 3λ values on each dimension.

During the discrimination game, the agent categorizes the topic by finding
the set of closest prototypes {~c0, . . . ,~cλmax

} in all versions Fλ of the feature
space F . If no other light source from the context falls in the same category
set, the discrimination game is successful. If the category is used as the
meaning in a language game successfully, its prototype is shifted toward the
feature vector of the topic, so that the prototypical category becomes a more
representative sample of the feature vector it categorized. If the game fails,
some feature fi of the topic is randomly selected and a feature space Fλ

that has less then 3λ values on the i-th dimension is refined by adding new
prototypes ~cj = (x0, . . . , xn−1) where xi = fi and the other xr are made
of already existing prototypes in Fλ. All prototypes have several scores
associated, which are used during the selection process in language games.

Evaluation. Vogt’s experiments show how a coordinated grounded lexi-
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con can emerge in physically realized robots that communicate in real condi-
tions. Meanings are constructed individually by each agent from real sensory
data to represent currently present objects (light sources). More complex
meanings (relations, situations, events) are not feasible in this model. The
model supports synonyms and homonyms. The existence of multiple ver-
sions of the feature space can be seen as a support for hierarchical relations.
Categories within one version of the feature space have sharp boundaries.
Due to the prototype addition mechanism that has the same effect as split-
ting the feature space in half, categories have hyper-rectangular rather than
hypher-spheric shapes and correspond to multidimensional discrimination
trees. Some feature distinctions inherited due to this mechanism may be un-
necessary for some categories. Truly multidimensional categories can hardly
be represented in other way then by a bag of neighboring prototypes. Success
in discrimination games is the driving force of meaning creation.15

4.4.5 Discrimination Versus Identification

In most of the just-described models, the communicative goal is to uniquely
identify a chosen static object by discriminating it from all other objects cur-
rently present in the communicative situation. The proposed representation-
forming mechanisms are tailored to this goal; they are based on capturing
differences between the present objects.

The communicative goal of unique discrimination in a particular context
determines the shape of the meanings. The categories that have evolved
for the purpose of discrimination do not have to be natural and suitable for
other purposes, as has been argued by Harnad (2005), who distinguishes be-
tween discrimination and identification (categorization). Discrimination is
a relative judgment between things that are present simultaneously, while
identification (categorization) is an absolute judgment of a thing alone an-
swering the question whether or not a given input is a member of a particular
category (Harnad, 1990, 2005).

Language goes beyond a present situation, and its important function is
to enable detached communication about things not present here and now
(Gärdenfors, 1996b). For detached use of language, the importance of iden-
tifying categories (kinds) of things, which is apparently a different situation
from a discrimination task, is even higher. We argue that, for this goal, rep-

15A noteworthy exception is the New Ties project (Divina and Vogt, 2006; Vogt and
Divina, 2007) – a simulation of large-scale (more than 1000) agent population that evolves
using a combination of evolutionary, individual and social learning. In this experiment,
agents sense, act, eat to regain energy, talk and mate, and die if they get too old or run
out of energy.
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resentation based on noticing similarities rather than differences is more suit-
able (see Section 3.3.2). More importantly, meanings should not be limited
to object categories; they should also include properties, relations, dynamic
changes, situations and events.

4.5 Meanings in Dynamic World

In this section, we broaden our perspective on meanings by models that go
beyond static objects and are capable of representing dynamic aspects of the
world, which is a necessary prerequisite for verb understanding.

4.5.1 Redescriptions of Co-Occurring Events

The model of Cohen et al. (1996) focuses on how adult concepts can develop
from infant sensorimotor activity. It consists of an artificial baby – Neo living
in a simulated environment. The environment implements Neo’s sensations,
mental and physical activities and the behavior of other objects and agents
that interact with Neo.

Neo senses its environment through a collection of streams, which can hold
different symbolic tokens in different discrete time steps. For example, one
token is rattle-shape and it is placed in the appropriate stream whenever
Neo’s eyes point at an object that is shaped like a rattle. The streams that
represent Neo’s internal sensations include an affect stream that contains
tokens such as happy and sad, a pain stream, a hunger stream, and somatic
and haptic streams that are active when Neo moves and grasps. Neo performs
random actions: it can move its arm and head, and grasp several objects,
including three rattles, a bottle, a mobile, keys and a knife. The latter causes
pain. The rattles make noise when shaken. Neo gets hungry some time after
eating, it cries when it is unhappy or in pain; when Neo cries, Mommy usually
visits, unless she is angry at Neo for crying, in which case she stays away.

Neo can learn representations of objects, states and activities by using
several versions of a simple learning rule based on noticing temporal regular-
ities, i.e. co-occurrences of values in streams or in representational structures
(redescriptions) built on top of streams. Neo develops and utilizes five kinds
of redescriptions of its sensations:

1. Changes in token values: Neo notices time steps when a stream changes
its value and also time steps when no change happens.

2. Scopes : By maintaining contingency tables for pairs of streams, Neo
finds correlated streams that change together often – the scopes. Scopes
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provide a mechanism for cross-modal perception.

3. Base fluents : Neo finds time intervals with co-occurring tokens within
scopes, e.g. the base fluent ((sight-color red) (sight-shape rattle-
like)) that represent a red rattle and ((sight-color dark) (sight-
shape none)) that represents what happens when Neo closes its eyes.

4. Context fluents : Neo finds base fluents that tend to follow each other
in time, e.g. (CONTEXT ((sound cry) (mouth not-mouthing))
((tactile-hand plastic) (hand close))) represents an experience of
crying Neo who grasped a plastic object.

5. Chains : These temporal dependencies are combined into temporal
chains, which represent activities, e.g. (CHAIN ((tactile-mouth
none) (voice cry)) ((tactile-hand wood) (hand close)) ((tactile-
mouth wood) (do-mouth mouth))) is a representation of crying
Neo as it grasps and mouths a wooden object. Chains are used for
activity-based categorization.

Evaluation. This experiment has demonstrated that conceptual struc-
tures such as image schemas (Lakoff, 1987) do not have to be innate and can
develop by simple temporal associative learning from streams of sensorimotor
data. Neo lives in a simulated world that consists of streams of symbolic to-
kens. Yet it autonomously constructs basic meanings by observing temporal
regularities in its sensations. Albeit on a very elementary level, meanings are
not limited to static objects, but include representations of changes, inter-
related processes and chains of events. Such sensorimotor-based concepts
suggest how a language can bootstrap from a preverbal stage and provide
grounding for more abstract meanings via metaphoric mappings (Lakoff and
Johnson, 1980).

4.5.2 Dynamic Maps (Phase Portraits)

The work of Cohen (1998) focuses on representation of verb meanings based
on dynamic maps that capture the dynamics of interactions between two
agents or objects. The maps are constructed for three phases of interaction:
before, during and after contact. Each map is a two-dimensional qualitative16

phase portrait. Trajectories in these phase portraits correspond to different
types of interactions and are denoted by different verbs.

16In the sense that continuous real axes are abstracted to regions of negative, zero and
positive signs.
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Figure 4.7: The before, during and after phases of physical interactions be-
tween A and B. The dashed vertical lines represent the point of contact,
D(AB) = 0. In the before and after phases, regions to the left of D(AB) = 0
represent A behind B and regions to the right represent A ahead of B. In the
during phase, regions to the right of D(AB) = 0 represent displacement of
the AB unit (remaining in contact) from the point of contact. Combination
of trajectories allows for representation of number of verbs: A gently touches
B (aaa), A pushes B (ada), A kicks, propels, shoves, bounces off B (adb,
acb), A leans/strains against B (aca, ada), A dislodges, frees B, or B flees
from A (bce), A crashes into B (cba), A hammers, harasses, claps B (dcc), A
pushes through B (bbf ), A breaks free of B (bbg). The picture is taken from
Cohen (1998).

Dimensions of the maps for the before and after phase of the interaction
are the relative position or distance D(AB) = P (A)−P (B) between the two
bodies (actor A and target B) and their relative velocity V R = V (A)−V (B),
where P (A) and P (B) are projections of (not necessarily physical) locations
of A and B onto a one-dimensional progress space,17 V (A) = dP (A)/dt and
V (B) = dP (B)/dt. The map for during phase has the distance of the con-
nected bodies from the point of contact on the horizontal axis and the energy
transfer between the bodies (acceleration of the actor in the direction of tar-
get, while they are contact) on the vertical one (by definition, the distance
between A and B is zero and so must be their relative velocity, otherwise the
distance would change). Combination of trajectories from phase portraits for
before, during and after phases allows for representation of number of verbs,
see Figure 4.7.

Evaluation. The project focuses on the representation of the dynam-

17This allows for representation of non-physical verbs that only describe movement
metaphorically, e.g. verbs for transfer or advancement of wealth, information, skills or
credibility.
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ics of the world. Dynamic maps can compactly and explicitly represent the
manner of movement, which is very important for capturing subtle distinc-
tions between verb meanings. They can be easily learned and recognized
from sensory-observable information. Preliminary experiments with super-
vised learning of dynamic maps and their usage for predictions are reported
in Rosenstein et al. (1997). The learning is supervised in the sense that
the system is told the class of behavior it is observing, and it merely learns
the dynamics of the interaction. The authors have also developed an un-
supervised version, where the system clusters training trajectories together
without knowing which behaviors generated them (Cohen, 1998).

The proposed representation can also be useful for object conceptualiza-
tion, as the classes of objects are differentiated by the way we interact with
them (Gibson, 1979; Lakoff, 1987). Again, we remark that dynamic maps
are not limited to verbs denoting physical action: meaning of many abstract
verbs can be metaphorically described in physical terms (Lakoff and Johnson,
1980).

4.5.3 Semiotic Schemas

A unified representational framework for meanings of verbs, adjectives and
nouns was proposed by Roy (2005b). In this framework, all meanings are
represented by schemas. Schemas are constructed in bottom-up fashion from
beliefs by six types of projections (sensors, actions, transformers, categorizers,
intentional projections, and generators). Beliefs (analog or categorical) are
probability distributions over analog signs (patterns of sensor readings) or
categorical signs (discretizations of analog signs).

Schemas encode the knowledge necessary for interpreting, verifying, and
guiding actions towards objects, object properties, spatiotemporal relations,
situations, and events: Objects are represented by networks of interdepen-
dent schemas that encode properties and affordances, verbs are grounded in
sensory-motor control programs, adjectives describing object properties are
grounded in sensory expectations relative to specific actions. Locations are
encoded in terms of body-relative coordinates. Speech acts of agents are
interpreted either into goal schemas that an agent may choose to pursue,
or into existential beliefs represented through schemas which are compatible
with sensing and action. For example, the meaning of “red” is a color cate-
gory linked to the motor program for directing active gaze toward an object,
and “heavy” is grounded in haptic expectations associated with lifting ac-
tions. The meaning of “ball” subsumes both the meaning of “round” (which
is one of its expected properties along with color, size, etc.), and all of the
actions that may affect the ball (Roy, 2005a).
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Semiotic schemas were implemented in a manipulator robot Ripley de-
signed for grounded language experiments (Roy et al., 2004). Ripley has a
gripper with seven degrees of freedom driven by actuators instrumented with
position and force sensors, providing the robot with a sense of proprioception,
and two miniature video cameras. Ripley’s gripper fingers are instrumented
with force-resistive sensors giving it a sense of touch. The robot’s work space
consists of a round table. Its motor control system allows it to move around
above the table and view the contents of the table from a range of visual
perspectives. Several other motion routines enable the robot to retract to a
home position, to lift objects from the table, and to drop them back onto the
table. Ripley is able to translate spoken commands such as “hand me the
blue one on your right” into situated action.

Evaluation. Semiotic schemas framework is a complex and comprehen-
sive step toward language grounded in the real world. Complex meanings of
verbs, objects, properties and events are represented in a unified fashion that
enable prediction, inferences, interpretation and generation of behavior and
planning. Being implemented in a real robot, this approach does not abstract
away from issues of motor control, proprioception, cross-modal coordination,
etc. In this way, meanings depend on the way the robot is constructed and
are truly embodied. An unresolved issue is the origin of schemas: although
the robot can determine settings of some parameters by statistical estimation
algorithms, the topological structure of the schemas is pre-designed manually
(Roy, 2005b).

4.6 Integrating Semantics and Syntax

So far we have presented mostly models of language evolution, i.e. how a
language can emerge from scratch, or models of agents interacting with their
environment and forming meanings to which a later language can ground.
This could be glossed a “bottom-up approach”.18 Important insights for
meaning formation can also be gained the other way round (or top-down)
from natural language processing (NLP) systems. These systems usually re-
quire several levels of analysis, from phonological, morphological, syntactic,
semantic, contextual to pragmatic, each with its own representational struc-
tures. Some of these analyses work sequentially, others could co-operate in
reducing indeterminacies in parallel.

18With the exception of ELIZA and SHRDLU, see Section 4.1.1.
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4.6.1 SAPFO: Frames and Semantic Networks

The system SAPFO written by Páleš (1994) is a noteworthy example of NLP
system for Slovak language. The system gets a textual input – a sentence,
it then translates the sentence into deep semantic structures and back to
produce paraphrases19 of the original sentence. This task is motivated by a
commonly used criterion of understanding in humans: for example, a student
is asked to reproduce the learnt content in his/her own words to prove that
he/she understands the matter.

The system SAPFO, written in PROLOG, consists of lexical data (mor-
phologic, lexical-semantic, syntactic, synonymic, phraseologic etc. dictio-
naries in the form of tagged words, tables, predicates and frames), and algo-
rithms and general rules. The data incarnate an unusually detailed linguistic
analysis of Slovak language. Although the program works on the level of for-
mal manipulations, it produces semantically interesting behavior achieved
by the co-operation of implemented analyses. The resulting deep semantic
structures take the form of case frames (Minsky, 1975) or semantic networks
(Russell and Norvig, 1995; Návrat et al., 2006).20 The system can construct
very complex semantic representations, e.g. a semantic network that captures
the meaning of the following paragraph:

“John took Jenny to the silver lake. He wanted to show her
the dignity of swans bathing in sun rays on the water surface.
But the swans have flown. Sun shined and the water in the lake
withered.” (Páleš, 1994, p. 220).

Evaluation. The system SAPFO incarnates substantial amount of knowl-
edge of relations between various semantic and syntactic elements. If inter-
preted by a human, the sentences produced by SAPFO have similar meaning
as an original to-be-paraphrased sentence. However, understanding of this
meaning is not intrinsic to the system, which only manipulates uninterpreted
symbols interwoven in networks of mutual relations. We could say that it uses
a dictionary-like structuralist approach to meaning conceived as the place of
a word in relation to other words (de Saussure, 1916/1974). There is no cou-
pling with the external world, and the whole knowledge is pre-programmed
by the human designer.

In spite of that, SAPFO constitutes an important complement to the
previously described models of grounded meaning creation. While SAPFO

19By paraphrases we mean sentences that can have different surface structure but the
same meaning as the original sentence.

20These two forms are equivalent: semantic networks that allow for better orientation
and visualization have one-to-one correspondence to frame-like structures of attribute-
value pairs (Russell and Norvig, 1995, p. 298).

77



lacks grounding of elementary tokens, the other models lack compositionality
and constraints on how to combine elementary meanings. In a sense, SAPFO
shows a direction how to enhance the grounded systems with more complex
meanings. The other way round, experiences with embodied systems suggest
that (and how) the elementary tokens should be grounded in some embodied
sensorimotor structures. We will describe a system going in this direction in
the next section.

4.6.2 ECG: Schemas and Constructions

Full-fledged language understanding goes beyond meanings of single words:
semantic relations between meanings of parts of an utterance (who did what
to whom) are encoded by grammatical means such as word order or case
markers.

Relations between syntactic elements and their effect on semantic inter-
pretation can be expressed within Embodied Construction Grammar – ECG
framework (Bergen and Chang, 2003). In ECG, linguistic knowledge reposi-
tory consists of frame-like structures called constructions that link form ele-
ments (constraints on sound, surface word form, syntax, etc.) with meaning
elements represented by embodied schemas — cognitive structures general-
ized over recurrent perceptual and motor experiences. The simplest embod-
ied schemas can be conceived as a list of roles that allow external structures
(including other schemas as well as constructions) to refer to the schema’s
key variable features, providing a convenient degree of abstraction for stating
diverse linguistic generalizations (see Figure 4.8). More importantly, schema
roles serve as parameters to more detailed underlying structures that can
drive active simulations.

Constructions support a language understanding process modeled as hav-
ing two distinct phases:

analysis – utterances are first analyzed to determine which constructions
are involved and how their corresponding meanings are related: this
process mostly utilizes constraint satisfaction techniques and its result
is a semantic specification – the network of interconnected construc-
tions, see Figure 4.9.

simulation – embodied schemas of the semantic specification are then simu-
lated to produce inferences. Simulation itself relies on an active struc-
ture called an executing schema (or x-schema) that captures hierar-
chical structure, sequential flow, concurrency and other properties of
motor control and event structure in general. Results of simulation are
used to update a belief network representing the current context.
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Figure 4.8: The Into schema, defined using the ECG formalism (left) and
informally depicted as a set of linked schemas (right). Into is defined as a
subcase of Trajector-Landmark that evokes an instance of the SPG schema
(shown with a dashed boundary at right). Type constraints on roles require
their fillers to be instances of the specified schemas, and identification bind-
ings (←→) indicate which roles have common fillers. The picture is taken
from Bergen and Chang (2003).

Evaluation. ECG framework is primarily designed for language under-
standing, such as the metaphorical analysis of newspaper articles (Narayanan,
1997), but it was also used in the model of the acquisition of early phrasal
and clausal constructions by Chang (2004). As the framework is rather com-
plex, it has not yet been implemented as a whole. However the results of
its partial implementations are promising and show the direction in moving
from meanings of single words to the sentence-level embodied semantics.

4.7 Neural Networks

With the recent onset of non-invasive brain-imaging methods (e.g. PET,
fMRI), neuroscience started to play quite a prominent role in nowadays cog-
nitive science. It has not only brought valuable insights into brain func-
tioning, but has also put new questions that should not be ignored by any
theory or model of human cognition: is the proposed model/theory neurally
plausible? Is it in accordance with known relevant facts about human brain?
What neural mechanisms and representations could be behind the studied
phenomenon?

Many connectionist models have addressed these questions in the lan-
guage domain; for overview, see e.g. Farkaš (2005). In the following section,
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Figure 4.9: A depiction of a constructional analysis of the sentence “Mary
tossed me a drink.” in ECG framework. Constructs involved are shown
in the center, linking elements and constraints in the domains of form and
meaning; schemas are shown as rounded rectangles. The picture is taken
from Bergen and Chang (2003).
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we introduce an example of a connectionist model DevLex focusing on the
nature of internal representation of lexical meanings and its development. A
comprehensive connectionist approach to modeling human semantic cogni-
tion can be found in Rogers and McClelland (2004).

4.7.1 Lexical Development

The connectionist model of early lexical development DevLex (Li et al., 2004)
tries to overcome limits of many current neural network models of language
acquisition in the following aspects: First, it uses real corpus-based speech
data that correspond to actual language use and not some artificially gener-
ated or small-set vocabulary. Second, it uses self-organization and does not
need a supervised training (e.g. back-propagation). Third, it can cope with
continuously growing lexicon and is scalable.

The network consists of two growing self-organizing maps (Farkaš, 2003) –
a semantic S-GMAP and a phonological P-GMAP, that are connected via as-
sociative links trained by Hebbian learning. DevLex operation involves three
processes: (1) formation of distributed word representations (both phonolog-
ical and semantic), (2) GMAP organization, and (3) formation of associative
links between form and meaning. The second and third processes occur si-
multaneously. The first process can be thought of as the process in which the
child extracts phonological and semantic information from lexical contexts
(sentences) during listening. It is done independently and its resulting form
and meaning representations serve as input to the second and third processes.
In this text, we will only focus on the semantic part, see Figure 4.10.

Semantic representations are built up gradually during the development of
the lexicon in two qualitatively different ways. The first set of representations
is constructed from word co-occurrence probabilities in the input corpus using
the word co-occurrence detector (WCD) recurrent network (Farkaš and Li,
2001). The second set is static21 and consists of binary vectors of semantic
features of each word derived from the WordNet database by special feature-
extracting routines (Harm, 2002).

The experiments with DevLex focused on development of internal repre-
sentations of lexical meanings in GMAPs and on reproducing several phenom-
ena observed in early language acquisition by children, e.g. lexical confusion
and age-of-acquisition effects. 500 word input lexicon was divided into sets
corresponding to major developmental stages of child language acquisition.
While feeding the network with these input sets, internal organization of lex-
ical representations in GMAPs was inspected. The results revealed that the

21In the sense that it does not evolve with the growing vocabulary.
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Figure 4.10: The semantic part of DevLex network. The bottom half repre-
sents the word co-occurrence detector (WCD), the upper part represents the
random mapping followed by self-organization of the growing semantic map
(GSM). The picture is taken from Farkaš (2003).

internal representation captures both syntactic and semantic relations be-
tween words. Nodes that represented words belonging to the same syntactic
category (nouns, verbs, etc.) or having related meanings (e.g. now, then or
up, down) tended to be close to each other and/or form clusters. Moreover,
the representation changed in time, providing important insights into the
nature of child lexical development (for details, refer to the original source).

Evaluation. First of all, the presented model addresses the important
issue of neural plausibility of modeling the organization of semantic rep-
resentations from the developmental point of view. Also, it validates the
emergentist alternative to the nativist assumption that lexical categories are
hardwired in the brain. Learning in the system is in the large part based
on structuralist relations between words co-occurring in the corpus.22 The
lack of grounding in the real world is partially remedied by supplying the
semantic features of words from an external static source. Self-organization
could facilitate grounding, because it enables the autonomous development of
natural categories. However, this could only happen if the system somehow
interacted with the real world in a feedback loop, e.g. by producing some
behavior that would in turn influence its own inputs. In the next section, we

22Neural networks can be surprisingly good in inducing grammatical information im-
plicit in transitional probabilities in the corpus. Recurrent neural networks show the
architectural bias to meaningful next-symbol predictions even before training. Training
causes reorganization of the network’s state space according to grammatical categories
(Čerňanský et al., 2007).
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Figure 4.11: A typical dual-route architecture for connectionist models of
symbol grounding. The picture is taken from Cangelosi (2005).

present several connectionist models that ground language in representations
formed by acting in the world.

4.7.2 Integrating Perception, Action and Language

The importance of links between perceptual, sensorimotor and cognitive abil-
ities for symbol grounding has been supported both theoretically and ex-
perimentally (Pecher and Zwaan, 2005). Connectionist models of symbol
grounding often employ dual-route architecture (see Figure 4.11) that typi-
cally involves both visual input (e.g. retina projection or visual feature list)
and linguistic input (e.g. localist or graphemic/phonetic encoding of sym-
bols). The output layer has symbolic units for representing words (e.g. with
a phonetic encoding of the lexical items), and either a categorical represen-
tation of input stimuli (e.g. a localist node for each category, or a visual
representation of category prototypes) or representation of a desired action
(e.g. values of joint angles of an arm). All input and output layers are con-
nected via a shared hidden layer. The route from visual input to symbolic
output is used for language production tasks, such as naming of the object
represented in the visual scene or its category. The route from linguistic
input to visual/categorical/motor output is used for language understanding
tasks. The two other possible routes are used for categorization and sensory-
based action (the route from visual input to categorical/motor units) and for
linguistic imitation (from linguistic input to symbolic output) (Cangelosi,
2005).

In the model of Cangelosi (1999b), genetic algorithms and neural networks
are combined together for studying the emergence of compositional lexicon
in an ecological setting: a population of 80 organisms lives in a virtual envi-
ronment, where each organism performs a foraging task by collecting “edible
mushrooms” and avoiding “toadstools”. There are 6 types of mushrooms in
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Figure 4.12: The neural network that controls the behavior of the foraging
organism. In the input layer, 3 units encode the location of the closest
mushroom and 18 units encode their binary features. Eight input units are
used for the 8 symbols (words) used for naming mushrooms. The network has
5 hidden units. In the output layer, 3 units control the organism’s behavior
(movement and identification of mushroom category), and 8 units are used
to encode the mushroom names. These symbolic output units are organized
in two clusters of competitive winner-takes-all units (one cluster of 2 units,
the other of 6 units). Since only one unit per cluster can be active, each
mushroom will be named using two symbols. The picture is taken from
Cangelosi (1999a).

the environment: three edible and three poisonous. To gain fitness, organ-
isms have to avoid toadstools and identify the type of edible mushrooms and
eat them.

Behavior of each organism is driven by a dual-route network (see Fig-
ure 4.12) that enables performing actions (based on mushroom location and
perceptual features and/or linguistic input from other agents) and naming
(either as imitation of a linguistic production of another agent or naming
the mushroom for another agent based on the mushroom’s location and per-
ceptual features). At the end of their lifetime, the fittest 20 organisms are
selected and reproduce 20 offspring each. The new 80 organisms live to-
gether with their 20 parents that serve as speakers and teachers for naming
the mushroom categories and the actions to take. Although at the begin-
ning of evolution the lexicon is totally random and meaningless, toward the
end of the evolution the agents are able to evolve shared compositional lan-
guages. Inspection of representation on the shared hidden layer revealed
that language helped categorization in increasing inter-cluster and decreas-
ing intra-cluster distances (in comparison to the stage with purely sensori-
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motor task without any language). The same result has been confirmed in
the dual route architecture based experiments of Cangelosi and Parisi (2001)
and Mirolli and Parisi (2005).23

Evaluation. The presented models involve both performing actions
in a simulated environment and linguistic tasks. The language learning is
connected to sensorimotor activities via a shared hidden layer in the dual
route architecture. Internal representations of nouns (object names) covary
more with perceptual features, while internal representations of verbs (action
names) covary more with motor control parameters (Cangelosi and Parisi,
2004). Meanings, implicitly represented in connection weights of the net-
works are private and created individually in each organism. Unlike in the
related model of Kvasnička and Posṕıchal (1999) described in Section 4.3.2,
the fitness of organisms in the presented model of Cangelosi depends on
successful performance of a task and not on the comparison of private mean-
ings. Although the presented models are deliberately simple, they illustrate
a correct connectionist approach to symbol grounding.

4.8 Corpus-Based Meanings

In Section 4.7.1, we presented the connectionist model DevLex with semantic
representations partially based on transition probabilities of lexical units in
the training set corpus. Although not sufficient for language grounding in the
real world (see the Chinese Room metaphor in Section 1.1.1), distributional
and contextual information is an important cue to word meanings (Li et al.,
2004). This is impressively demonstrated by chatbots based on contextual
corpus search that we shall describe in the following section.

4.8.1 Jabberwacky chatbots

A chatbot is a computer program designed to simulate an intelligent con-
versation with human users. The classical example of a chatbot is ELIZA
(see Section 4.1.1). Many chatbots are based on recognizing keywords in
the human user’s input and answering according to pre-programmed rules.
Jabberwacky24 written by Rollo Carpenter is an example of a chatbot based
on different principles; there are no fixed rules programmed into the sys-

23Unlike in the former experiments, the latter one did not involve genetic evolution.
The one-generation neural network was trained by backpropagation learning.

24Available online at http://www.jabberwacky.com
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tem25 and it operates entirely through user interaction. The system main-
tains a large database of all previous conversations and attempts to use this
information to find the most appropriate response in the current context.
The search is data-centric, probabilistic and statistical, yet at the same time
chaotic, which means that tiny differences in context can lead to huge dif-
ferences in answers. It is not based on any single recognized AI technique
such as Markov chains or neural networks, but it is a complex layered set
of heuristics that produce results through analyses of conversational context
and positive feedback (Icogno, 2007).

The success in giving an impression of real thinking depends on a large-
enough database. Having been online on the world wide web since 1997,
Jabberwacky has recorded more than 13 million conversations. Jabberwacky
reflects back what it had learned from its conversation partners. In this way,
it can use jokes, idioms, word games, slang, and even speak foreign languages.

Two recent instantiations of Jabberwacky – George and Joan have won
the Loebner prize in 2005 and 2006. The Loebner Prize is an annual com-
petition that awards prizes to the chatbot considered by the judges to be
the most humanlike of those entered. The format of the competition is that
of a standard Turing test (see Section 1.1.1). Unlike previous version based
on purely textual form of communication, George has a 3D visual “avatar”
appearance with a variety of facial expressions and the ability to under-
stand and respond to others using human speech. The commercial interest
in George suggests the future areas of application of such chatbots/avatars
in education, interactive entertainment systems, advertising and sales.

Evaluation. Although Jabberwacky’s conversations can be interpreted
by humans as having some semantic content, i.e. as being “about something”,
this content is extrinsic and Jabberwacky knows nothing about it. Hence,
its linguistic knowledge is not grounded in the real world (see Section 1.1.5).
However, from a different point of view, Jabberwacky is situated in the world
of conversational sequences, where it learns from scratch to react appropri-
ately in various contexts. The knowledge of what is “appropriate” is encoded
in the recorded history of reactions of the chatbot’s human partners. In line
with Brooks (see Section 1.1.4), we can view Jabberwacky’s intelligent be-
havior as an emergent effect of its interactions with the environment, where
the knowledge is distributed both in its architecture and the environment.

25That is, no rules of grammar or conversation conduct; rules for learning and contextual
database retrieval are naturally build in the system.

86



4.9 Summary

In this chapter, we reviewed main approaches to representation of meanings
in artificial systems (computational models, programs, agents and robots).
We evaluated the models with respect to issues of symbol grounding, learning
and interacting with the environment. The evaluation results are summarized
in Table 4.1.
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ELIZA (Weizenbaum,
1966)

rules – G – Y N

SHRDLU (Winograd,
1971)

procedures S G,L O,V Y N

Shakey (Nilsson, 1984) predicates R G,L O,V Y N
ILM (Kirby and Hurford,
2001)

predicates – G O,V Y Y

(Oliphant, 1997) scalars – G – N Y
(Kvasnička and Posṕıchal,
1999)

vectors – G – Y Y

Talking Heads (Steels,
1999)

discrim. trees R L O N N

(de Jong, 2000) situation concepts S L O,V N N
(Vogt, 2002) prototypes R L O N N
Neo (Cohen et al., 1996) redescriptions S L O,V – –
(Cohen, 1998) dynamic maps – L V N –
Ripley (Roy et al., 2004) semiotic schemas R G,L O,V Y N
SAPFO (Páleš, 1994) semantic networks – G O,V Y N
ECG (Bergen and Chang,
2003)

constructions S G,L O,V Y N

DevLex (Li et al., 2004) NN configuration – L O,V N Y
mushroom foragers (Can-
gelosi, 1999b)

NN configuration S L O,V Y N

Jabberwacky (Carpenter,
2007)

corpus relations S L – Y N

Table 4.1: Summary of evaluation of meanings in the reviewed artificial
systems. By ‘telepathy’ we mean direct access to internal semantic represen-
tation of a communication partner. Y = yes, N = no, ‘–’ = irrelevant, other
acronyms correspond to capital letters in column headers.
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Chapter 5

Understanding Revisited

In previous chapters, we went through formal theories of meaning, an evolu-
tionary view on onset of understanding in living organisms, and main types
of semantic representations used in computational models and other artificial
systems. In this chapter, we summarize our own notion of meaning and un-
derstanding.1 To avoid non-productive debates about whether the machine
understanding is a “true” one similar to that of human beings, we try to use
neutral descriptions that would not exclude machines by definition. This is
in line with similar efforts to define life (Csontó, 2001; Csontó and Palko,
2002) and consciousness (Wiedermann, 2006, 2007) in such a general way
that human life and human consciousness are just their possible instantia-
tions. Extended elaboration of ideas presented in this chapter can be found
in Šefránek et al. (2007).

Language competence is not an isolated module, but a result of many co-
operating cognitive processes. Understanding does not begin with language
– in fact, lexical meanings are part of the conceptual system that has been
shaped by experiences with the surrounding world. We can also talk about
understanding on preverbal level, in the sense of “understanding the world
and its laws”. Hence, we can draw lessons from studying preverbal stages of
ontogeny and phylogeny: studying sensorimotor intelligence of infants and
animals.

Understanding is inherently individual: each organism has its own Umwelt
determined by its purpose in its environment, its embodiment and percep-
tual/motor abilities and its interactional history. What is imperceptible or
just a meaningless noise for one organism, can be interpreted (understood)
by another organism as meaningful. A sign is understood as having a seman-

1Because most of the statements in this chapter had already appeared in the previous
chapters, we present them without references if they had been supported by references
elsewhere.
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tic content for an observer, if the observer behaves toward it in accordance
with this content (van Gulick, 1988). This view is interactionist. Meanings
cannot be transferred directly from one organism to another; they can only
be inferred from behavioral interactions.

Hence, we can only talk about understanding in the context of the envi-
ronment that the organism is situated in. The organism is coupled with its
environment by perception and action. This coupling creates a feedback loop
that is a necessary condition for any adaptive behavior, including learning.

Elementary forms of understanding can be found in organisms that (at
least implicitly) categorize the world by producing different behavioral re-
sponses for different classes of their perceptual inputs. We say that these
organisms possess cued representations of the categories. Sophisticated un-
derstanding required for the language use is based on detached representa-
tions that can be retained, retrieved and processed independently of external
triggers from the current environmental context of the organism.

These principles can be applied to study meanings in artificial systems.
Again, an artificial system must be situated in an environment and interact
with it by sensorimotor activities (perception and action). The environment
does not have to be physical: autonomous software entities (agents) can
“live”, i.e. sense and perform actions, in a virtual environment, e.g. search
in databases or negotiate e-commerce transactions.

Non-trivial environments are dynamic and changing in time. This has im-
portant consequences for the design of “understanding” agents. First, besides
static objects, the agents must be capable to represent dynamic character-
istics of the world, such as changes, actions, their consequences and events.
Second, because the environment is open, all possible meanings cannot be
anticipated and the agents should learn. Learning (construction of meanings)
should be incremental and continuous.

Basic distinction can be made between categorical and propositional mean-
ings. Categorical meanings are more basic and consist in factorization of
continuous input space into discrete number of classes. Members of each
class/category are treated equal with respect to some purpose. We say that
categories are environmentally valid (or natural), if they reflect distributional
characteristics of properties of the environment. Environmentally valid cate-
gories form clusters with high inter-cluster and low intra-cluster differences.
Such categorization can be constructed by unsupervised learning methods.

Categories are ecologically valid, if they reflect some pragmatic effect on
the agent, e.g. division of mushrooms to edible and poisonous regardless of
their perceptual similarity. Such categorization can be arrived at by utilizing
feedback from the environment (in this sense, learning is supervised).

Many meanings can be innate, if they had been vital for survival on the
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evolutionary timescale. Other meanings are constructed by observing the
environment and consequences of one’s own actions. Yet another meanings
are transmitted culturally; this is when language enters the scene. Empirical
findings from child language acquisition suggest that language has an im-
portant influence on meaning formation process. The language influence is
necessary for meaning coordination or social symbol grounding: as meanings
are constructed individually and cannot be transferred directly, they must
be attuned to each other via linguistic means.

Propositional meanings take the form of assertions that can be true or
false and capture the agent’s beliefs and/or causal and relational knowledge
about the properties of the environment (including the agent itself). Agent
can use them for reasoning, predictions, planning and overall orientation
in the world. In connection to language, they correspond to sentence-level
semantics and are often centered around verbs.

This chapter concludes the first, theoretical, part of this thesis. Here we
formulated our notion of understanding and meanings with the emphasis on
grounding of lexical meanings in sensorimotor and social (linguistic) inter-
actions. The second, computational, part of the thesis is dedicated to our
own original proposal of semantic representation amenable to autonomous
construction/acquisition, and to experiments aimed to validate the proposed
representation.
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Chapter 6

Methodology

We have decided to study the problematics of meanings and their origin
by means of synthetic modeling methodology. That is, a theory we will
formulate must be validated by experimenting with its computational imple-
mentation. The theory should stem from and be consistent with our general
notion of meaning and understanding, as formulated in Chapter 5. Here we
briefly state the methodological commitments implied by this notion.

6.1 Commitments

1. Our notion of meanings applies not only to linguistic humans, but also
to preverbal living organisms and artificial systems.

2. Meanings should not be given before-hand. Therefore, the proposed
theory should explain the mechanisms of meaning emergence, both on
the individual and social levels.

3. Meaning construction mechanisms should be based on interactions with
the environment and other agents.

4. In linguistic interactions, telepathy (direct access to internal represen-
tation of the other communication partner) is not allowed. In boot-
strapping language from scratch, agents can use externally observable
behavioral hints (such as pointing or gaze following) to narrow down
the communication context.

5. Importantly, possible meanings should not be limited to object cate-
gories; they should also include properties, relations, dynamic changes,
situations and events.
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6. All the aspects of the meaning representation and meaning construction
must be formulated rigorously enough to allow for their computational
implementation and experimental validation.

6.2 Experimental Plan

Adhering to these commitments, we take the following steps:

1. We propose a similarity-based semantic representation of various types
of meanings.

2. We propose individual and social mechanisms of autonomous construc-
tion of such semantic representations.

3. We implement the hypothesized mechanisms in computational models
and analyze the results of simulations.

4. Also, we study the dynamics of meanings in a computational model
that includes inter-generational transmission of meanings by iterated
learning.
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Chapter 7

General Framework of the
Models

We have designed, implemented, simulated and evaluated several novel and
original computational models of different mechanisms of meaning construc-
tion. In this chapter, we start with description of the general framework of
these models.1

A model typically consists of one or more agents and a simulated environ-
ment. The agents are coupled with the environment by processes of sensing
and acting. In each time step, each agent senses its environment, updates
its internal representation and can communicate or perform other actions,
depending on a particular application (Takáč, 2005b).

Internal processes of agents operate on different kinds of representation,
which can be described on the following levels (see Figure 7.1):

Perceptual level. This level is an interface between the external environ-
ment of the agent and higher levels. It is the product of the agent’s
perception/sensation process. This level of representation is iconic in
the sense of Harnad (1990).2 In embodied agents, it could represent
the signal from the agent’s sensors pre-processed by low-level percep-
tual routines. In software agents, it represents the input data the agent
operates with, translated to the description processable by the concep-
tual level.

Conceptual level. This is a level of categories/concepts. Each concept is
represented by an identification criterion – the function that maps a

1Not all the features described here are applicable in all the models. Individual devia-
tions from this general framework will be emphasized in the chapters describing particular
models and experiments.

2See Section 1.1.5.
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Figure 7.1: The cognitive architecture of the agent includes perception, rep-
resentation, language and pragmatic modules.

perceptual3 input to a numeric activity value expressing to what extent
the input is an instance of the concept.

Language level. The agent’s identification criteria are private and are not
directly transferable to other agents. The agents communicate by ex-
changing conventionally established signals of the language level. The
meanings of the signals are the perceptually grounded criteria of the
conceptual level. The communication can be successful, only if the
private meanings of the agents are sufficiently similar. This occurs, if
the agents use similar concept formation mechanisms and have similar
experiences in the shared environment.

Pragmatic level. On this level, the agent plans and achieves its goals in
the environment. It uses representations of causal knowledge about its
actions and their consequences in the form of cross-categorical associa-
tions of criteria, own goals as desired situations, and plans as sequences
of actions leading from the current situation to a desired one.

7.1 Environment

The agents are situated in a simulated environment together with other en-
tities (objects). The environment is dynamic and open, in the sense that the

3More complex criteria of situations and events operate on outputs of other criteria
(see Sect. 8.3.3).
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objects (including the agents themselves) can appear or disappear or change
their properties in discrete time steps.

Technically, all objects are described by frames of attribute–value pairs
(see the next section) and the values of attributes can change in each time
step. In case the agents perform actions, the consequences of the actions
on the objects are evaluated and realized by the environment module, which
resolves potential conflicts between agents and applies effects of (simple sim-
ulated) physical laws, e.g. if an agent tries to lift an object that is too heavy,
the environment module ignores this action and the properties (altitude, in
this case) of the object, will not change.

7.2 Perception

In each time step, each agent perceives objects in its immediate environment.
Let

{

o
(t)
1 , . . . , o(t)

m

}

be objects4 in the vicinity of an agent A at time t.

Then the perceptual input (perceived scene) SA(t) of an agent A at time t
is the set of frames

SA(t) = SelA
({

o
(t)
1 , . . . , o(t)

m

})

=
{

f
(t)
i1

, . . . , f
(t)
in

}

,

where

{i1, . . . , in} ⊆ {1, . . . ,m}

and each f
(t)
ik

is a perceptual image (frame) of the object o
(t)
ik

.
We can see that the selection function SelA modeling the individual per-

ceptual abilities of the agent A first selects objects o
(t)
i1

, . . . , o
(t)
in

visible to the
agent and then projects each of them to a corresponding perceptual frame.

Formally, a perceptual frame f is characterized by the set of attributes
Af and the real-valued attribute accessor function hf : Af → R. (In the
text, we will use a more conventional notation f.a instead of hf (a)).

In general, the sets of attributes (and their values) of an object o
(t)
ik

and its

perceptual image f
(t)
ik

do not have to be identical. Some attributes may not
be perceivable by the agent,5 others may be transformed by pre-processing
routines.

The scene composed of perceptual frames represents all the input relevant
to the agent, e.g. objects in the physical environment of the agent, incom-
ing data, or the agent’s “proprioceptive” input (values of internal variables,

4All objects (including the perceiving agent itself) are described by frames.
5For example, if the perceived object is another agent, its internal properties, such as

its hunger level, may be visible just to that agent, but not to other agents.
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parameters of operations performed, position of an arm, etc.). The names
of attributes have no special meaning for the agent, except for establishing
a correspondence of attributes with the same name in different frames. The
values of attributes are real numbers.

Frames have a long tradition in artificial intelligence (Minsky, 1975) and
cognitive semantics (Fillmore, 1982); they are easily readable by human ob-
server, general enough to describe various data structures, and they can be
implemented in the spirit of structured connectionism (Shastri et al., 1999;
Feldman, 2006).

Using frames or other arbitrary amodal symbols as semantic representa-
tions has been criticized by Barsalou (1999). Barsalou defines representation
as amodal, if its internal structure bears no correspondence to the percep-
tual states that produced it. However, frames in our architecture are general
enough to provide means for modal (iconic) as well as amodal projections of
the external objects. They model the structures resulting from a low-level
preprocessing of the perceptual input. For example, a frame can represent an
array of intensity values of retina or a camera image, or a scene segmentation
to perceptual characteristics of particular objects.

In the models presented in this thesis, the problem of perceptual pre-
processing is abstracted away.6 Hence, all agents receive the same percep-
tual input – directly the frames of objects o

(t)
1 , . . . , o(t)

m (i.e., the selection
function SelA of each agent is the identity function). However, each agent
can categorize and represent the same perceptual input in its own individual
way.

7.2.1 Perception of Changes

The ability to perceive and represent changes is very important for any agent
operating in a dynamic environment. In a continuous world, even 4-month-
old children can eye-track moving objects and develop the concept of object
continuity (Johnson et al., 2003), which is a necessary condition for noticing
changes of objects.

As the time is discrete in our model, we must ensure that the agent does
not perceive scenes in subsequent time steps as independent, but as the sets
with established correspondences between frames representing percepts of
the same object at different times (to be able to track individuals in time).

We manage this be refining the definition of the scene from the previous

6Autonomous construction of discrete perceptual structures from raw continuous sen-
sory readings was modeled e.g. by Rosenstein and Cohen (1998) and Kuipers et al. (2006).
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section to a set

SA(t) =
{(

f
(t)
1 , f

(t−1)
1

)

,
(

f
(t)
2 , f

(t−1)
2

)

, . . . ,
(

f (t)
n , f (t−1)

n

)}

of percepts linked with their one-step history. If an object just appeared on
the scene at time t, its history frame f (t−1) will be assigned a special value
⊥. If an object had been present on the scene in the time t − 1 and now
disappeared, f (t) = ⊥.7 Otherwise both f (t−1) and f (t) are standard frames
as defined in the previous section (the scene does not contain pairs with ⊥
on both positions).

7.3 Conceptual Representation

The proposal of representation of various kinds of concepts is the crucial part
and main contribution of this thesis. Therefore we describe it in detail in a
separate chapter (Chapter 8).

7.4 Language

The agent’s lexical knowledge is stored in the form of bi-directional associa-
tions of meanings with words. The words are arbitrary strings of characters;
the meanings are identification criteria of the conceptual level.

7.4.1 General Case

In general, one meaning can be associated with several words (synonymy)
and vice versa (homonymy). Each association has a strength (expressed by
a positive real number).

Understanding a Word

Out of the meanings associated with a word in the lexicon, the agent selects
a meaning with the highest confidence. Confidence is a strength of the asso-
ciation divided by the sum of strengths of all associations of this word with
meanings (Smith, 2003b).

7Identification criteria appeared and disappeared can be based on detecting ⊥ on the
respective position in the input pair.
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Verbalizing a Meaning

To verbalize a meaning, the introspective obverter strategy (Smith, 2003b)
is used: out of the words associated with the meaning, the agent selects the
one that it itself would best understand as the meaning. If it does not have
such a word, it can invent a random one.

Learning

Learning is managed by manipulating the strengths of word-meaning associa-
tions based on the feedback about success in communication (Steels, 2000) or
on cross-situational co-occurrences of words with meanings (Smith, 2005a).

7.4.2 One-to-One Associations

The language learning assumptions of our model (see Section 10.1.2) cause
that all associations will be one-to-one. This simplification makes learning
easier and allows us to focus on more interesting issues of relations between
meanings (represented by identification criteria) and the environment. Relat-
ing the language and meanings to the world is in the domain of pragmatics.

7.5 Pragmatics

7.5.1 Relation to the World

A practical use of the learned concepts and lexical expressions depends on
particular applications. Here we define several functions formalizing the re-
lations between concepts, words and the external world (see Figure 7.2).

We start with the notion of focus. The focus is used for determination of
a part (or aspect) of the scene that is denoted by a linguistic expression or a
particular concept.

Formally, the focus φ is a projection of the scene

S(t) =
{(

f
(t)
1 , f

(t−1)
1

)

,
(

f
(t)
2 , f

(t−1)
2

)

, . . . ,
(

f (t)
n , f (t−1)

n

)}

that selects a particular (ordered) k-tuple of perceptual frames

φ
(

S(t)
)

=
〈

f
(t)
i1

, . . . , f
(t)
ik

〉

(7.1)

or a particular (ordered) k-tuple of pairs of frames

φ
(

S(t)
)

=
〈(

f
(t)
i1

, f
(t−1)
i1

)

, . . . ,
(

f
(t)
ik

, f
(t−1)
ik

)〉

. (7.2)
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Figure 7.2: Pragmatic functions relating concepts and language to the world.

We shall call the result of the projection function a referent of the focus.

The focus restricts the whole scene to a part that forms an input to a
particular identification criterion. Identification criteria are functions that
represent concepts. They take various types of input arguments and return a
value that determines the degree of the input’s membership in the category
(see Section 8.3).

Criteria of objects and/or properties8 take as an input argument a per-
ceptual frame of one object, i.e. a focus projection of the scene with k = 1
in Eq. (7.1). Binary relational criteria operate on pairs of perceptual frames
(k = 2 in (7.1)) and criteria of situations operate on subsets of the scene (a
general case of (7.1)). Change criteria operate on a pair of frames of the same
object in different times (k = 1 in (7.2)) and event criteria express multiple
co-occurring changes (a general case of (7.2)). Also, multiple criteria can
be aggregated to hierarchies where higher-order criteria operate on output
activities of other criteria.

Let us assume that the agent has acquired a lexicon of one-to-one asso-
ciations L ⊂ W × C, where W is a set of learned words and C is a set of
concepts (criteria). Let S be a scene and φ be a focus. Then we define:

Understanding. The function U : W → C returns a criterion r that is the
meaning of the word w. For w ∈W ,

U(w) = r, such that (w, r) ∈ L .

8I.e. monadic criteria, see Section 2.1.4.
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Expression. The function E : C → W expresses the criterion r by the word
w. For r ∈ C,

E(r) = w, such that (w, r) ∈ L .

Interpretation. The function I returns a set of concepts that a referent
is an instance of, with the degree of membership determined by the
threshold parameter θ. For a referent φ(S),

Iθ(φ(S)) = {r ∈ C | r(φ(S)) > θ} .

Naming. The function N is a composition I ◦ E and returns names of all
categories that the referent is an instance of. For a referent φ(S),

Nθ(φ(S)) = {w = E(r) | r ∈ Iθ(φ(S))} .

Scene Interpretation. The function J returns a set of concepts that have
at least one referent on the scene at the membership threshold level θ,
together with foci determining their referents. For a scene S,

Jθ(S) = {(r, φ) | r ∈ C, r(φ(S)) > θ} .

Scene Description. The function D is a composition J ◦ E and returns
names of all concepts found by scene interpretation at the membership
threshold level θ, together with foci determining their referents. For a
scene S,

Dθ(S) = {(w, φ) | w = E(r), (r, φ) ∈ Jθ(S)} .

Reference. The function R returns a set of foci determining the referents of
the meaning r present on the scene S. Strictness of the membership is
given by the threshold parameter θ. For a meaning r ∈ C and a scene
S,

Rθ(r, S) = {φ | r(φ(S)) > θ} .

Pragmatic Understanding. The function P is a composition U ◦ R and
returns the set of foci determining the referents of the word w present
on the scene S. For a word w ∈ W ,

Pθ(w, S) = Rθ(U(w), S) .

The reference function can have a contrastive version R∗(r, S) return-
ing foci of referents on the scene S, for which r gives the maximum value
(regardless of any threshold). Using this function in P enables the agent
to understand also the contrastive use of words, e.g. if the agent heard a
word “big” uttered along with the scene S containing only small objects,
P0.5(“big”, S) would return an empty set, while contrastive P ∗ = U ◦ R∗

would return best matching objects, i.e. the biggest of the small ones.
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7.5.2 Representation of Pragmatic Knowledge

One of the basic tenets of cognitive semantics (see Section 2.4.5) states that
the very same representation that is used for language understanding is also
used for reasoning and acting in the world. In Section 8.4.3 we will show how
an agent can represent causal knowledge about consequences of its actions
in the world. Once it has this kind of representation, it can plan sequences
of actions presumably leading from its current situation to a desired one.
A BDI9 agent can be endowed with needs motivating its goals, which can
be represented as identification criteria of desired situations. As the agent’s
knowledge is evolving and incomplete, the reasoning and planning is essen-
tially non-monotonic and must include revisions.

9Belief - Desire - Intention (Bratman, 1987).
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Chapter 8

Representation of Meanings

This chapter is dedicated to formal specification of representation of various
kinds of categories and mechanisms of their construction (Takáč, 2006b,c,
2007b). We consider its content to be one of the main contributions of this
thesis.

The goal is that artificial agents gradually learn to distinguish environ-
mental properties and group entities similar in some respect into categories.
Each category is represented by an identification criterion1 – an activation
function that returns, for some input, the degree of the input’s member-
ship in the category.2 The possible inputs include a perceptual frame of
one object (for criteria of objects and properties), perceptual frames of sev-
eral objects (relational criteria), frames of the same object in different times
(change criteria) and output activities of other criteria (compositional cri-
teria of situations and events). The agents construct all their criteria from
scratch by extracting common statistical properties of examples of categories
encountered during their lifetime.

Extraction of statistical properties and categorization of novel examples is
realized in locally tuned detectors, which form the core of every identification
criterion. A locally tuned detector takes as input one frame and returns a
value from the closed interval [0, 1], expressing to what extent the frame is
an instance of the category (1 means the best, prototypical example).

1In our previous works, we used the term discrimination criterion. In line with Harnad
(1990), we have changed it, because the activation function actually returns the degree of
identification of its input with the represented category (see the discussion in Section 4.4.5).

2Our notion of identification criteria, together with basic elements of the proposed
semantics, is inspired by theoretical foundations laid by Šefránek (2002).
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Figure 8.1: Categories represented by locally tuned detectors with thresholds
do not have to be mutually exclusive and do not have to cover the whole input
space. The points lying in the intersection of the two right circles belong to
both categories, points outside all the circles do not belong to any of the
represented categories.

8.1 Geometrical View on Categories

Locally tuned detectors have an intuitive geometric interpretation based on
conceptual spaces (Gärdenfors, 2000), see Section 2.4.5. Perceptual frames
defined in Section 7.2 can be viewed as vectors in the respective subspaces
with dimensions determined by the attributes of the frames. A locally tuned
detector should react with high activity to the convex hull of the vectors cor-
responding to examples of the represented category. The detectors represent
categories with fuzzy boundaries (with their activity expressing the degree of
category membership), but for practical purposes we can establish a decision
threshold. In this case, the receptive field of a detector r : D → [0, 1] in the
input space (domain) D, defined as the set Ψθ(r) = {x ∈ D | r(x) > θ}
for some decision threshold θ delineates a category. Locally tuned detectors
have a high neural and biological plausibility (Martin, 1991; Balkenius, 1999;
Hassoun, 1995).

The important difference between categories in a Voronoi-tessellated con-
ceptual space (see Section 2.4.5) and categories represented by locally tuned
detectors over a common space is that the latter categories do not have to be
mutually exclusive and do not have to cover the whole input space (compare
Figures 2.1 and 8.1).3

8.2 Construction of Locally Tuned Detectors

Functioning of the detectors is based on expressing common statistical prop-
erties of category examples in geometric terms and evaluating category mem-

3For comparison of conceptual spaces and receptive field based meanings, see also Takáč
(2007d).
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bership as a distance in a conceptual space.
Let us assume that the agent has to induce a detector from a sequence of

example frames {f (1), . . . , f (N)}, each of which can be represented by a point

(

f (i).a1, . . . , f
(i).a|A

f(i) |

)

in the respective conceptual space with dimensions corresponding to at-
tributes aj ∈ Af (i) . The induction is based on properties of values of at-

tributes common to all frames. Hence, each frame f (i) is projected into a
common subspace A with dimensions from intersection of all attribute sets
⋂N

i=1 Af (i) . Attributes not present in every example are considered irrelevant
for the category membership. From now on, we will represent the sample of
the category as a set of projected vectors ~x(i) =

(

x
(i)
1 , . . . , x(i)

n

)

for i = 1, N

in the common space A of the dimensionality n = |
⋂N

i=1 Af (i)|.
In line with Gärdenfors (2000), the geometric centroid computed as the

mean vector of the sample set

~p =
1

N

N
∑

i=1

~x(i) .

will represent a prototype of the category.
The membership of a perceptual frame f in the category represented by

a locally tuned detector r~p will be evaluated as an exponentially decaying
function of the distance from the prototype (Shepard, 1987)

r~p(~x) = exp (−k · d(~p, ~x)) , (8.1)

where k is some positive constant, d is some metric and ~x is a projection of
the frame f into A (if f cannot be projected because it lacks some attributes
from A, the detector returns 0).

The shape of the receptive field Ψθ(r) = {~x ∈ A | r(~x) > θ} depends
on the metric d. In the simplest case of Euclidean metric dL2 , the receptive
fields of all detectors are hyperspheres in A centered at ~p and with the same
radius determined by θ. Hence, they have the same shape regardless of the
distribution of values in their sample sets. This may be undesirable.

In the original theory of conceptual spaces (Gärdenfors, 2000), the use
of weighted Euclidean metric is suggested to express unequal importance of
dimensions depending on the context or shifts of attention. In our approach,
each detector uses its own metric derived from the properties of its sample
set, instead of a common metric.

Hence, instead of remembering the whole sample set, each detector keeps
only a list of dimensions characterizing the subspace A, the prototype of
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the category and parameters of the local metric (such as variances or the
covariance matrix). We will return to this issue in Section 8.2.3.

Local metrics make similarity judgments essentially asymmetric. In gen-
eral, for two detectors centered in ~p1 and ~p2, the value of r ~p1(~p2) does not
have to be equal to r ~p2(~p1). People show the same effect, e.g. Tel Aviv is
judged more similar to New York than vice versa (Tversky, 1977). Now we
review several metrics and their effect on the representational power of the
detectors.

8.2.1 Variance-Based Metrics

Euclidean metric weighted by the inverse of the common variance σ2 of values
of all attributes in the sample set

dL2, σ(~p, ~x) =

√

√

√

√

n
∑

i=1

1

σ2
(xi − pi)2 =

1

σ
dL2(~p, ~x)

enables representing categories with different levels of generality (hyper-
spheric receptive fields with radii proportional to σ). Moreover, if we allow
infinite weights and define ∞· 0 = 0, a category with zero variance will have
1-point receptive field in ~p and will represent an individual.

The natural extension of the previous case is to record variances individ-
ually for each dimension. Normalized Euclidean metric

dL2, ~σ(~p, ~x) =

√

√

√

√

n
∑

i=1

(xi − pi)2

σ2
i

with differences on each dimension weighted by the inverse of the variance of
sample values on that dimension makes the detector sensitive to the unequal
importance of attributes for the category membership. This is very impor-
tant for cross-situational disambiguation of meanings. The attributes with
nearly the same value in all examples will be considered more important for
category membership than attributes with big variances within the sample
set. The value of an attribute with zero variance will become mandatory for
the category instances (any other value in the input frame would yield zero
activity of the detector).4

The receptive fields of the detectors based on the metric dL2, ~σ are ~p-
centered n-dimensional hyperellipses having axes of lengths proportional to
σi. The axes are parallel with those of the input space A (see Figure 8.2).

4For example, triangles can have various sizes, positions, orientations, etc., but they
all must have 3 vertices.
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Figure 8.2: Variance-based detectors can account for unequal importance
of attributes; the hyperelliptic receptive field has a longer axis along the
dimension a1 because of the bigger variance of a1 values in the sample.

In case of a mandatory attribute value, the receptive field is a degenerate
ellipsoid with the corresponding axis of zero length.

8.2.2 Covariance-Based Metric

The proposed variance-based detectors can learn to attend to differences in
some attributes more than in others. However, they cannot learn correla-
tions between attributes, while people can do so (Medin et al., 1982). For
example, to induce the concept of square from example frames containing
the attributes vertices, sizeX, sizeY, one must not only learn the manda-
tory value 4 of the attribute vertices, but also learn that values of attributes
sizeX and sizeY should be identical. This can be achieved by a detector
using squared Mahalanobis distance

d2
Σ−1(~p, ~x) = (~x− ~p)⊤Σ−1(~x− ~p) ,

where ~p and ~x are column vectors and Σ−1 is the inverse of the covariance
matrix of the detector’s sample set.

The square symmetric n× n covariance matrix Σ of the sample set
{

~x (i) =
(

x
(i)
1 , . . . , x(i)

n

)

| i = 1, N
}

,

with the mean vector ~p is defined as

Σ = (σij)i,j=1,n
, where

σij =
1

N − 1

N
∑

k=1

(

x
(k)
i − pi

) (

x
(k)
j − pj

)

.

Because Σ is a square symmetric positive semi-definite matrix, it can be
decomposed to

Σ = UDU⊤ , (8.2)
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Figure 8.3: A 2-dimensional locally tuned detector with the multivariate
Gaussian activity curve. The detector’s receptive field with the threshold
θ = 0.1 is shown in (x, y) plane.

where U is an orthonormal rotation matrix (~e1|~e2| . . . |~en) of eigenvectors5 of
Σ and D = diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues of Σ with
λ1 ≥ . . . ≥ λn ≥ 0 (Ientilucci, 2003). Then computation of the squared
Mahalanobis distance

d2
Σ−1(~p, ~x) = (~x− ~p)⊤Σ−1(~x− ~p)

=
(

U⊤(~x− ~p)
)⊤

D−1(U⊤(~x− ~p)) .

can be geometrically interpreted as the standard Euclidean distance of vec-
tors ~x and ~p transformed to a new space with rotated (by U⊤) and scaled
(by D−1) dimensions.

Rotation does not change the shape and the size of the receptive field,
which are completely determined by the diagonal matrix D. Hence, the
receptive field of a detector using the squared Mahalanobis distance will be
a hyperellipse with axes of lengths proportional to λi and the orientation
determined by the rotation matrix U⊤.

By setting k = 1
2

and using squared Mahalanobis distance in Equation
(8.1), we get a detector with (not normalized) multivariate Gaussian tun-
ing/activation curve. The receptive field is a projection of the curve to a
hyperplane determined by the threshold θ (see Figure 8.3).

Variance-based metrics are special cases of Mahalanobis metric with di-
agonal covariance matrices Σ = σ2I and Σ = diag(σ2

1, . . . , σ
2
n), respectively.

5 ~e1, ~e2, . . . , ~en are column vectors.
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Figure 8.4: The example of a category with the mean (x, y) and the zero
variance of the attribute a2. A detector using the pseudoinverse will consider
the attribute a2 unimportant (a), while a detector using the inverse with
infinite values will consider the value a2 = y mandatory (b).

Singular Case

In case the covariance matrix is singular, hence non-invertible, the Moore-
Penrose pseudoinverse Σ+ is often used instead of Σ−1. Computation of the
pseudoinverse matrix is based on Singular Value Decomposition (SVD) of
the matrix Σ, which takes the form (8.2). In case of a singular Σ,

D = diag(λ1, . . . , λk, 0, . . . , 0) for some k < n .

Then

Σ+ = UD+U⊤ , where D+ = diag
(

1

λ1

, . . . ,
1

λk

, 0, . . . , 0
)

.

A detector using the pseudoinverse will ignore the very dimensions that are
constant in the whole sample set instead of considering them mandatory –
their weights will be zero instead of infinity, and the corresponding axes of
the degenerate hyperellipse will have infinite lengths (see Figure 8.4). This
is against the philosophy of capturing the regularities of the sample set.
For example, the constituting property of the category triangle is “having
3 vertices”. However, as all the examples of the category have the same
number of vertices regardless of other properties, the covariance matrix will
be singular and the whole dimension vertices will be ignored, because of
receiving a zero weight in D+.

Hence, instead of D+, we shall use the standard inverse

D−1 = diag
(

1

λ1

, . . . ,
1

λk

,∞, . . . ,∞
)

(8.3)

allowing infinite elements 1
λi

= ∞ for λi = 0. The result of the distance
function will be finite, only if the rotated vector U(~x−~p) has a zero coordinate
on the respective dimensions corresponding to infinite elements of D−1.
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However, detectors based on the pseudoinverse can be useful for distin-
guishing the figure from the background, if examples contain attributes that
are constant throughout the sample set, but irrelevant for the category.

Category Generalization Based on SVD-Filtering

After seeing a certain number of examples of some concept, people can decide
which properties are relevant for the concept by comparing their variances.
For example, if people had to induce the concept small from a set of small
things of all shapes and colors, they could observe that, albeit finite, variances
of shape and color are significantly larger than that of size.6 Hence, shape
and color could be ignored.

In our model, this type of generalization corresponds to finding those
diagonal elements of D−1 that are very small in comparison to others, and
replacing them with zero. Because 1

λ1
≤ . . . ≤ 1

λn
, we can find the largest L

such that
∑L

i=1 1/λi
∑n

i=1 1/λi

< b , (8.4)

where b is some percentage threshold, e.g. b = 10%, and we can set the first
L elements of D−1 to zero. The idea is to abstract away those components
that contribute little to the total distance. This can be viewed as an op-
posite process to Principal Component Analysis (PCA), which reduces the
dataspace to components with largest variances (Haykin, 1999).

Telling the Figure from the Ground

It follows from (8.4) that if D−1 contains some infinite elements (correspond-
ing to totally invariant properties of the sample set), all finite ones will be
abstracted away. This is right for most concepts, but sometimes the infi-
nite elements can be an artifact of taking into account some constant but
irrelevant attributes.

This is a common problem of all induction algorithms that only learn
from positive examples of a category (Gold, 1967). A property shared by
all positive examples should be considered irrelevant, if it is also shared by
negative examples. However, our algorithm does not receive and utilize any
information about negative examples.

6In this simplified example, we abstract away from the problem of semantic dependency
of the adjective small (see Section 12.1).
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8.2.3 Economy of the Representation

Because of the cognitive economy reasons, locally tuned detectors do not
record the whole sample sets, but only extract statistical properties necessary
for computing the activation function, i.e. dimensions of the subspace A,
the prototype ~p and the covariance7 matrix Σ. For technical reasons, the
detectors also record the number N of examples seen so far. Hence, we can
characterize each locally tuned detector r as a quadruple r = 〈A, ~p,Σ, N〉.

As the examples of a category are not usually given all at once, but come
sequentially one by one, the mean and the covariance matrix are continuously
recomputed by iterative formulas.

Let N − 1 be the number of examples seen so far, ~x(N) be a novel (N -th)
example. Then for N = 1,

~p (1) = ~x (1)

Σ(1) = (0)n×n, or σ2In ,

where σ2 is some initial estimate of the variance. For N > 1,

~p (N) =
N − 1

N
~p (N−1) +

1

N
~x (N)

Σ(N) =
N − 2

N − 1
Σ(N−1) +

+
N

(N − 1)2

(

~x (N) − ~p (N)
) (

~x(N) − ~p (N)
)⊤

.

The attribute set determining the subspace A is updated iteratively, too,
by intersecting with the attribute set of each new example. If some at-
tributes are removed from the subspace A this way, the corresponding rows
and columns of the covariance matrix and the mean vector are removed, too.

8.2.4 Sign Pattern Based Detectors

In everyday reasoning, people often abstract away from numerical values and
use a simpler qualitative calculus based on ordinal relations and invariant sign
patterns (Kuipers, 1994; Takáč, 1997, 2003c). The sign structure of attributes
is often constitutive for relational concepts, e.g. the relation bigger(fx, fy)
can be expressed as fx.size > fy.size, or equivalently, sgn(fx.size−fy.size) =
+1.

7As we have already mentioned, variance-based metrics are special cases of the
covariance-based one.
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Now we define a qualitative detector sensitive to the sign pattern of at-
tributes in the sample set. The subspace A is defined by a set of attributes
present in all examples with the same sign. The projection of frames to
A is composed with the operator sgn. The sign pattern is recorded in the
prototype

~p = (p1, . . . , pn), where pj = sgn
(

x
(i)
j

)

∀ i = 1, N .

The sign pattern is recorded only once, upon seeing the first example. Later
updates of the criterion only remove from A the attributes not occurring in
new examples with the same sign as recorded. The detector returns a binary
result: 1, if an input frame has the same sign pattern as ~p for all attributes
in A, and 0 otherwise.8

8.3 Identification Criteria Based on Locally

Tuned Detectors

8.3.1 Object Criteria

Object criteria operate on single frames. The object criteria can represent
individual objects, if they return zero for all but one particular frame, e.g.
JohnSmith(f), properties of objects, e.g. married(f), large(f) or credible(f),
and classes of objects, e.g. student(f), fruit(f), desktopComputer(f).9 Ac-
tually, there is no formal difference between criteria of properties and classes.

Categories of individual objects, classes and properties of objects can
be directly represented by locally tuned detectors (as their argument is one
frame describing an object). Criteria having more input arguments (relations,
changes) can be reduced to locally tuned detectors by transforming their
input.

8.3.2 Relational Criteria

Binary relational criteria, e.g. larger(f1, f2) or near(fx, fy) for frames f1 and
f2, can be represented by (quantitative or qualitative) detectors operating on
a transformed input ∆(f1, f2), where ∆(f1, f2) = f is a frame of differences
of aligned attributes (Markman and Gentner, 1993), defined by

Af = Af1 ∩ Af2 and f.a = f1.a− f2.a ∀ a ∈ Af .

8The sign pattern based detector can be viewed as a special case of the variance-based
detector with all attributes mandatory (as their signs have zero variance).

9Mnemonic identifiers of criteria should not be confused with language expressions
(words), which differ by font and quotation marks, e.g. large vs. “large”.
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8.3.3 Criteria of Situations

Complex situations or properties of the whole scenes, e.g. concepts of a risky-
Investment or a catOnHotTinRoof, can be built as hierarchical networks of
locally tuned detectors. Detectors of the bottom level operating on percep-
tual frames represent components of the situation and their required mutual
relations. Vectors of output activities of the elementary detectors serve as
an input to aggregate detectors of the higher level, which can attribute un-
equal importance to the elementary detectors and/or detect their mutual
correlations.

In an aggregate detector characterized by 〈A, ~p,Σ, N〉, the set A con-
tains the list of aggregated lower-level detectors, the vector ~p represents a
prototypical pattern of their activities and Σ determines their importance
and required inter-correlations.

As a situation criterion has only one input argument – the whole scene
S(t), it is important to specify what perceptual frames should be an input to
what elementary detectors of the criterion.

If a situation criterion requires the presence of k objects on the scene and
describe their properties and relations among them, we say that it has the
arity k. The input argument relations can then be described by a directed
multigraph10 with k vertices corresponding to slots11 for k objects required
on the scene (see Figure 8.5). Each edge between some vertices (i, j), labeled
with a lower-level detector r, expresses a required relation r(#i, #j) between
objects filled in the slots i, j. The order of arguments is important. Loops
(i, i) express required properties, i.e. object criteria r(#i), for an object filled
in the slot i.

Formally, a situation criterion with one aggregate detector s = 〈A, ~p,Σ, N〉
is characterized by a tuple 〈s, k, g〉, where k is the arity and g is the argument
descriptor g : A → {1, . . . k} × {1, . . . k}. I.e., the argument descriptor g
determines input arguments for each lower-level detector r ∈ A.

10A (directed) multigraph is a graph allowing multiple (directed) edges between a pair
of nodes. We also allow loops, i.e. edges starting and ending in the same node.

11The situation criterion is evaluated for all ordered subsets of S(t) with k elements and
returns maximum of the results for the k-subsets.
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Figure 8.5: An example of a situation criterion for the concept of a house with
a grey roof (in a simplified 2D block world). The situation (above the solid
line) contains 4 objects, two of which are instantiated (dashed lines) in slots of
the binary situation criterion (under the solid line). The criterion r1 → (1, 1)
represents the fact square(#1), the criterion r2 → (1, 2) represents the fact
on(#1,#2), the criterion r3 → (2, 2) represents the fact triangle(#2), and
the criterion r4 → (2, 2) represents the fact grey(#2).

8.4 Representation of Environmental Dynam-

ics

8.4.1 Change Criteria

Criteria expressing changes of properties of an object in time are relational
criteria applied across time to frames f (t), f (t−1) of the same object. They
can be represented by detectors applied to a transformed input ∆ft,t−1 =

∆
(

f (t), f (t−1)
)

(see Section 8.3.2).

Environmental dynamics expressed by the change criteria is an important
part of meanings of verbs. Some changes can be captured by qualitative
relations, e.g. grow(f) can be expressed by sgn (∆ft,t−1.size) = +1, others
require encoding of a typical change’s magnitude, e.g. movement criteria
for crawl, walk, run could differ in mean values of ∆ft,t−1.position. The
criteria with zero sign pattern of some attributes can represent a state or a
persistence of a property, e.g. stay.

8.4.2 Criteria of Events

Multiple co-occuring changes of a complex dynamic scene can be represented
by criteria of events. Event criteria are a generalized version of criteria of
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situations in that their elementary criteria can include criteria of changes.12

8.4.3 Verb Semantics

Of course, this is just a part of the picture. Embodied verb representation is
connected to actions and includes the manner of performance, e.g. the repre-
sentation of jumping can refer to a non-declarative procedural representation
of an invariant motor stereotype together with a frame representing variable
parameters of the action, e.g. the velocity or joint angles (Bailey et al.,
1997). Other possibilities of representation of verb meanings are mentioned
in Section 4.5.

As the embodied meanings are grounded in sensorimotor interactions with
the environment, they also include situated causal knowledge about precon-
ditions of successful actions and their possible consequences.13 For example,
the action of lifting performed in the same manner (with the same force) can
lead to different outcomes (changes) depending on the object of the action,
e.g. lifting a ball or lifting a 200 kg piece of furniture. Such propositional
knowledge can be suitably represented by cross-categorical associations of
the type

(preconditions, action → consequence) ,

where preconditions are criteria for objects of the action, action is a criterion
representing the action’s manner, and consequences are change criteria of the
resulting dynamics.

12In the argument descriptor multigraph, change criteria determining relations between
current and past frames of an object #i are placed on loops (i, i).

13Hence, the representation of complex meanings is not purely categorical, but also
includes propositional elements.
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Chapter 9

Individual Construction of
Meanings

In this chapter, we describe a novel computational model of construction of
environmentally and ecologically relevant meanings, which is another major
contribution of this thesis. In the previous chapter, we introduced represen-
tation of meanings based on locally tuned detectors that can be constructed
from sets of category examples. However, in the course of time, the agent
perceives a mixed sequence of instances of many concepts and it must some-
how determine which of the existing criteria should be updated by which
examples (and when to create a new criterion).

If the agent has no additional information, it can group similar frames to
categories by unsupervised clustering techniques, e.g. Distributed Clustering
Algorithm (Hulth and Grenholm, 1998), 1-nearest neighbor, or others (Everitt
et al., 2001), maximizing inter-cluster and minimizing intra-cluster distances.

The simplest unsupervised learning procedure works as follows:

1. For an input percept1 f and a set of criteria C, find r∗ ∈ C such that
∀r ∈ C : r∗(f) ≥ r(f).

2. If r∗(f) > θ, update r∗ by f , else create a new criterion rnew with f as
its first example (θ is a threshold parameter).

This algorithm clusters the input by its distributional properties. In this
way, it can arrive at environmentally relevant categorization (i.e. the one
that takes into account distribution of properties in the environment).

Construction of ecologically relevant categories that take into account
causal relations in dynamic environment and are of some use for the agent,

1The formulation for pairs of input percepts and for scenes is analogical.
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must be based on pragmatic criteria. Now we review our experiment fo-
cusing on construction of categories by sensorimotor interactions with the
environment (Takáč, 2006a).

9.1 Model

9.1.1 Environment

In the experiment, the simulated environment (non-toroidal 2-dimensional
lattice 25 × 25) contained the agent and 30 other objects – 10 ”fruits”, 10
”toys” and 10 ”pieces of furniture” placed on random positions of the lattice.

The initial values of object attributes were randomly generated as uni-
formly chosen integers from respective intervals of the pattern {weight : 20,
age: 3, posX : [0, 24], posY : [0, 24], posZ : 0} for the agent, {weight : [1, 3],
size: [1, 49], color : [0, 4], roundness : [0, 9], posX : [0, 24], posY : [0, 24],
posZ : 0} for fruits, {weight : [1, 9], color : [0, 9], cries : [0, 1], dressed : [0, 1],
posX : [0, 24], posY : [0, 24], posZ : 0} for toys, and {weight : [20, 49], size:
[20, 49], legs : [0, 4], material : [0, 9], posX : [0, 24], posY : [0, 24], posZ : 0}
for pieces of furniture.

9.1.2 Agent

The agent was actively exploring its environment. In each time step, it
could randomly choose an action from its action repertoire (lift, put down)
and perform it with different parameters (force, arm angle) upon an object
randomly chosen from its surrounding. The action was randomly generated
from the pattern 〈actionType: liftUp, {armAngle: [1, 9], force: [1, 19]}〉 or
〈actionType: putDown, {armAngle: [1, 9]}〉.

The action type modeled an invariant procedural representation of the
action (motor stereotype), while the parameter frame represented variable
parameters of the action execution.

The effects of the action on the chosen object were simulated by the
environment. In the case of lifting (liftUp action), the vertical position (posZ
attribute) of the object was increased by the value proportional to the arm
angle (armAngle), if the exerted force was greater than the weight of the
object, otherwise the action had no effect. In the case of putting down
(putDown action), the vertical position posZ of the object was decreased by
the value proportional to the arm angle, unless the object was already on the
ground (posZ ← max(0, posZ − armAngle)).
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9.1.3 Representation

By interacting with the environment, the agent gradually learns to distin-
guish between object, action and change categories. Object categories are
represented by object identification criteria (Section 8.3.1) and actions by
action identification criteria. These criteria are similar to object criteria, ex-
cept that they also store a type of the action. They are applied to perceptual
frames with action type and execution parameters, and they return zero if
the two action types do not match (if they do, the parameter frame is eval-
uated in the standard way). Change categories are represented by change
identification criteria (Section 8.4.1).

Simple Categories

Categories of each type are represented by identification criteria with variance-
based detectors, stored in three separate categorical systems Co, Cc, Ca. This
is cognitively plausible, as similar separate representational systems exist in
humans (Ungerleider and Mishkin, 1982; Orban et al., 1995; Rizolatti et al.,
1996), and the representations remain perceptual (Barsalou, 1999).

Complex Categories

Causal relations between actions, objects and changes are represented in the
form of associations among their respective categories (analogy to associative
areas of the cortex). Formally the agent’s association system V is a set of
triples

V = {〈ra, ro, rc〉 | ra ∈ Ca, ro ∈ Co, rc ∈ Cc} .

9.1.4 Learning Algorithm

The agent in our model learns by observing consequences of its own actions.2

Objects and actions are grouped to categories by the change. That is, if
an action leads to the same change on several objects, they will all fall in the
same category and vice versa. A significantly different outcome of the action
triggers creation of new categories.

All action categories associated with some object category represent agent’s
knowledge of affordances (see Section 2.5.2) of the object, while all object
categories associated with an action category form the precursor of a verb-
centered semantic representation – a verb island (Tomasello, 1992).

2The agent ’assumes’ that all observed changes of the chosen object were caused by its
action. Children have the similar attitude, called ”magical causality” (Piaget and Inhelder,
1966), even short after their sensory-motor stage.
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Initially, the agent starts with the empty category sets Co, Cc, Ca and the
empty association set V . These sets can be modified in each time step, after
the agent perceives a triple 〈fa, fo, ∆fo〉 of percepts of a performed action,
object and its change,3 in the following way:

1. Find in V the most similar4 association v∗ = 〈ra, ro, rc〉 to the input
triple 〈fa, fo, ∆fo〉. (If there is no association with non-zero similarity,
create a new one either by reusing existing categories, if they are indi-
vidually similar enough to the percepts, or by creating new categories.)

2. If sim(rc, ∆fo) > θ(t), update ra by fa, ro by fo and rc by ∆fo, other-
wise:

3. if ro(fo) > ra(fa), create a new action category from fa, else create a
new object category from fo and use it to form a new association.

In step 2, if the change category of the association is similar enough to
the perceived change, the percepts are considered to be the instances of the
associated categories and all three categories are updated by the percepts.
Otherwise, a new category is created for the less similar percept of either the
object, or the action (step 3).

The prediction threshold θ(t) determines the precision of the represen-
tation. It can be constant during the whole simulation or it can increase
in time to model the child’s growing ability to distinguish differences in the
environment.

Merging

It can happen that some categories, which started independently, become
very similar after being updated by more examples. In our model, such
similar categories are sought and merged in the following way: if any of the
systems Co, Cc, Ca contains two criteria r1, r2 with mean cases f1, f2, such
that min(sim(r1, f2), sim(r2, f1)) > 0.9, they are replaced by a new criterion
r with Ar = Ar1 ∩ Ar2 . The means and variances of attributes of r are
computed from those of r1 and r2 as if they were characteristics of the union
of example sets of the original criteria. The merging can propagate to the
association level – if, after merging some categories, there exist associations
〈ra, ro, rc1〉 and 〈ra, ro, rc2〉, such that rc1 6= rc2 , rc1 and rc2 are merged.

3∆fo = ∆
(

f
(t)
o , f

(t−1)
o

)

, see Section 8.4.1.
4The similarity is computed using equation (8.1) from the weighted sum of distances

dist (〈ra, ro, rc〉 , 〈fa, fo,∆fo〉) = wad(ra, fa) + wod(ro, fo) + wcd(rc,∆fo). However, the
overall similarity is zero, if ra, fa do not have the same action type.
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9.2 Measures and Parameters of Model Sim-

ulations

In each time step after performing an action, the agent adapted its represen-
tation according to the association algorithm described above. To evaluate
the usefulness and adequateness of the representation, we measured its abil-
ity to predict the correct result of the action. After choosing an object and an
action, the agent found the association with the highest similarity of object
and action.5 The change criterion of that association was then applied to
the perceived change and the resulting activity was recorded as the predic-
tion. However, the more general change criteria give higher similarity values,
therefore, we also measured the generality of the prediction expressed by the
average standard deviation of attributes of the criterion used for prediction
(lower value means higher accuracy of the prediction). We also measured
the number of criteria in the agent’s representation. Each measure has been
averaged over the time window of 20 last steps.

The parameters of the association algorithm were wo = 1, wa = 100, wc =
1000. In order to model developmentally growing sensitivity to environmental
differences, we used detectors with increasing decision threshold θ for change
criteria. The threshold θ(t) was linearly increasing from θ(0) = 0 to θ(700) =
0.7 and constantly equal to 0.7 for t > 700. Results of the experiments were
averaged over 30 simulation runs.

9.3 Results

Before we present the results, we review that we simulated the model of
category formation by sensorimotor interactions with objects in the environ-
ment. The agent performed random actions on randomly chosen objects and
grouped objects, actions and changes into categories according to the result
of interaction. The goals of the experiment were: (1) verify that the proposed
mechanism can lead to construction of ecologically relevant categories, (2)
evaluate the effects of category merging, (3) compare the effectiveness of the
representation based on identification criteria with prototypes in conceptual
spaces.

5Computed from the weighted distances of object and action, see the footnote 4.
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9.3.1 General Results

In the first experiment, the agent did not use merging. We let the agent
interact with its environment for 5000 time steps.

The results are summarized in Figure 9.1a. As we can see in the graph,
while the prediction threshold is low, the agent only uses a few basic criteria.
After the threshold rises over a certain value (around 0.5), the number of
criteria starts to rapidly increase, which leads to a better accuracy of the
prediction. As the threshold stabilizes at the value of 0.7, the total number of
criteria slowly saturates, together with the generality exponentially decaying
to a certain value. The prediction value converges to approximately 0.7.
Recall that this value corresponds to the average distance σ, which is an
average intra-cluster distance of the category. Hence, this means that the
criteria give correct predictions and the agent has constructed ecologically
relevant categories.

9.3.2 Merging

In the second experiment (Figure 9.1b), the agent merges similar criteria
every 50th time step since the time 1000. This decreases the total number of
the criteria at the cost of more general predictions (the generality does not
exponentially decay, but stays between 1 and 1.5). The prediction value again
converges to approximately 0.7, i.e. the criteria give correct predictions.

9.3.3 Comparison to Prototypes

The advantage of the variance-based identification criteria is that they are
sensitive to unequal importance of attributes (or scaling of different dimen-
sions) for category membership. In order to compare them with a standard
prototype representation, we ran an experiment with criteria based on stan-
dard Euclidean metric (Figure 9.1c). Despite that the criteria were merged
as in the second experiment, the number of criteria is almost double and the
prediction value is lower than in the case with variances. This means that
the prototype representation is less compact and less effective for predictions.

9.3.4 Representation in Detail

Actual meanings of the constructed categories can be guessed by inspecting
the internal representation of the agent. In Table 9.1, we can see a fragment
of the agent’s representation from an example run of the experiment, in which
the agent acquired 4 object criteria, 7 action criteria, 10 change criteria and
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Figure 9.1: Construction of categories based on outcomes of sensorimotor
interactions. The measure of prediction expresses the agreement of the pre-
dicted outcome (change) of the performed action with its real outcome, the
generality express the inaccuracy (permissible deviation) of the predicted
change, the threshold is a developmental parameter that determines when
two changes are considered the same. Criteria is the total number of criteria
in the representational system of the agent. (a) Experiment with no merging
of criteria. While the prediction threshold is low, the agent only uses a few
basic criteria. Then the number of criteria starts to rapidly increase, which
leads to a better accuracy of the prediction. As the threshold stabilizes,
the total number of criteria saturates and the generality decays to a certain
value. The value of prediction converges to that of average intra-category
distance (0.7), i.e. the predictions are correct and the agent has constructed
ecologically relevant categories. (b) The effect of criteria merging: it keeps
the number of criteria lower than in the experiment (a), at the cost of lower
accuracy (higher generality). (c) Comparison to prototypes (criteria insensi-
tive to variances of attributes): Agents used much more criteria than in the
experiment (a) and still achieved a lower prediction value.
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Table 9.1: Example of object criteria (above) and a fragment of associa-
tions (below) constructed by the agent interacting with its environment by
sensation and action. For brevity, the attribute values are written as the
mean (prototype) ± the standard deviation σ. In the table below, object
categories are in rows, action categories are in columns, associated change
criteria are in intersections of rows and columns. Arguments of actions are
putDown(armAngle) and liftUp(armAngle, force). Change criteria express
the difference in vertical position of the involved object.

posX posY posZ weight color
C1 13± 7 13± 8 0± 0 37± 23
C2 14± 7 13± 8 4± 13 39± 22
C3 11± 6 10± 7 35± 28 4± 3 2± 2
C4 11± 6 10± 7 25± 23 4± 3

Action
Category putDown(5± 3) liftUp(6± 2, 10± 6)

C1 no change
C2 no change

C3 ∆={posZ : −6± 1} ∆={posZ : 7± 1}
C4 ∆={posZ : −4± 2} ∆={posZ : 5± 2}

formed 13 associations. Table 9.2 shows the object criteria applied to 31
objects in the environment. Numbers in a row express the object counts
of a given type most similar to the criterion in a column. We can see that
the agent constructed categories such as “objects too heavy to be lifted”
(C2) or “objects that cannot be put down, because they are already on the
ground” (C1). Category C3 represents mostly fruits and C4 mostly toys.
As attributes other than weight or posZ are present in the criteria too, they
could help the agent in classification (e.g. if all heavy objects were in the
same part of the grid, or had some specific color). Hence, the representation
is situated and it encodes the learning context.

9.3.5 Discussion

The results of the experiments show that the proposed mechanism of action-
based category formation leads to ecologically relevant categories, i.e. such
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Table 9.2: Construction of categories by sensorimotor interactions. Number
of objects of each type for a constructed category they are most similar to.

Category
Object type C1 C2 C3 C4

agent 1
fruit 8 2
toy 1 3 6

furniture 5 5

that support prediction of results of the agent’s own actions. Once an agent
can represent predictions about the outcome of it’s actions, it can use them
for planning sequences of actions to satisfy it’s needs and goals.

The experiments with category merging show the trade off between us-
ability of the representation and memory load: lower number of more general
categories versus higher number of specialized categories that support more
accurate predictions.

The last experiment demonstrates that the identification criteria based
representation is more effective and compact than the representation based on
prototypes in conceptual spaces due to its sensitivity to unequal importance
of attributes for category membership.
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Chapter 10

Construction of Meanings by
Social Instruction

The experiment described in the previous chapter modeled individual con-
struction of preverbal meanings. In this chapter, we describe a computational
model focusing on the study of the influence of verbal instruction (naming)
on category formation process, in line with empirical observations of Waxman
(2004) described in detail in Section 3.3.2 (we review that their observations
suggest that consistent using of the same name for distinct objects motivates
the infant to look for similarities and promotes formation of categories). The
model can also be viewed as a test of the weak version of the Sapir-Whorf hy-
pothesis (Whorf, 1956) stating that language affects our conceptual system.
The proposed computational model is however our original contribution.

10.1 Model

The model consisted of two agents situated in a simulated environment: a
teacher describing various aspects of the present situation, and a learner in-
ducing meanings of the teacher’s words by noticing cross-situation similarities
between their referents.

10.1.1 Environment

The simulated environment consisted of 2D geometrical shapes characterized
by five attributes: the number of vertices (vertices ∈ [2, 5]), coordinates of
the centroid of the shape (posX , posY ∈ [0, 50]) and the size of the bound-
ing rectangle (sizeX , sizeY ∈ [0, 25]). The initial values of attributes were
uniformly randomly generated integer numbers from the respective intervals.
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The environment was dynamic in that in each time step, randomly selected
objects could be resized, moved, or removed from the environment and newly
generated objects could be added (there were usually 2-4 objects simultane-
ously present on the scene). Multiple changes could happen simultaneously
in one time step.

10.1.2 Learning Mechanism

In each time step t, both agents (the teacher and the learner) perceived the
same scene S(t). The teacher produced the scene description Dθ(S

(t)) using
its own criteria. This description composed of words and their referents
(identified by foci, see Section 7.5.1) served as the learner’s learning input.

The learner constructed its identification criteria from examples deter-
mined by the foci and associated them with the received words. A meaning
of each word was induced from all the referents that the word has been used
with.

The induction of meanings was guided by no true synonymy and no true
homonymy assumptions. Although natural languages do contain words with
multiple meanings (homonyms) and multiple expressions for a single meaning
(synonyms), in case of bootstrapping the language and concepts from scratch,
it is useful to start with no homonymy and no synonymy.1

1. No true synonymy: Different words have different meanings, even if
they share a referent (in that case they express different aspects of the
referent).2 Put in practice, if the agent hears an unknown word w in the
context of a referent φ(S(t)), a new criterion r is created with φ(S(t))
being its first example and r is associated with w in the agent’s lexicon.

2. No true homonymy: A single word has a single meaning, even if it
is used with more referents. This assumption is crucial for cross-
situational disambiguation of the meaning: all the referents of a single
word across different situations are considered instances of the same
category denoted by the word.3 Put in practice, if the agent already
knows some meaning r of a word w and w is now used with a new
referent φ(S(t)), r is updated by φ(S(t)) (instead of creating a new cri-
terion).

1Children acquiring a language use similar constraints, see Section 3.3.3.
2This assumption corresponds to the Principle of Contrast (Clark, 1987).
3If a word has been used in apparently different contexts (e.g. if the referents have

nothing in common), the agent can detect homonymy and associate multiple criteria with
the word. However, this feature has not been implemented in our model.
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Example.

Let us consider an agent that lives in a world of geometric shapes placed on a
50× 50 grid with the point coordinates (1, 1) on the left bottom and (50, 50)
on the right top. If the agent perceives an object

f = {vertices: 3; size: 18; color: 3; posX: 1; posY:23}

denoted by words “left”, “big”, “triangle”, it creates three identification
criteria, which are initially identical and represent the “snapshot” of the
perceived object f . The criteria begin to differentiate, when they are updated
by more and more instances. E.g. the “snapshot” criterion associated with
the word “triangle” will be updated by frames of various objects having all
kinds of colors, positions, sizes and other properties, but all having 3 vertices.
Attributes not common to all instances will be removed from the criterion
and others will gain lower importance because of their high variance in the
sample. Hence, the property of having 3 vertices (with zero variance in
the sample) will become decisive in the criterion associated with the word
“triangle”. Also the word “left” will be heard with many different objects
sharing the property of low value of the attribute posX, etc. The more
contexts of the word’s use, the bigger the probability that the referents will
vary in the properties irrelevant for the meaning of the word. However, if
e.g. all triangles in the agent’s world are big, then having a big size will
become part of the meaning of the word “triangle”. Hence, the induced
representation is situated and contextual.

10.2 Measures and Parameters of Model Sim-

ulations

The experiment was run for 5000 learning epochs (time steps). In each time
step, the teacher, using a predefined ontology and the lexicon, described the
current scene (including the changes) to the learner. The teacher’s lexicon
included 2 nouns, 3 adjectives and 2 verbs (see Table 10.1).

The learner used detectors based on the Mahalanobis metric, with the
receptive field threshold θ = 0.1 and SVD-filtering with the threshold b =
10% (see Section 8.2.2).

To evaluate the fidelity of meaning transmission, before receiving the
scene description from the teacher, the learner described a scene in each time
step too, and the two descriptions were compared for the correctness and the
completeness of the learner’s description. The measure of the description
similarity was the average of the correctness and the completeness.
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Table 10.1: A predefined ontology and lexicon of the teacher in the experi-
ment focusing on the influence of naming on category formation process.

Word Meaning
square vertices = 4 ∧ sizeX = sizeY
triangle vertices = 3
big sizeX > 15 ∧ sizeY > 15
slim sizeX < 0.2sizeY
small sizeX < 10 ∧ sizeY < 10

grow sizeX (t) > sizeX (t−1) ∧ sizeY (t) > sizeY (t−1)

shrink sizeX (t) < sizeX (t−1) ∧ sizeY (t) < sizeY (t−1)

The correctness of the learner’s description was computed as 1 − w/L,
where w was the number of wrong words in the learner’s description of the
scene and L was the total number of words in the learner’s description. A
word in a learner’s utterance describing some referent was considered wrong,
if it was not used by the teacher in its utterance describing the referent.

The completeness of the learner’s description was computed as 1−m/T ,
where m was the number of teacher’s words missing in the learner’s de-
scription of the scene and T was the total number of words in the teacher’s
description. A word in a teacher’s utterance describing some referent was
considered missing, if it was not used by the learner in its utterance describ-
ing the referent.

We also evaluated a pragmatic usage of the learner’s ontology in guessing
games. In each time step, the teacher uttered a verbal description of a referent
randomly picked up from the scene and the learner guessed the referent.
The learner’s guess was a set L of possible referents of the utterance, as
understood by the learner. In case L did not contain the referent meant
by the teacher, the usage was zero. Otherwise, the success in the guessing
game was evaluated by comparing L with the set T of referents that the
teacher itself would guess from the utterance (as the agents did not play
discrimination games in our model, the teacher’s description did not have to
be unique either). The usage was computed as 1/(1 + r), where r was the
number of referents in L − T . Hence, even in the case of a correct guess,
the usage was lowered by any extra referents that could not be meant by the
teacher.

The uncertainty inherent in the teacher’s descriptions was measured as
1 − 1/|T |. For example, if the teacher described the chosen object by the
utterance “triangle”, and the scene contained two objects categorized as tri-
angles by the teacher, the uncertainty of the teacher’s description would be
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Figure 10.1: Cross-situational learning of categories from verbal instruction.
The quality of the lexicon acquired within one generation. The description
similarity expresses the similarity of verbal descriptions of the current scene
produced by the teacher and the learner. The usage is the measure of success
in guessing games played during the learning; the usage200 is the average
success in 200 guessing games played after each 500 learning epochs. The
uncertainty is the degree of ambiguity inherent in the teacher’s description.
Each measure in the graph has been averaged over the time window of 30 last
steps and the results of the experiment were averaged over 10 simulation runs
with different random seeds. Cross-situational learning is fast and reliable:
the learner soon acquires an ontology and lexicon of a sufficient quality, which
remains stable for the rest of the simulation.

50%. If the teacher’s utterance had a unique referent, uncertainty would be
zero.

Besides playing guessing games during the learning, the agents played 200
guessing games after every 500 learning epochs. The measure “usage200” is
an average usage of 200 guessing games played after learning. The guess-
ing games were only played for evaluation purposes and did not have any
influence on the learning process.

10.3 Results

The goal of this experiment was to validate the proposed mechanism of mean-
ing construction based on the influence of naming on category formation pro-
cess. This goal has been satisfied; the simulation results (Figure 10.1) show
that cross-situational learning is fast and reliable: the learner soon acquires
an ontology and lexicon of a sufficient quality, which remains stable for the
rest of the simulation. We discuss these results in more detail in Chapter 12.
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Chapter 11

Meanings in Intergenerational
Transmission

We have shown how a learner can construct meanings sufficiently similar
to those of its teacher by verbal instruction. Now the question is, whether
meanings constructed this way remain stable, if we let the acquisition pro-
cess iterate intergenerationally. In this chapter, we describe an extension of
the previous experiment, based on the iterated learning model (ILM, see Sec-
tion 4.2.2) framework (Kirby and Hurford, 2001). Our experiment is designed
to study how meanings change across generations (Takáč, 2007c,a).

The iterated learning model, which involves vertical cultural transmission
of language between generations, has primarily been designed for modeling
the emergence of grammar. In the ILM framework, language develops by
flowing between two forms of private language competence and externalized
utterances by processes of acquisition and production. A learner builds up its
own internal language representation by observing external language input
from its teacher, later the learner becomes a teacher and produces utterances,
which are the input for the next generation learner, etc.

11.1 Model

The first generation setting in the model was identical to the experiment de-
scribed in the previous chapter, except that we varied the number of learning
epochs. After a certain number of epochs, the teacher with predefined ontol-
ogy was removed and the learner became a teacher for a new agent with an
empty ontology and lexicon. We let this process iterate for 50 generations.

We ran two versions of the experiment: in Experiment 1, the agent could
neither modify nor add any new meanings, once it became a teacher (it only
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Figure 11.1: Iterated intergenerational transmission of meanings by verbal
instruction. Generations exchanged every 500 time steps. The results were
averaged over 10 simulation runs with different random seeds (for description
of measured parameters, see Section 10.2). (a) High values of description
similarity and the pragmatic usage were quickly retained after each drop
caused by the generation exchange. They gradually stabilized at a very high
value close to 1, at the cost of a higher uncertainty caused by overgeneraliza-
tion of some meanings. (b) The average number of meanings stabilized on
the value of 6 out of 7 original meanings of the first-generation teacher (one
meaning died out because of overspecialization).

used the meanings acquired from it’s own teacher). In Experiment 2, the
teacher could invent new meanings or extend old ones, in case it had no
meanings applicable to describe some object on the current scene.

11.2 Experiment 1

Figure 11.1 shows the results of Experiment 1 run for 50 iterations of 500
learning epochs. We measured the description similarity and the pragmatic
usage of the learner’s lexicon in each generation. As we can see, the quality
of the lexicon is quickly retained after each drop caused by a generation
exchange.

To explore inter-generational meaning shifts, we also inspected the agents’
internal representations of categories. We found out that categories grow
and shrink represented by sign pattern based detectors remained the same
in all generations. The agents were also successful in inducing the correct
criteria for triangle (3 vertices, all other attributes irrelevant) and square (4
vertices and equal side lengths), which remained the same in all generations,
too. Though the exact parameters of the criterion for slim varied across
generations, the property of having horizontal size small in comparison to
the vertical one has been correctly captured and retained. Criteria for big
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Figure 11.2: Overspecialization and overgeneralization – two sources of in-
stability in iterated intergenerational meaning transmission. The receptive
field of each displayed category was projected into the plane with dimensions
sizeX , sizeY . The projecting plane crossed other dimensions in mean values
of the dimensions recorded in the category’s detector. In some simulation
runs, the categories big and small showed one of the following behaviors: (a)
overspecialization – the size of the receptive field converged to zero over gen-
erations, (b) overgeneralization – a random correlation of some attributes in
the sample overtook other attributes that became overgeneralized (ignored).

and small, based on certain intervals of uncorrelated attribute values, did not
turn out to be so stable. Either they were overspecialized in some simulation
runs and they died out (their receptive field gradually shrank to zero), or
they were overgeneralized (due to a takeover of some attributes, see Figure
11.2).

In order to explore causes of this instability, we varied the number of
learning epochs in each generation (Figure 11.3). We can see that a smaller
number of learning epochs causes smaller sample sets. If sample sets are too
small, concepts are unstable, some of them get overspecialized and disappear
(the number of total meanings gets smaller), others get overgeneralized (the
uncertainty rises). This is the case of simulations with less than 300 learn-
ing epochs per generation (corresponding to less than 25 examples for the
detector with the smallest sample set). In simulations with more than 300
learning epochs, the average number of meanings stays between 6 and 7 and
the uncertainty is around 30 − 35%. These results are further discussed in
the following section.

11.2.1 The Influence of the Meaning Bottleneck

As objects and their changes are generated randomly within the fixed num-
ber of learning epochs, the sample size for a learner’s category depends on
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Figure 11.3: The influence of the number of learning epochs per generation on
the stability of meanings in iterated intergenerational meaning transmission.
Data for each number of learning epochs are averaged over 10 simulation runs
with different random seeds. The measure meanings is the total number of
the learner’s meanings, averaged over all learning epochs in all generations.
Min. sample size/10 is the size of the sample size of the learner’s criterion
with the smallest sample set, averaged over all learning epochs in all genera-
tions (and scaled by 10). The uncertainty expresses the referential ambiguity
of the teacher’s descriptions (cf. Section 10.3), averaged in the same way as
the two previous measures. The results show that smaller number of learning
epochs causes smaller sample sets, which can lead to instability: some of the
concepts get overspecialized and disappear (the number of total meanings
gets smaller), others get overgeneralized (the uncertainty rises).
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the probability of occurrence of instances of the teacher’s category on the
scene. This creates an implicit meaning bottleneck. In iterated learning
models of grammar emergence, the learning bottleneck leads to the emer-
gence of compositionality, because compositional rules are more likely to be
transmitted through the bottleneck (Kirby and Hurford, 2001; Vogt, 2005).
In our model, instances of more general categories are more likely to appear
on the scene within the learning period than those of very specific categories
or even categories representing individual objects. Also, our model shows
the same frequency effects as those reported by Kirby and Hurford (2001): if
examples of a very specific category appear often on the scene because of a
biased random generator, they can get preserved over generations, otherwise
they would probably die out.

Catching and amplifying randomly occurred regularities is the inherent
property of iterated learning. While this property is desirable for the emer-
gence of grammar, it can lead to distortion of meanings in our model. The
smaller the sample, the bigger the chance that it will contain random cor-
relations that are not a part of the original meaning and a covariance-based
detector would not reconstruct the original meaning properly. Once a ran-
dom correlation becomes a part of the meaning, it gets reinforced in the next
generation, because the teacher will pick up as instances of the category only
examples containing the correlation. This way the meaning gets overspecial-
ized (see Figure 11.2a). Overspecialization is dumped by SVD-filtering (see
Section 8.2.2) that captures the properties most invariant in the sample and
filters out the others. However, a random invariance in a small sample can
lead to overgeneralization due to truncating some relevant attributes (see
Figure 11.2b).

Meaning transmission can be viewed as an evolutionary process with
meanings as competing replicators. The selection pressure is imposed by
the meaning bottleneck. Meanings pass through the bottleneck, if they are
relevant to the environment. Special meanings describing situations that
occur very rarely have smaller survival chances than frequently applicable
general meanings. However, the model used in Experiment 1 corresponds
with the replicator view only partially: meanings can die out, if they are no
longer relevant, but there is no mechanism of creation of new meanings in
the model. If the agents were suddenly relocated to a completely different
environment, the teacher would remain silent because of the lack of adequate
meanings, and the whole language would die out. To make the model more
realistic, the teacher was allowed to coin new meanings and words in such
situations. The experiment is described in the following section.
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11.3 Experiment 2

The model setting was similar to that of Experiment 1, in that the teacher
had to describe a randomly generated and modified scene to the learner. The
teacher of the first generation started with the criteria for triangle, square,
small, big, and slim (see Table 10.1). If, for some object on the scene, there
was no criterion with an above-threshold activity, the object was approxi-
mately described by the word associated with a criterion returning the high-
est non-zero activity. If there was no criterion returning non-zero activity for
the object, a new criterion (named by a new random word) was created with
the object as the first example.

The learning process was iterated for 50 generations with 200, 500, or
1000 learning epochs in one generation. The results we got confirmed our
replicator hypothesis. The meaning of triangle was stable and remained the
same throughout all generations in all three versions of the experiment. The
meaning of square remained stable in the experiments with 500 and 1000
learning epochs and died out in some simulation runs of the experiment with
200 learning epochs. In comparison to triangle and square, the criteria for
small, big, and slim were more likely to return a non-zero activity for a
random object. Hence, they were more often used in an approximate sense,
which caused their instability.

Using criteria in approximate senses caused the extension of their recep-
tive fields in the next generation. Meanings with under-threshold activity
competed for selection and the meaning with highest activity was selected
and extended subsequently. This created rich-get-richer dynamics (a posi-
tive feedback loop) and led to the formation of very general criteria. Indeed,
in every version of the experiment, we observed the appearance and sur-
vival of general criteria1 with meanings such as “objects with 2-5 vertices”
or “objects with horizontal position posX between 0 and 50” applicable to
all referents in all situations. Other newly-created meanings defeated in the
competition had very small sample sets and have not survived.

1These included overgeneralized meanings of small, big, and slim as well as some newly
created criteria.
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Chapter 12

Discussion

12.1 Cognitive Plausibility and Implications

We have proposed a new semantic representation that combines advantages
of symbolic, conceptual and subsymbolic levels of description (Gärdenfors,
1997). Locally tuned detectors that are the building blocks of our semantics
can be constructed from scratch by utilizing statistical properties of their
sample sets. As such, they are not far away from connectionist systems and
could be implemented in this way (see comparison to Radial Basis Function
Networks in the next section). Moreover, they have a high neural plausibil-
ity (Martin, 1991). Thanks to their geometric interpretation, locally tuned
detectors provide a natural description of concepts with graded membership,
fuzzy boundaries, prototype effects, similarity-based distances and potential
for hierarchical relations and metaphoric mappings. Most importantly, they
facilitate an ex-post analysis of the actual meaning of constructed represen-
tations.

We have also proposed, implemented and analyzed several original mod-
els of meaning construction. In the model of individual meaning construc-
tion, we have shown how ecologically relevant categories can be constructed
from sensorimotor interactions with the environment. The resulting cate-
gories were relevant in that they reflected the structure and dynamics of
the environment. The adequateness of the constructed representation was
proved by the agent’s ability to use it for predicting the results of its actions
on objects. The categories of objects were organized by common interaction
programs, in accordance with empirical findings of Rosch (1978) about basic-
level categories. All action categories associated with some object category
represented affordances of the object, i.e. the perceivable possibilities for
acting on the object (Gibson, 1979). On the other hand, object and change

137



categories associated with action categories can be viewed as verb islands in
line with the verb island hypothesis (Tomasello, 1992) stating that the first
more complex lexical constructions of children are organized in verb-centered
structures with verb-specific arguments.

Children learn by interacting with the world, but, at the same time,
they are exposed to the linguistic production of their caregivers. Naming
influences the children’s conceptual organization and supports discovery of
novel concepts (Waxman and Braun, 2005). We have explored this issue in
our second computational model of two agents observing their dynamically
changing environment. We have shown how a linguistic instruction from one
agent (the teacher) accompanied by a non-verbal reference can lead to cross-
situational construction of meanings by the other agent (the learner). The
learner constructed different types of concepts represented by identification
criteria, which were similar enough to those of the teacher, to be used for
pragmatic purposes. A high similarity was achieved very rapidly, which was
in line with the observed phenomenon of fast mapping (Carey and Bartlett,
1978).

However, meanings did not stay intact, when we let the acquisition pro-
cess iterate in the third computational model. The causes of this insta-
bility were discussed in detail in Section 11.2.1. While a high similarity
between teacher’s and learner’s meanings was maintained within each gener-
ation, meanings did change throughout the generations. These results sug-
gest how real languages can change historically, while still preserving their
communicative function.

Meanings constituted by simple structural relations and invariant at-
tribute values happened to be more stable in the iterated transmission than
meanings based on interval values of uncorrelated attributes. In our model,
we used adjectives big and small with the meaning of having the size big-
ger or smaller than a fixed value. This is not realistic: most adjectives are
semantically dependent on the nouns they modify (Warren, 1988), e.g. an
adjective big refers to very different absolute measures in the phrases “big
mouse” and “big elephant”. The meanings of such adjectives are constituted
by structural relations that are mapped onto a particular domain generated
by the modified noun. We can speculate that the semantic dependency of
adjectives, observed in real languages, is the result of the dynamics of the
selection process within the iterated language transmission, where meanings
based on structural relations are much more persistent.

If we allow extension of meanings to novel referents, the dynamics of
the iterated transmission inevitably leads to the erosion toward more and
more general meanings. This phenomenon was also observed in other models
(Smith, 2001, 2005a). The occurrence of the meaning drift in our model
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can be explained by the lack of other selection forces, as the meanings were
only optimized for their expressive coverage. In real situations, utterances
and their meanings serve pragmatic purposes including identification and
discrimination. Hence, optimal meanings should reflect the trade-off between
coverage and distinctiveness (Rosch et al., 1976).

To explore the nature of meaning creation mechanisms, we have deliber-
ately studied each of them in isolation. However, in real situations, meaning
formation processes are coupled and interact with each other, albeit they
may operate on different timescales (Takáč, 2003a,b).

12.2 Related Works

There are lot of models related to our work in various aspects. The similar-
ities and differences can be analyzed on the level of representation, learning
mechanisms and the overall dynamics.

12.2.1 Representation

In the models of language bootstrapping, meanings are usually represented by
collections of intervals from discrimination trees (Steels, 2000; Smith, 2005a),
prototypes in one-dimensional (Vogt and Divina, 2007) or multidimensional
(Vogt, 2005) conceptual spaces (Gärdenfors, 2000), adaptive networks (Steels
and Belpaeme, 2005), or weight configurations in artificial neural networks
(Borghi et al., 2005; Cangelosi, 2005).

Nodes of a discrimination tree represent features – subintervals of the
range of a particular sensory channel. The initial range [0, 1] is adaptively
refined, based on the results of discrimination games. In some models, if
a single feature cannot identify a topic referent uniquely, a set of features
is chosen. However, the discrimination trees are mutually independent and
the construction of the feature set is situational and not persistent. A dis-
crimination tree related to a particular sensory channel can be likened to a
locally tuned detector only based on one attribute in our model. However,
locally tuned detectors can also persistently represent meanings based on
multiple attributes and their correlations, therefore our representation has
bigger expressive power than discrimination trees.

Prototypes in one-dimensional spaces related to perceptual features have
the same expressive power as features in discrimination trees. Prototypes in
a multidimensional conceptual space have the potential to capture correla-
tions of attributes. However, in the above-mentioned models, categories in
a multidimensional space are constructed by placing prototypes on each di-
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mension separately and combining them together (Vogt, 2005), which makes
this representation insensitive to unequal importance of dimensions for a cat-
egory. The density of each dimension is the same for all categories, because
a category of an object is constructed as a vector of the closest prototypes on
each dimension and the prototypes generate a grid in the conceptual space.
Categories based on correlated attributes could in principle be represented
as multiple nodes of the grid, but this is not used in the reviewed models.
Hence, the advantage of our representation is sensitivity to the importance
of each dimension for the category membership and a power to persistently
represent multidimensional concepts based on inter-correlations of attributes.

Adaptive networks used by Belpaeme (2002); Steels and Belpaeme (2005)
are most closely related to our representation. An adaptive network consists
of a set of locally reactive units, each with a Gaussian activation function
centered at some point (widths of all Gaussians are the same and fixed to
some experimentally determined constant). The resulting activity of the
network is a weighted linear combination of activities of all reactive units
applied to a common input. Each category is represented by one adaptive
network; an input is categorized as a member of the category represented by
the network giving the highest activity.

Adaptive networks can be considered variants of Radial Basis Function
Networks (RBFN, Poggio and Girossi, 1990b).1 It has been proved that
RBFN is a universal approximator in that it can approximate any multivari-
ate continuous function, given a sufficient number of reactive units (Poggio
and Girossi, 1990a). A single reactive unit of RBFN cannot capture corre-
lations of attributes, but the whole network can. A hyperelliptic receptive
field of a category represented by one locally tuned detector based on Maha-
lanobis metric in our approach can be covered by many locally reactive units
of RBFN with suitably chosen positions of their centers.2 The advantage of
a multi-unit RBFN over our single-unit locally tuned detectors is that RBFN
can also represent categories whose receptive fields are not convex or even
consist of disconnected regions. However, such categories are not considered
natural (Gärdenfors, 2000). Representing one natural category by multiple
units (corresponding to multiple prototypes) is less economic and does not

1Belpaeme (2002, p. 57) have chosen the name adaptive network instead of radial basis
function networks, to emphasize the difference between RBFN, which are trained to fit a
function using a learning method, and adaptive networks, which are adapted according to
their performance in discrimination games. See the next section for details.

2Each locally reactive unit of RBFN covers a hypersphere, i.e. it corresponds to a locally
tuned detector with the common variance based Euclidean metric dL2, σ (see Section 8.2.1).
Generalized RBFN (Poggio and Girossi, 1990b) use units with covariances, which are
equivalent to the pseudoinverse version of our covariance-based locally tuned detectors.

140



have to be cognitively plausible.

However, having multi-detector representation of categories could be a
good compromise between exemplar-based (Nosofsky, 1984) and prototype-
based (Rosch, 1978) approaches to categorization. During the category in-
duction, sufficiently similar examples would update the same detector, while
a new detector could be added for more distant examples. This approach
would support multiple levels of abstraction, where the multi-unit criterion
represents a superordinate category consisting of several basic-level subcate-
gories (see Section 2.4.1) and could also cope with synonymy.

Last but not least, the representation proposed in this thesis is in ac-
cordance with the ideas of Harnad (1990): our perceptual frames are iconic
projections of perceived objects, and elementary identification criteria corre-
spond to categorical representations that pick up invariant features of cate-
gories. Although we encode frames and detectors in symbolic fashion, they
both clearly have nonsymbolic correlates. Words associated with the criteria
in the language level are Harnad’s elementary symbols. Hierarchical identi-
fication criteria and propositional associations of criteria representing action
knowledge correspond to Harnad’s higher order symbolic representations.

12.2.2 Learning Mechanisms

The crucial difference between RBFN, adaptive networks and our locally
tuned detectors is in the way they learn.

Several mechanisms of learning have been proposed for RBFN (Haykin,
1999; Beňušková, 2002b). While the hidden layer’s activation functions
evolve slowly in accordance with some non-linear strategy, the output layer’s
weights adjust themselves rapidly through a linear optimization strategy
(Haykin, 1999, p. 298). The number of locally reactive units is decided
experimentally beforehand. Location of centers of the units can be deter-
mined either by random selection from the sample set, or in a self-organized
way by k-means clustering algorithm,3 or by a supervised gradient-descent
error-minimizing procedure. The width of Gaussians is chosen as a multiple
of average distances between the centers to allow for a small overlap between
radial functions, or it can be determined by the supervised gradient-descent
procedure. The linear output-layer weights are determined by a supervised
error-minimizing procedure.

Wettschereck and Dietterich (1992) have compared the performance of
RBFN with fixed centers to that of generalized RBFN with adjustable centers
determined by supervised learning on NETtalk task focusing on mapping En-

3For details, see e.g. Beňušková (2002b).
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glish spelling into its phonetic pronounciation. The NETtalk experiment was
originally carried out by Sejnowski and Rosenberg (1987) using multi-layered
perceptron trained with the back-propagation algorithm. The results of ex-
perimental comparison of the generalization performance have shown that
generalized RBFN with computationally more intensive supervised learning
of the parameters of locally reactive units as well as the output-layer weights
performed substantially better than the original multi-layered perceptrons,
while RBFN with self-organized locations of centers of locally reactive units
and supervised learning of the output-layer weights did not achieve the per-
formance level of the original perceptrons (Haykin, 1999, p. 325).

The adaptive networks of Steels and Belpaeme (2005) are not trained in
the same way as RBFN. Rather, they are adapted by adding or removing
a locally reactive unit and by changing weights of the units (the width and
centers of the units remain unchanged). When an adaptive network that
represents a category is created, it consists of a single locally reactive unit
centered on the first example. The adaptation of networks is guided by their
success or failure in discrimination games4 (see Section 4.4.1). If no dis-
criminating category could be found for some topic, either a new category
(network with a single unit) is created, or the best matching category is
adapted by adding a new locally reactive unit centered on the topic. If a
discrimination game is successful, the weight of each locally reactive unit of
the discriminating category is increased proportionally to the unit’s activa-
tion. After every discrimination game, the weights of all the locally tuned
units of all categories of an agent are decreased with a non-negative decay.
When the weight of some locally tuned unit is lower than a certain thresh-
old, the locally tuned unit is removed from the adaptive network. When no
more locally tuned units are associated with the network, the whole network
is removed. Hence, adaptive networks use exemplar-based representation of
categories with a forgetting mechanism based on stimulation frequencies.

The crucial difference between training a RBFN and adapting an adaptive
network is that the latter is incremental (it does not need to have the whole
sample set in advance) and faster, having a reasonable level of performance
even after seeing first few examples.

Learning in our models corresponds to finding the values of parameters
(the center and the covariance matrix) of a single unit generalized RBFN.
However, it is not so computationally costly as non-linear optimization of
RBFN, because it is instance-based and incremental. It is based on extracting
cross-situational similarities between examples of a category. Input frames

4Other models of Steels’ group (for overview see Steels, 2000) are based on the same
principle of learning from feedback about success or failure in various games.
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are considered examples of the same category, if they can be interacted with
in the same way (in the case of individual learning), or if they were named
by the same word (in case of social learning).

A seminal model of cross-situational learning was published by Siskind
(1996). In this model, the algorithm learns mappings between word symbols
and conceptual symbols such as GO, John, ball. A hypothesis set of all
possible conceptual symbols is given in advance, and “lexical acquisition is
simply a process of learning the mapping between two pre-existing mental
representation languages” (Siskind, 1996, p. 47).

In this aspect, we can view our model as cross-situational learning of
meanings of Siskind’s atomic conceptual symbols, while learning in the model
of Siskind works more on the sentence level by eliminating meaning map-
pings incoherent across situations. Siskind’s model deals with the referential
indeterminacy, noise and homonymy by employing the mutual exclusivity
assumption (Markman, 1992).

Cross-situational learning is also used in the model of Smith (2005a).
Semantic hypotheses (represented by nodes of discrimination trees) are not
given in advance, but are constructed by playing discrimination games prior
to the language acquisition phase. In the language acquisition phase, agents
learn mappings between the constructed meanings and words from word-
meaning co-occurrence frequencies. Cross-situational learning is combined
with learning based on corrective feedback in the model of Divina and Vogt
(2006); Vogt and Divina (2007). Mathematical properties of cross-situational
learning are analyzed by Smith et al. (2006).

Among recent connectionist models of action-based categorization, that
of Borghi et al. (2005) seems to be most closely related to our model of
individual interactionist meaning construction. In their model, an organism
with a visual system and a two-segment arm (simulated by a neural network)
reaches different points in space, depending on the object seen and on the
context. Constructed categories reflect characteristics of the output actions
to be performed rather than perceptual characteristics of the input. However,
the organism is selected from a population of non-learning neural networks by
genetic algorithm, which is not plausible as a model of ontogenetic acquisition
of categories.

The role of social learning in the acquisition of concepts and language
has been studied by Steels and Kaplan (2001a). In their experiment, a hu-
man teacher (mediator) interacted with a Sony AIBO robot, trying to teach
it the names of three objects. The perceptual input of the robot was in
the form of camera images taken from different angles and under different
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light conditions. The robot used simple instance-based learning5 and this
was compared with unsupervised clustering techniques. The experiment has
shown that categories obtained by unsupervised techniques did not match
the three objects, while categorization directed by naming has been much
more successful. Active and rich social interactions served the role of nar-
rowing the context and reducing the noise. If the teacher just estimated at
which object the robot was looking, and uttered a name for it, the input was
much more noisy and the performance deteriorated.

The experiment have led the authors to the conclusion similar to ours:
naming has a beneficial effect on the categorization process. In compari-
son to our approach, they used much simpler learning algorithm that was
not sensitive to unequal importance of dimensions. The authors admit that
if there were more objects on the scene represented by perceptual images
in more dimensional space, methods for computing correlations of dimen-
sions with categories and the intercorrelations among dimensions should be
employed (Steels and Kaplan, 2001a, p. 26). Our algorithm is sensitive to
multidimensional intercorrelations.

12.2.3 Iterated Intergenerational Transmission

In the paradigmatic iterated learning model (Kirby and Hurford, 2001) fo-
cused on the emergence of compositional structures on the syntax level,
meanings were pre-defined and artificial structures. This has been refined
in the iterated learning model of Vogt (2005), in which meanings were cre-
ated in discrimination games. Cross-situational learning of meanings was
combined with iterated vertical transmission in the model of Smith (2005a).
Although, in this model, meanings were created individually by each agent
in discrimination games, the experiment led to results similar to ours (high
intra-generational meaning similarity, decreasing inter-generational meaning
persistence, and the drift toward more general meanings).

12.3 Limits and Future Work

Our models have been simplified in many aspects. First, categories were
constructed by taking into account attributes common to all examples. This
approach works well for basic level categories, but can be problematic for
some superordinate categories (remember that basic-level is the most general

5Previous instances of category members were stored in the form of histograms. Clas-
sification took place by a nearest neighbor algorithm evaluating the distance of two his-
tograms by a χ2-divergence measure.
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level, at which a common perceptual image and a common motor program can
be created for members of a category). Moreover, instances of some concepts
are related by family resemblances rather than by common properties of all
members, as exemplified by Wittgenstein (1953) with the concept of a game.
In its current form, the model cannot cope with homonyms and with noise.
If a sample set erroneously contained an instance with a set of attributes
completely different from other instances, it would result in a category with
an empty attribute set. This could be amended by recording frequencies of
attributes and by splitting concepts in case of homonymy detection.

Second, our models do not account for hierarchic and taxonomic relations
that exist among real concepts.6 Also, the semantics of verbs in our model is
based on criteria of one-step changes of attribute values. Representation of
larger sequences of changes may be necessary for some verbs. For other verbs,
discrete sequences may be insufficient at all and some kind of continuous
representation of the dynamics (e.g. phase portraits, see Section 4.5.2) may
be required.

Third, in the model of social learning of concepts, an explicit reference
(focus) to instances of the named category was given along with the linguistic
input.7 We used this simplification deliberately, in order to show that even
in the absence of referent indeterminacy, the learner has to solve sense inde-
terminacy, because different words can describe different aspects of the same
(known) referent. However, in the later phases of the language acquisition
process, the explicit reference could be substituted by the inference from the
linguistic or pragmatic context (e.g. the utterance “big X” can narrow the
context to big objects on the scene).

Meaningful categories should be useful for the agent in achieving its goals
(Nehaniv, 2000). In our action-based model, the agent had no goals and
performed actions randomly. The next research step is to endow the agent
with needs, need-driven goals and an action planning mechanism.8 Also, we
plan to study the interplay of the meaning construction mechanisms in a
model with coupled individual and social learning.

According to the syntactic bootstrapping theory (Lidz et al., 2004), chil-
dren acquiring a language use grammatical cues to constrain possible mean-
ings of words. The principles we used for acquisition of meanings of single

6Possibilities of hierarchic relations between identification criteria were explored by
Vǐsňovská (2007).

7In the first, bootstrapping, phase of children’s language acquisition, the focus (non-
verbal reference) is established by joint attention of the child and the mother, gaze following
and pointing (Tomasello and Farrar, 1986).

8Preliminary attempts heading in this direction can be found in the work of Jankovič
(2007).
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words could also be applied to multi-word noun phrases: each word of a
phrase is assumed to denote a different aspect of the referent. In the acqui-
sition model with no grammar, the word order of the phrase is unimportant
and induction from the phrase “left big triangle” (or any of its permuta-
tions) has the same effect as three subsequent inductions from single words.
Also, even if the agent has acquired the correct meanings of words such as
“cat”, “on”, “hot”, “tin”, and “roof ” in the single-word induction setting, it
cannot understand the meaning of a phrase “cat on hot tin roof ”, unless it
knows the rules of grammatical word composition. Incorporating some form
of grammar into our model is a topic for future research.
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Chapter 13

Conclusion

The principal goals of this thesis were: (1) to formulate a theory of interaction-
based meaning construction, (2) propose a formal representation of various
types of meanings, and (3) study mechanisms of individual and social con-
struction of the proposed representation by computational modeling method-
ology. All these goals were fulfilled.

We described a grounded cognitive semantics for representing concepts of
objects, properties, relations, changes, complex situations and events, based
on identification criteria. The identification criteria are constructed individ-
ually by each agent, based on interactions with the environment and other
agents. Unlike in most of the related models, construction of criteria is based
on cross-situational similarities among instances of a category rather than on
differences between a chosen object and other objects present on the scene
of communication. We argue that categories constructed for the purpose of
identification rather than discrimination are more suitable for the detached
use of language (talking about things not present here and now).

Learning in our models is incremental and permanent. The learning mech-
anism is sensitive to correlations of attributes of instances with categories
and the intercorrelations among attributes. We have implemented and ex-
perimentally tested meaning construction by individual and social learning,
and explored the dynamics of meanings in iterated intergenerational trans-
mission.

We would like to emphasize that, in the presented models, categories are
not given and interpreted by an external designer, but are constructed by
and meaningful to the agents themselves. Such models can have important
practical applications in the areas involving agents that need to coordinate
their activities in unknown, dynamic and open environments. As all possible
meanings cannot be anticipated in design-time, the agents’ ability to acquire
(and continuously reconstruct) relevant meanings is critical.
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Resumé

V tejto dizertačnej práci sme sformulovali teóriu významov založenú na in-
terakciách s prostred́ım tak, aby bola aplikovatělná nielen na ľudskú jazy-
kovú komunikáciu, ale aj na interakcie predverbálnych živých organizmov
i umelých systémov. Originálnym pŕınosom práce je návrh sémantickej repre-
zentácie založenej na prirodzených podobnostiach tak, že jednotný formaliz-
mus tzv. identifikačných kritéríı umožňuje konštrukciu významov reprezen-
tujúcich nielen statické objekty, ale aj ich vlastnosti, vzťahy, dynamické zme-
ny, situácie a udalosti. Treba zdôraznǐt, že významy nie sú dané vopred ani
nie sú interpretované externým pozorovatělom, ale sú konštruované (naučené)
samotnými agentmi, pre ktoré majú inherentný význam. Konštrukcia vý-
znamov je inkrementálna a permanentná. Nami navrhnuté mechanizmy
konštrukcie významov založené na senzomotorických a sociálnych interak-
ciách sme implementovali a experimentálne overili.

Prvá séria experimentov preverila funkčnošt navrhnutého mechanizmu
vytvárania kategóríı na základe senzomotorickej interakcie s prostred́ım. Vy-
tvorené kategórie umožnili efekt́ıvnu predikciu dôsledkov agentových akcíı.
Navyše použitá reprezentácia sa ukázala pre tento účel vhodneǰsou ako pro-
totypy, vďaka citlivosti lokálnych detektorov na rôznu dôležitosť atribútov
pre pŕıslušnosť ku kategórii.

V druhej sérii experimentov sme ukázali, ako si učiaci sa agent na základe
verbálnej inštrukcie spolu s neverbálnou referenciou skonštruuje významy,
ktoré sú pre plnenie pragmatických ciělov dostatočne podobné významom
učitěla. Vysoká podobnosť bola dosiahnutá rýchlo, čo je v súlade s pozoro-
vaným fenoménom rýchleho učenia (fast mapping) u det́ı.

Tretia séria experimentov bola zameraná na skúmanie stability navrhnu-
tej reprezentácie v medzigeneračnom prenose. Ukázalo sa, že medzigeneračný
prenos významov môžeme chápať ako evolučný proces, v ktorom sú významy
replikátormi súťažiacimi o prežitie, pričom selekčným tlakom je zúžený pro-
fil prenosu významov. Významy prejdú cez zúžený profil, ak sú relevantné
prostrediu (teda ich inštancie sa v ňom vyskytujú dostatočne často). Ak
necháme proces akviźıcie významov iterovať, významy neostanú nezmenené.
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Aj keď v každej generácii ostane vysoká podobnošt medzi význammi učitěla
a žiaka, medzigeneračne sa významy budú posúvať a vyv́ıjať. Tieto výsledky
zodpovedajú tomu, že jazyky podliehajú historickým premenám bez toho,
aby stratili svoju dorozumievaciu funkciu.

Výhodou navrhnutého učiaceho mechanizmu oproti iným modelom je jeho
citlivosť nielen na korelácie atribútov inštancíı s pŕıslušnoštou ku kategóríı
aj na vzájomné korelácie medzi atribútmi. Na rozdiel od mnohých exis-
tujúcich pŕıstupov, konštrukcia identifikačných kritéríı je založená na medzi-
situačných podobnostiach inštancíı konceptov, a nie na rozdieloch medzi zvo-
leným objektom a ostatnými aktuálne pŕıtomnými objektmi, čo je predpo-
klad pre situačne nezávislé použ́ıvanie jazyka.
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tions. In: Cantoni, V., di Gesù, V., Setti, A., Tegolo, D. (Eds.), Human
and Machine Perception: Information Fusion. Plenum Press, New York,
pp. 255–270.

156



Gärdenfors, P., 2000. Conceptual Spaces. MIT Press, Cambridge, MA.

Gärdenfors, P., 2004. Cooperation and the evolution of symbolic communi-
cation. In: Oller, K., Griebel, U. (Eds.), The Evolution of Communication
Systems. MIT Press, Cambridge, MA, pp. 237–256.

Harm, M., 2002. Building large scale distributed semantic feature sets with
WordNet. Tech. Rep. PDP-CNS-02-1, Carnegie Mellon University.

Harnad, S., 1990. The symbol grounding problem. Physica D 42, 335–346.

Harnad, S., 2005. Language and the game of life. Commentary on “Coordi-
nating perceptually grounded categories through language. A case study
for colour.” L. Steels & T. Belpaeme. Behavioral and Brain Sciences 28 (4),
497–498.

Hassoun, M. H., 1995. Fundamentals of Artificial Neural Networks. MIT
Press, Cambridge, MA.

Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, 2nd Edi-
tion. Prentice Hall, Upper Saddle River, NJ.

Hulth, N., Grenholm, P., 1998. A distributed clustering algorithm. Lund
University Cognitive Studies 74.

Icogno, 2007. What AI techniques does Jabberwacky use?, retrieved from
http://www.icogno.com/what_ai_techniques.html.

Ientilucci, E. J., 2003. Using the singular value decomposition, retrieved from
http://www.cis.rit.edu/~ejipci/Reports/svd.pdf.
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V., Farkaš, I. (Eds.), Jazyk a kogńıcia. Kalligram, Bratislava, pp. 84–103.
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Kognice a umělý život VII. Slezská univerzita, Opava, pp. 341–347.

Takáč, M., 2007d. When meanings are not mutually exclusive: Issues in
receptive field based grounded cognitive semantics. Technical Reports in
Informatics TR-2007-002, Comenius University, Bratislava, Slovakia.

Talmy, L., 2000. Toward a Cognitive Semantics. MIT Press, Cambridge, MA.

Tarski, A., 1933. Pojecie prawdy w jezykach nauk dedukcyjnych [The concept
of truth in the languages of the deductive sciences]. Prace Towarzystwa
Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych
34, 13––172.

Tomasello, M., 1992. First Verbs: A Case Study of Early Grammatical De-
velopment. Cambridge University Press, Cambridge.

Tomasello, M., Farrar, J., 1986. Joint attention and early language. Child
Development 57, 1454–1463.

Tschacher, W., Dauwalder, J.-P. (Eds.), 1999. The Dynamical Systems Ap-
proach to Cognition: Concepts and Empirical Paradigms Based on Self-
Organization, Embodiment, and Coordination Dynamics. Vol. 10 of Stud-
ies of Nonlinear Phenomena in Life Science. World Scientific, Singapore.

Turing, A. M., 1950. Computing machinery and intelligence. Mind 59, 433–
460.

Tversky, A., 1977. Features of similarity. Psychological Review 84 (4), 327–
352.

Ungerleider, L. G., Mishkin, M., 1982. Two cortical visual systems. In: Ingle,
D. J., Goodale, M. A., Mansfield, R. J. W. (Eds.), Analysis of Visual
Behavior. MIT Press, Cambridge, MA, pp. 549–586.

168
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